可热密封的食品包装膜,其制备方法,以及包含可热密封食品包装膜的食品包装的制作方法

文档序号:4249135阅读:224来源:国知局
可热密封的食品包装膜,其制备方法,以及包含可热密封食品包装膜的食品包装的制作方法
【专利摘要】本发明提供了可热密封的食品包装膜,其制备方法,以及包含可热密封的食品包装膜的食品包装。该可热密封的食品包装膜包含具有随着相对湿度(RH)的增加而提高的湿气渗透率的湿度依赖性可渗透膜。在该湿度依赖性可渗透膜的至少一个表面上是包含涂层材料的外涂层。该涂层材料选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)聚合物或可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合。该涂层材料可以进一步包含抗粘连剂。所述可热密封的食品包装膜是双轴取向的。
【专利说明】可热密封的食品包装膜,其制备方法,以及包含可热密封食品包装膜的食品包装
相关申请的交叉引用
[0001]本申请涉及并且要求于2011年3月11日提交的美国临时专利申请61 / 451,893的所有可获得的权益,该申请的全部内容通过引用并入本发明。
【技术领域】
[0002]本发明总体涉及聚合物膜,它们的制备方法,以及包含聚合物膜的包装,并且更特别涉及可热密封的食品包装膜,其制备方法以及包含这种可热密封的食品包装膜的食品包装。
【背景技术】
[0003]“湿气敏感食品”是具有能够在食品包装中产生高湿度条件,导致湿气浓缩、微生物生长和产品腐烂的蒸腾速率的那些食品。示例性的“湿气敏感食品”包含新鲜产品(freshproduce)和一些潮湿的烘培产品(例如面团(dough))。因此,湿气敏感食品的包装应当允许在食品包装中氧气、二氧化碳和水蒸汽的恰当混合。在这一点上,具有“高”湿气渗透率(MVTR)(即在90%的RH和23°C下大于50g / m2 /天)的包装材料允许该包装材料透气以便使包装内部的湿气不会 变得凝聚。凝聚使食品包装带雾(fogs),因此导致消费者不能看到包装的内含物并且潜在导致微生物生长和腐烂,由此降低了食品产品的品质、安全性和保存期限。正如本发明中使用的,“湿气渗透率”或“MVTR”通常是对水蒸汽通过包装材料排出的量度。“保存期限”是食品变得不适合销售、使用或消费之前的时间长度。由食品包装中的高湿度条件导致的问题在低温下会恶化。因此,以高MVTR包装材料的包装对于包装湿气敏感食品在冷冻温度下储存、运输和/或销售是特别重要的。
[0004]以可热密封包装材料的包装也是重要的,例如以便保证产品受封闭和保护不受外部因素损害。不幸的是,具有高MVTR的包装材料不能热密封。例如,对于25 iim厚度的尼龙膜在23°C和65% RH下具有大约260g/m2 /天的MVTR值,在23°C和90% RH下该值会升高到超过400g / m2 /天,但是是不可热密封的。此外,大多数可热密封的聚合物是聚乙烯-或聚烯烃-基的,其特征在于低的湿气渗透率(MVTR),这使得它们不能用于包装湿气敏感食品。例如,聚偏二氯乙烯(PVdC)、卤代聚烯烃已经用作可热密封的膜或者涂层,但是它的高湿气阻隔(即低的MVTR)使它不适用于包装湿气敏感食品。可热密封的膜或涂层的MVTR值并未随着湿度的变化而变化。
[0005]在克服这些问题的尝试中,高MVTR基材,例如尼龙膜通常涂布有可热密封涂层,例如丙烯酸类、聚氨酯或类似物质,或者其与可热密封的膜一起层合。但是,常规的可热密封涂层和膜降低了基材的MVTR。此外,离线涂布和层合处理是昂贵的,因为“离线”涂布和层合处理首先将基材形成为卷(roll)并且之后需要对该基材进行退绕以将其涂布或层合。可热密封膜或涂层至基材的粘合同样难以控制,通常需要使用底涂料(primer)以保证粘合。[0006]因此期望提供具有高MVTR的可热密封的食品包装膜。还期望提供制备这种可热密封的食品包装膜的方法。还进一步期望提供制备可热密封食品包装膜的方法,该方法将比常规的制备方法更低成本并且消除了离线加工和对于底涂料的需要。还期望制备延长食品产品储存和保存期限的可热密封的食品包装膜。此外,本发明其他期望的特征和特性将由后续发明的详细描述和所附权利要求、与附图和本发明的这一背景协同而变得显而易见。
发明概述
[0007]本发明提供了可热密封的食品包装膜。根据一个示例性的实施方案,可热密封的食品包装膜包含湿度依赖性可渗透膜。(在该湿度依赖性可渗透膜的至少一个表面上是包含涂层材料的外涂层outer coating)。该涂层材料选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)聚合物或可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合。该涂层材料可以进一步包含抗粘连剂(ant1-blocking agent)。
[0008]还根据本发明的另一个示例性的实施方案,提供了用于制备可热密封的食品包装膜的方法。该方法包括提供湿度依赖性可渗透膜。该湿度依赖性可渗透膜的至少一个表面涂布以涂层材料以制备涂布的膜。该涂料选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)或可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合。该涂布的膜是双轴取向的。该涂层材料适合形成外涂层。
[0009]还根据本发明的另一个示例性的实施方案,本发明提供了一种食品包装。该食品包装包含可热密封的食品包装膜,该包装膜包含湿度依赖性可渗透膜。在湿度依赖性可渗透膜的至少一个表面上是包含涂层材料的外涂层。该涂层材料选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)聚合物或可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合。该可热密封的食品包装膜可被热密封以形成 食品包装。
【专利附图】

【附图说明】
[0010]本发明的实施方案在下文中将结合以下附图进行描述,其中同样的数字表示同样的部分,并且其中:
[0011]图1是根据本发明示例性实施方案制备可热密封的食品包装膜的方法的流程图;
[0012]图2是根据本发明示例性实施方案的可热密封的食品包装膜的剖面图;
[0013]图3和4是使用根据本发明示例性实施方案的可热密封的食品包装膜的示例性食品包装的剖面图。
发明详述
[0014]以下对发明不同实施方案进行详细描述,其本质上仅仅是示例性的并且并不意在限制本发明的主题或本发明主题的应用和用途。此外,并不意欲受到前述背景或以下详细说明中存在的任何理论的束缚。
[0015]各种实施方案涉及可热密封的食品包装膜、其制备方法和包含该可热密封的食品包装膜的食品包装。所述可热密封的食品包装膜具有高的湿气渗透率(下称“MVTR”),且该MVTR随着包装外部的相对湿度的增加而增加。本发明中使用的“MVTR”表示在24小时的时间内通过膜扩散的水蒸汽的量。其按照ASTM E96 / A / B / Bw方法在50%或90%的相对湿度(RH)和23°C或38°C下以g / m2 /天计测量。本发明中使用的“高”MVTR意味着在90%的RH和23°C下大于50g / m2 /天。可热密封的食品包装膜预期在本发明中允许湿气排出可热密封的食品包装,由此保持包装的湿气敏感食品的品质、安全性和保存期限,并且保留新鲜风味和营养价值,且减少供应链浪费。正如此处和之前指出的,“湿气敏感”食品是具有会在食品包装中导致高湿度条件而导致湿气凝聚、微生物生长和产品腐烂的蒸腾速率的那些食品产品。示例性的湿气敏感食品包含新鲜的水果和蔬菜,以及湿的烘培产品,例如新鲜的面团、面包、蛋糕或类似食品。本发明中使用的“湿烘培产品”具有高于大约12%的高湿含量、柔软的质地(supple texture)和在大约0.6到大约0.85之间的高水活性。在高湿度下,湿烘培产品失去“硬皮”或“脆性”,降低了消费者对产品的需求。
[0016]参见图1和2,根据本发明预期的用于形成可热密封的食品包装膜55的方法通过提供另外不是可热密封(步骤20)的湿度依赖性可渗透膜60开始。本发明中使用的“湿度依赖性可渗透”膜是非多孔性的单片膜(monolithic film),其可渗出水蒸汽,但是其基本上是不可渗入液态水的,并且该单片膜具有随着相对湿度(RH)的增加而增加的湿气渗透率。湿度依赖性可渗透膜具有前面定义的高MVTR。在低的相对湿度(即大约0%到大约70%的RH)下,该膜显示出比在较高的相对湿度(即高于70%到大约95%的RH)下更低的MVTR,即,当相对湿度增加且产生凝聚的风险时,该膜开始透气。因此,当包装内部的凝聚由于较高的相对湿度而增加时。湿气通过膜扩散到包装外部。
[0017]在一个示例性的实施方案中,湿度依赖性可渗透膜60可以包含尼龙。正如前面指出的,尼龙膜(双轴取向的)是常规的包装膜,对于25μπι的厚度,在23°C和65%的RH下其具有大约260g / m2 /天的MVTR,该值在23°C和90%的RH下升高到大于400g / m2 /天,但是它不是可热密封的。本发明中有用的尼龙的非限定性实例包含选自具有大约10000到大约100000道尔顿的分子量的脂肪族聚酰胺和脂肪族/芳香族聚酰胺的均聚物或共聚物。通常用于制备聚酰胺的一般过程是现有技术公知的。这些包含二元酸与二元胺的反应产物。有用的用于制备聚酰胺的二元酸包含以下通式表示的二元羧酸:
H00C-Z-C00H
其中Z表示包含至少2个碳原子的二价脂肪族基团,例如己二酸、癸二酸、十八烷二酸、庚二酸、辛二酸、壬二酸、十二烷二酸和戊二酸。二元羧酸例如可以是脂肪族酸,或者是芳香族酸,例如间苯二酸和对苯二酸。用于制备聚酰胺的合适的二元胺例如包含具有下式的那些:
H2N(CH2)nNH2
其中η是1-16的整数值,且包含以下这些化合物,例如三亚甲基二胺、四亚甲基二胺、五亚甲基二胺、六亚甲基二胺、八亚甲基二胺、十亚甲基二胺、十二亚甲基二胺、十六亚甲基二胺,芳香族二胺,例如对苯二胺、4,4' -二氨基二苯基醚、4,4' -二氨基二苯基砜、4,4' - 二氨基二苯基甲烷,烷基化的二胺,例如2,2- 二甲基五亚甲基二胺,2,2,4-三甲基六亚甲基二胺和2,4,4-三甲基五亚甲基二胺,以及脂环族二胺,例如二氨基二环己基甲烷和其他化合物。其他有用的二胺包含七亚甲基二安、九亚甲基二胺,等等。
[0018]有用的聚酰胺均聚物包含聚(4-氨基丁酸)(尼龙4),聚(6-氨基己酸)(尼龙6,还称作聚(己内酰胺)),聚(7-氨基庚酸)(尼龙7),聚(8-氨基辛酸)(尼龙8),聚(9-氨基壬酸)(尼龙9),聚(10-氨基癸酸)(尼龙10),聚(11-氨基十一烷酸)(尼龙11),聚(12-氨基十二烷酸)(尼龙12),尼龙4,6,聚(六亚甲基己二酰胺)(尼龙6,6),聚(六亚甲基癸二酰胺)(尼龙6,10),聚(七亚甲基庚二酰胺)(尼龙7,7),聚(八亚甲基辛二酰胺)(尼龙8,8),聚(六亚甲基壬二酰胺)(尼龙6,9),聚(九亚甲基壬二酰胺)(尼龙9,9),聚(十亚甲基壬二酰胺)(尼龙10,9),聚(四亚甲基二胺-共-草酸)(尼龙4,2),正十二烷二酸和六亚甲基二胺的聚酰胺(尼龙6,12),十二亚甲基二胺和正十二烷二酸的聚酰胺(尼龙12,12),等等。有用的脂肪族聚酰胺共聚物包含己内酰胺/六亚甲基己二酰胺共聚物(尼龙6,6 / 6),六亚甲基己二酰胺/己内酰胺共聚物(尼龙6 / 6,6),三亚甲基己二酰胺/六亚甲基壬二酰胺共聚物(尼龙三甲基6,2 / 6,2),六亚甲基己二酰胺-六亚甲基壬二酰胺己内酰胺共聚物(尼龙6,6 / 6,9 / 6),等等。还包含这里没有特别叙述的其他尼龙。在一些使用聚酰胺的实施例中,聚酰胺可以选自尼龙6、尼龙6,6、尼龙6 / 6,6和它们的混合物。
[0019]脂肪族聚酰胺可以由商业来源获得或者根据已知的制备技术制备。例如,聚(己内酸胺)可以从 Honeywell International Inc., Morristown, NewJersey 获得,其商品名为CAPRON?。脂肪族和芳香族聚酰胺的非限定性实例包含聚(四亚甲基二胺-共-间苯二甲酸)(尼龙4,I),聚六亚甲基间苯二甲酰安(尼龙6,I),六亚甲基己二酰胺/六亚甲基-间苯二甲酰胺(尼龙6,6 / 61),六亚甲基己二酰胺/六亚甲基-对苯二甲酰胺(尼龙6,6 / 6T),聚(2,2,2-三甲基六亚甲基对苯二甲酰胺),聚(间二甲苯己二酰胺)(MXD6),聚(对亚二甲苯基己二酰胺),聚(六亚甲基对苯二甲酰胺),聚(十二亚甲基对苯二甲酰胺),聚酰胺6T / 61,聚酰胺6 / MXDT / I,聚酰胺MXDI,等等。还可以使用两种或更多种脂肪族/芳香族聚酰胺的共混物。脂肪族/芳香族聚酰胺可以通过已知的制备技术制备或者可以从商业来源获得。
[0020]根据另一个示例性的实施方案,湿度依赖性可渗透膜可以是聚乳酸(PLA)膜。PLA是由可再生的资源衍生的热塑性脂肪族聚酯,例如玉米淀粉(在美国)、木薯产品(根、碎屑或者淀粉,大部分在亚洲)或甘鹿(在世界的其他地方)。PLA膜例如可从Nature WorksLLC(Minnetonka, Minnesota)商购获得。在另一个示例性的实施方案中,再生纤维素膜(reconstituted cellulose film)可被用作湿度依赖性可渗透膜。
[0021]仍然参见图1和2,方法10通过用涂层材料65涂布湿度依赖性可渗透膜60的至少一个表面而得以继续,该涂层材料65相反(otherwise)允许非可热密封的湿度依赖性可渗透膜被热密封(步骤30)。涂层材料将形成湿度依赖性可渗透膜上的外涂层。本发明中使用的“外涂层”表示涂层材料形成没有覆盖层的外层。在一个实施方案中,涂层材料包含热密封聚合物和抗粘连剂。热密封聚合物可以作为水中的乳液而商购获得,其具有大约15到大约50?〖 %的固含量。在一个实施方案中,热密封聚合物包含可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物,或者是可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合。合适的可拉伸的氨基甲酸酯(聚合物)和可拉伸的丙烯酸类聚合物是在大约190°C到大约220°C的升高的温度下能够拉伸的那些(作为涂层材料的一部分),根据下文描述拉伸因子。用于根据本发明描述的示例性实施方案中的可拉伸的氨基甲酸酯和丙烯酸类聚合物在拉伸后保留了它们的热密封特性。本发明中使用的术语“热密封特性”表示聚合物可以在大约175°C到大约205°C的温度和大约0.28MPa到大约0.41MPa (40_60psi)的压力下热密封。最初的选择标准是可拉伸的氨基甲酸酯(聚合物)和丙烯酸类聚合物具有如通常由聚合物供应商测定的在环境温度下(23°C )大于大约100%的极限伸长,优选在环境温度下(23°C)具有大于大约400%的伸长。可拉伸的氨基甲酸酯聚合物的非限定性实例包含Chemtura? Witcobond? ff-507 > Witcobond? W-290H 和 Witcobond? w-170 (由 ChemturaCorporation, Middlebury, Connecticut 获得)或 Hauthaway HD4664 和 HauthawayHD2024 (由 Hauthaway Corporation, Lynn, Massachusetts 获得)。可拉伸的丙烯酸类聚合物的非限定性实例包含丙烯酸-氨基甲酸酯体系,例如,Chemtura? Witcobond?A-100 (由 Chemtura Corporation 获得)或ADM Tronic Aqualene? 1400HW (由 ADM TronicsUnlimited, Inc., Northvale, NewJersey 获得)。 [0022]在另一个实施方案中,基于根据下文描述的目的,热密封聚合物包含聚偏二氯乙烯(PVdC)聚合物且涂层材料进一一步包含纳米粘土。该PVdC聚合物具有高的水阻隔性(即低的MVTR)和高的氧气阻隔性。PVdC聚合物还具有优良的热密封特性并且因此可以用作热密封材料。该PVdc聚合物例如可以“阻隔PVdC”或“粘合级PVdC”由Rohm andHaas Company, Rohm and Haas Chemicals LLC(自身全部附属于 DOW Chemical), SpringHouse, Pennsylvania商购获得,商品名为“”或“”。虽然两种类型都是合适的,但是这些商购获得的PVdC聚合物具有一些不同的性质,包括它们的热密封速率。阻隔PVdC不能非常快速的热密封并且因此在高于大约204°C的温度下应用热和压力多于两秒钟。粘合级PVdC可以在较低温度(大约191°C (375° F)或更低)和压力(大约0.28MPa到大约
0.41MPa(40-60psi))下,在较短的时间(大约0.5到大约2秒)内热密封。选择使用哪一个将通常取决于包装者对热密封的需要。可商购获得的粘合级PVdC乳液的实例包含来自Philadelphia, Pennsylvania 的 Rohm and Haas Company 的 Serfene? 乳液,特别是无底涂层的(primerless) Serfene?2022 和 2026。
[0023]正如前面指出的,PVdC聚合物是可热密封的,并具有高的水和氧气阻隔性。PVdC聚合物的高水阻隔性(即低的MVTR)在所有的相对湿度范围内都是恒定的,因此并不期望其用于包装湿气敏感食品。向PVdC聚合物中添加纳米粘土实质上消除了 PVdC聚合物常规的水阻隔特性。由于PVdC的水阻隔特性基本上通过添加纳米粘土消除了,湿度依赖性可渗透膜60的MVTR控制着水蒸汽透过包装材料的渗透率。纳米粘土是层状硅酸盐并且本质上是亲水性的。适合用于本发明的纳米粘土是未处理的或未改性的,其中“未处理的纳米粘土”或“未改性的纳米粘土”具有相同的含义并且在本发明中定义为没有与以下物质反应、交换离子或形成配合物的纳米粘土:任何表面活性剂、有机铵盐或任何其他在形成具有改变性质的配合物的纳米粘土层之间迁移的插层化合物。这特别意味着纳米粘土不与任何影响粘土的天然亲水性的化合物或材料配合。这种粘土特别排除掉有机粘土,该有机粘土是已经用有机阳离子(典型的由季烷基铵离子)进行有机改性或处理以将有机插层阳离子与有机阳离子交换以为粘土提供亲有机性、疏水表面的纳米粘土。用于本发明的示例性纳米粘土包含未改性的天然或未改性的合成页硅酸盐,例如,举例来说有蒙脱土、铬岭石、锂蒙脱石、叶蜡石、皂石、锌蒙脱石、麦羟硅钠石(Magadilite)、水羟硅钠石(kenyaite)、蛭石、贝得石(Beidillite)、皂石、绿脱石、氟云母或它们的组合。未改性的云母和滑石粘土也是合适的。在一个实施例中,纳米粘土可以具有大约Inm到大约IOOnm范围内的平均片厚度和各自在大约50nm到大约500nm范围内的平均长度和平均宽度。粘土优选具有大约50到大约1000,更优选为大约100到大约300,最优选为大约300的长宽比。
[0024]为了形成涂层材料,PVdC聚合物例如可以与纳米粘土熔融混合或共混以形成聚合物纳米复合材料。纳米复合材料可以选择性的通过首先提供至少一种单体和至少一种纳米粘土的混合物,之后通过在混合物中引发原位聚合反应以导致至少一种单体聚合而形成。纳米复合材料和它们的形成方法是现有技术中公知的。本发明中使用的“纳米复合材料”是包含具有均匀的分散于其中的纳米级添加剂(即纳米粘土颗粒/片)的聚合物基质(例如PVdC)的聚合物结构。聚合物-纳米粘土共混物或纳米复合材料之后可以使用常规的技术涂布在湿度依赖性可渗透膜60上,例如凹版印刷(gravure)、反向凹版印刷等。涂层材料的纳米粘土含量为PVdC聚合物的重量的大约0.2%到大约5%。在这一实施例中,PVdC聚合物的含量可以为涂层材料的大约95%重量到大约99.8%重量。
[0025]正如前面指出的,涂层材料可以包含抗粘连剂,术语“抗粘连剂”用于本发明以描述当并不是相反期望这种粘附时,降低膜或片材相互粘结或粘附或粘结或粘附至其他表面的倾向的物质。示例性的抗粘连剂包含常规的抗粘连剂,例如非片状形态的无机颗粒(陶瓷玻璃球,飞灰、硅藻土、合成氧化硅、粘土或类似物质)、有机颗粒(微粒,例如有机硅树脂或其他聚合物珠粒)、脱模剂,例如含氟化合物和有机硅,滑爽剂例如脂肪酸(例如硬脂酸)和天然与合成蜡(例如巴西棕榈蜡)。抗粘连剂以乳液固含量(即根据前面所指出的大约15到大约50wt%的固体)的大约0.25%重量到大约5.0%重量的量添加到热密封聚合物的乳液中。例如,作为溶解于醇中的液体获得的巴西棕榈蜡可以以乳液固含量的大约0.5%到大约5.0%重量的量添加。将液体蜡添加到热密封的聚合物乳液中以制备涂层材料。纳米粘土可以在添加液体蜡之前、同时或之后添加到PVdC乳液中。
[0026]涂层材料可以进一步包含防雾组分。该防雾组分防止当用于包装湿气敏感产品时可热密封食品包装膜上的凝聚。防雾组分的非限定性实例包含具有大约8到20个碳原子的饱和或不饱和脂肪酸的甘油单酯,具有大约8到大约20个碳原子的饱和或不饱和脂肪酸的甘油二酯,和具有磷酸根、硫酸根或季铵官能端基的离子型表面活性剂。其他适合作为防雾组分的是包含阴离子型、阳离子型、非离子型和两性表面活性剂的表面活性剂。合适的离子型表面活性剂具有磷酸根、硫`酸根或季铵官能端基。其他防雾组分包含脂肪族羧酸的失水山梨糖醇酯,脂肪族羧酸的甘油酯,其他多羟基醇与脂肪族羧酸的酯,聚氧乙烯化合物,例如脂肪族羧酸的聚氧乙烯失水山梨糖醇酯和高级脂肪醇的聚氧乙烯醚。优选的防雾组分是单油酸甘油酯,甘油单硬脂酸甘油酯,失水山梨糖醇酯和它们的共混物。防雾组分可以在涂布膜之前以乳液固含量的大约0.5重量%到大约2.0重量%的量添加到热密封聚合物乳液中。?
[0027]湿度依赖性可渗透膜60可以采用任何本领域技术人员已知的方式用涂层材料进行涂布以形成涂布的膜。常规的涂布方法例如包括凹版印刷、反向凹版印刷、喷涂,等等。再次参见图1,正如下文中描述的,涂布的膜可以任选在热固定步骤(heat setting)(步骤40)中干燥或者当进行拉伸时仍然包含来自乳液的水。热固定步骤可以在大约65°C到大约120°C之间的温度下进行大约2秒到大约30秒以基本干燥涂布的膜。
[0028]之后对基本干燥的或湿的涂布的膜进行双轴取向,即在两个垂直的方向以“双轴片材拉伸方法”(步骤50)拉伸。涂布的膜在大约190°C到大约220°C的升高温度下拉伸,增强涂层材料对膜的粘附,由此避免了对中间粘合底涂料层的需要。涂布的膜在它的各加工(纵向)方向和横向方向上以大约x2.6到大约x3.0的拉伸比取向。本发明中使用的术语拉伸比是在拉伸方向上尺寸的增加指标。涂布的膜可以同时双轴取向,其中在双轴取向湿度依赖性可渗透膜和涂层材料之前,将涂层材料在线涂布在膜上。例如,在线涂布方法中,结合的湿度依赖性可渗透膜和涂层材料一起在加工方向和横向方向上同时双轴取向,或者相继双轴取向,在该相继双轴取向中涂布的膜首先在加工方向上拉伸并且之后在横向方向上拉伸。典型的,在拉伸之前在膜上通过反向凹版印刷(等)涂布可以获得大约1.68克/m2(llb /令)到大约16.8克/ m2(IOlb /令)的涂层重量。拉伸通过拉伸因子降低了最终的涂层重量,对于双轴取向的涂布的膜,该拉伸因子可以是大约7.5到大约10,优选为大约9到大约10。这表示初始16.8克/ m2 (IOlb /令)的涂层重量将通过9或10的因子而减少。因此,所需涂层材料的量由此显著降低,如果双轴片材拉伸过程在涂布该膜之前进行,而不是已经涂布了膜之后进行,这将以另外方式使用。由于涂层材料非常昂贵,涂层重量的显著减少降低了原料成本。双轴取向的涂布的膜可以形成为卷并且作为卷储存。抗粘连剂基本上防止了卷中层的粘合。
[0029]现在参考图3,可热密封的食品包装膜可以用作食品包装的全部或一部分。可热密封的食品包装膜按照21CFR175.105和21CFR175.300是可与食品接触的。可热密封的食品包装膜自身热密封(涂布侧对涂布侧)以及热密封至特定的可热密封的聚合物,例如无定形聚对苯二甲酸乙二醇酯(APET)和乙二醇化的聚对苯二甲酸乙二醇酯(GPET)以形成食品包装。图3图解说明了由含有包含食品产品80的袋75的可热密封的食品包装膜55形成的示例性的食品包装70。该食品包装包含在其自身上折叠的可热密封的食品包装膜,由此具有侧边(side)和端部85和90,将其热密封以形成一个或多个热密封部(heat seals)95。可选择性地,虽然没有显示,袋75可以由在一个或多个侧边上热密封至另外的可热密封膜的的可热密封食品包装膜55形成。可以理解的是本发明使用的术语“另外的可热密封的膜”可以包含与本 发明预期的具有相同或不同组成的可热密封的食品包装膜或完全不同的可热密封的膜。
[0030]图4图示说明了包含示例性的食品105的另一个示例性的食品包装100,其包含可热密封的食品包装膜55和具有开口部分115的容器110,该可热密封的食品包装膜55包围着容器并且进行热密封以使可热密封的食品包装膜围绕容器的开口部分定位,例如,通过施加热,来一起加热侧边和/或端部以形成密封容器开口部分的热密封部95。容器例如可以是盘或类似物。正如现有技术中本领域技术人员已知的,其他类型的食品包装可以由本发明预期的可热密封的食品包装膜形成。
[0031]从前述中显而易见的是根据示例性实施方案的可热密封的食品包装膜允许从食品包装排出水蒸汽,由此基本上防止了食品包装内的凝聚,延长了食品的储存和保存期限,保持了安全性和品质,例如新鲜的风味和营养价值,并且减少了供应链的浪费。根据示例性的实施方案制备的可热密封的食品包装膜在高湿度和冷冻条件下是特别有用的。用于制备根据示例性的实施方案的可热密封的食品包装膜的方法比常规的离线制备方法成本更低并且消除了对底涂料的需要。
[0032]虽然在前面的详细说明中存在至少一个示例性的实施方案,但是应当显而易见的是还存在大量的变形方式。还应当显而易见的是示例性的实施方案仅仅是实例,并不意在以任何方式限制本发明的范围、应用性或本发明主题的构建。相反,前面的详细说明将为本领域技术人员提供用于实现本发明示例性的实施方案的常规路径图,应当理解的是在示例性的实施方案中描述的功能和要素排列可以产生不同的变化,但是却并不背离根据附属的权利要求和它们 的合法等价方案设定的本发明的范围。
【权利要求】
1.可热密封的食品包装膜(55),其包含: 湿度依赖性可渗透膜(60);和 外涂层,其包含在所述湿度依赖性可渗透膜(60)的至少一个表面上的涂层材料(65),该涂层材料(65)选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)聚合物、可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合。
2.权利要求1的可热密封的食品包装膜(55),其中所述湿度依赖性可渗透膜(60)包含尼龙膜、聚乳酸膜或再生纤维素膜。
3.权利要求1的可热密封的食品包装膜(55),其中所述涂层材料(65)的纳米粘土含量是按PVdc聚合物计大约0.2wt%到大约5wt%的量。
4.权利要求1的可热密封的食品包装膜(55),其中使用乳液将所述涂层材料(65)施加于所述湿度依赖性可渗透膜(60),该乳液具有大约15wt%到大约50wt%的固含量。
5.权利要求4的可热密封的食品包装膜(55),其中所述涂层材料(65)进一步包含按所述乳液固含量计大约0.25wt%到大约5.0wt%的量的抗粘连剂。
6.权利要求5的可热密封的食品包装膜(55),其中涂层材料(65)进一步包含以所述乳液固含量计大约0.5wt%到大约2.0wt%的量防雾剂。
7.制备可热密封的食品包装膜(55)的方法,其包括: 提供湿度依赖性可渗透膜(60); 用涂层材料(65)涂布所述湿度依赖性可渗透膜(60)的至少一个表面以提供已涂布的膜,该涂层材料(65)选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)聚合物、可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合;以及 双轴取向该涂布膜;并且 其中所述涂层材料(65)适合形成外涂层。
8.权利要求7的方法,其中用所述涂层材料(65)涂布所述湿度依赖性可渗透膜(60)的至少一个表面的步骤包括将纳米粘土分散在PVdC聚合物中,其中所述纳米粘土以按PVdC聚合物计大约0.2wt%到大约5wt%的量分散。
9.权利要求7的方法,其中该涂布步骤包括使用乳液涂布所述湿度依赖性可渗透膜(60)的至少一个表面,该乳液具有大约15wt%到大约50wt%的固含量。
10.食品包装(70,100),其包含: 可热密封的食品包装膜(55),该膜包含: 湿度依赖性可渗透膜(60);和 外涂层,其包含在所述湿度依赖性可渗透膜(60)的至少一个表面上的涂层材料(65),该涂层材料(65)选自其中分散有纳米粘土的聚偏二氯乙烯(PVdC)聚合物、可拉伸的氨基甲酸酯聚合物、可拉伸的丙烯酸类聚合物、或可拉伸的氨基甲酸酯聚合物和可拉伸的丙烯酸类聚合物的组合;并且 其中将所述可热密封的食品包装膜(55)热密封以形成所述食品包装(70,100)。
【文档编号】B65D65/38GK103717651SQ201280012975
【公开日】2014年4月9日 申请日期:2012年3月7日 优先权日:2011年3月11日
【发明者】丁元彬, S·J·波特, K·古塞 申请人:霍尼韦尔国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1