液化天然气的汽化系统和方法

文档序号:4763754阅读:865来源:国知局
专利名称:液化天然气的汽化系统和方法
技术领域
本发明一般地涉及液化天然气(LNG)的储存和分配以及使LNG汽化成天然气产品。更具体地,本发明涉及改变LNG的总热值(GHV)的系统和方法,以在汽化时产生天然气产品,该产品满足管线或商业规格,或者另外可与国内生产的天然气互换。
背景技术
目前,对于许多国家来说,由于天然气的需求继续增加,但国内生产(尤其是美国和加拿大)已经在下降,所以使用进口的LNG变得越来越重要。进口的LNG可弥补国内生产的不足,和/或另外在高峰期满足市场需求,如在冬季供暖季节。这种LNG可由本领域许多已知的任何液化方法生产,并且通常在世界上的许多偏远地区生产和从那里进口,这些地区具有巨大的天然气供应源,如中东、西非、特立尼达、澳大利亚和东南亚。在用专门设计的低温贮罐从这些偏远地区运送之后,LNG通常以低温储存在天然气高需求地区附近的世界上各个地区,直到使用。
已知,由这些偏远地区生产的LNG在很多情况下当汽化时,不满足管线或其它商业规格。所得的天然气可能具有不能接受的高热值,通常被称为总热值或“GHV”。已经提出或使用了各种方法来调节LNG的GHV,以产生能满足管线规格的天然气,如D.Rogers在“GasInterchangeability and Its Effects On U.S.Import Plans”,Pipeline & GasJournal,2003年8月,19~28页和“Long-term Solution Needed ToEmbrace Imports With Pipeline Gas”,Pipeline & Gas Journal,2003年9月,14~22页中所讨论的。例如,据Rogers说,由以下一种或多种方法进行这种“GHV降低”或“BTU稳定化”1)使高GHV的LNG液体与另一种具有较低GHV值的LNG液体混合;如在输出之前在用来装LNG的储罐中混合;2)使由高GHV的LNG汽化之后获得的天然气与国内生产的具有相对低GHV的天然气混合3)在将LNG引入到管线中之前,将惰性气体如空气或氮气注射到汽化的LNG中;和4)在输出之前从LNG中汽提较重的烃,如乙烷、丙烷和丁烷(也已知为天然气液体或NGL)。
美国专利6,564,579公开了除去NGL以降低LNG的GHV的特殊方法。
上述方法通常需要大量额外的资金成本或者具有与之相关的操作问题。例如,Rogers提出的方案1不是很可行,因为它需要保持具有合适GHV值的LNG液体的单独存货,或者非常谨慎地管理具有合适GHV值的特定LNG液体的运送,以与存在的储罐中包含的剩余LNG混合。方案3需要昂贵的设备以进行向汽化LNG的注射,包括用于将压力提升至管线压力,通常高达100bar的压缩机。Rogers提出的方案4和美国专利6,564,579公开的方法需要昂贵的设备以除去需要量的NGL。
相反地,在世界其它地区,如日本,期望提高LNG的GHV,尤其是对于来自具有较低含量NGL的天然气源的、具有相对低GHV的LNG来说。可通过将NGL或其它可燃烃物质,如二甲基醚注射到LNG中来提高GHV,从而在汽化时所得的天然气产品具有提高的GHV。
LNG通常在低压下以液态形式、并在进口终端为低温时储存。通常将LNG泵至稍微高于天然气分配管线压力的压力。然后使高压液体汽化,并送至分配管线。泵送操作通常涉及位于储罐或容器内的一系列低压泵,其串连至位于储罐外的一系列高压泵。
在过去的许多情况下,已通过简单地燃烧一部分汽化的LNG,以产生热量来加热和汽化剩余的LNG并产生天然气,来汽化LNG。为此已经使用了各种热交换系统。
众所周知,向LNG储罐输入的热量在储存过程中逐渐产生煮出的(boil-off)蒸气。在填充储存容器的过程中可能产生额外的蒸气。也可从外部源如船获得蒸气。理想地,使上述煮出的蒸气包括在输出到分配管线的汽化天然气中。可使用压缩机来将这些蒸气提高至管线的高操作压力,其可高达100bar。但是,将蒸气压缩至这样的高压需要相当的能量和昂贵的压缩机及相关的设备。
美国专利6,470,706公开了利用冷的LNG输出在低的级间压力下,冷凝这种煮出蒸气的系统和相关设备。美国专利6,470,706的教导的全部内容在此处引入作为参考。蒸气冷凝物与液体输出合并,并变成单相流到高压泵中。然后合并流从高压泵流至汽化器。将煮出的蒸气流压缩至分配管线压力,比用液体泵将煮出的蒸气冷凝物提高至高压,需要相当更多的能量。
其它LNG进口终端使用类似于美国专利6,470,706的系统,其在低压下冷凝煮出的蒸气,并将所得的冷凝物与液体LNG流一起泵送流至汽化器。
期望开发一种用于GHV降低或BTU稳定化的方法和系统,其在调节LNG的GHV方面更加有效,从而在汽化时,所得的天然气产品可与国内生产的天然气互换,或者另外能够满足商业和/或管线规格。也期望开发可通过对现存的LNG汽化系统的相对简单和低成本的改进,实现上述目的的方法和系统。
发明概述一方面,本发明涉及一种调节液化天然气的GHV的方法,其包括使可冷凝气体与液化天然气混合,液化天然气的量足以冷凝至少一部分可冷凝气体,并由此产生混合的冷凝物。
在实施方案中,本发明也涉及一种调节液化天然气的GHV的方法,其包括以下步骤提供其中具有接触区域的冷凝器容器;将可冷凝气体导入冷凝器容器;将一部分液化天然气导入冷凝器容器,其量足以在接触和与之混合时冷凝至少一部分可冷凝气体;和使该部分液化天然气与可冷凝气体在冷凝器容器的接触区域中接触,以将可冷凝气体冷凝进入液化天然气,并由此获得混合的冷凝物。
另一方面,本发明涉及一种汽化具有初始GHV的液化天然气的方法,以获得具有与管线或商业要求相符的最终GHV的天然气产品。该方法包括以下步骤提供其中具有接触区域的冷凝器容器;将可冷凝气体导入冷凝器容器;将一部分液化天然气导入冷凝器容器,其量足以在接触和与之混合时冷凝至少一部分可冷凝气体;使该部分液化天然气与可冷凝气体在冷凝器容器的接触区域中接触,以将可冷凝气体冷凝进入液化天然气,并由此获得混合的冷凝物;和使该混合的冷凝物汽化以产生天然气产品。
在实施方案中,本发明涉及汽化具有初始GHV的液化天然气的方法,以获得具有满足商业规格或另外适于在管线中传输的最终GHV的天然气产品。该方法包括提供其中具有接触区域的冷凝器容器;使可冷凝气体与最初部分的液化天然气混合,以冷却该可冷凝气体;将冷却的可冷凝气体导入冷凝器容器;
将蒸气流导入冷凝器容器,在将液化天然气汽化和传送到管线中之前,通过从设计为储存液化天然气的储罐中煮出液化天然气来获得该蒸气流;将第二部分的液化天然气导入冷凝器容器,其量足以在接触和与第二部分的液化天然气混合时,冷凝至少一部分可冷凝气体和蒸气流,并由此获得混合的冷凝物;使第三部分的液化天然气与该混合的冷凝物混合,以获得液化天然气混合物;将该液化天然气混合物的压力提高至期望的压力;和使该液化天然气混合物汽化以产生天然气产品。
在其它实施方案中,本发明更具体地涉及汽化具有初始GHV的液化天然气的方法,以获得具有满足商业规格或适于在管线中传输的最终GHV的天然气产品。该方法包括提供其中具有接触区域的冷凝器容器;使氮气与最初部分的液化天然气混合,以冷却该氮气;将冷却的氮气导入冷凝器容器;将蒸气流导入冷凝器容器,在将液化天然气汽化和传送到管线中之前,通过从设计为储存液化天然气的储罐中煮出液化天然气来获得该蒸气流;将第二部分的液化天然气导入冷凝器容器,其量足以在接触和与之混合时,冷凝至少一部分氮气和蒸气流,以获得混合的冷凝物;和使该混合的冷凝物汽化以产生天然气产品。
在进一步的实施方案中,本发明涉及一种汽化具有初始GHV的液化天然气的方法,以获得具有满足商业规格或适于在管线中传输的最终GHV的天然气产品,该方法包括提供其中具有接触区域的冷凝器容器;提供空气分离设备,以通过分离空气来获得氮气;使氮气与最初部分的液化天然气混合,以冷却该氮气;
将冷却的氮气导入冷凝器容器;将蒸气流导入冷凝器容器,在将液化天然气汽化和传送到管线中之前,通过从设计为储存液化天然气的储罐中煮出液化天然气来获得该蒸气流;将第二部分的液化天然气导入冷凝器容器,其量足以在接触和与之混合时,冷凝至少一部分氮气和蒸气流,以获得混合的冷凝物;使第三部分的液化天然气与该混合的冷凝物混合,以获得液化天然气混合物;将该液化天然气混合物的压力提高至期望的压力;使该液化天然气混合物汽化,以在汽化器中产生天然气产品,该汽化器利用热传递流体来汽化该液化天然气混合物;和将热传递流体导入空气分离设备中,以与空气分离设备的一个或多个过程流热交换。
另一方面,本发明涉及一种调节液化天然气的GHV的系统。该系统包括冷凝器容器,其包括液化天然气流的入口、可冷凝气体流的入口、通过汽化液化天然气而获得的煮出的蒸气流的入口、内部结构元件和混合的冷凝物产品的出口,该内部结构元件为液化天然气流与可冷凝气体流和煮出的蒸气流的接触提供表面积,从而使可冷凝气体与煮出的蒸气在接触和与液化天然气流混合时冷凝,以形成混合的冷凝物产品。
在其它实施方案中,本发明涉及一种调节液化天然气的GHV的系统。该系统包括混合设备,其具有第一液化天然气流的入口、可冷凝气体的入口以及出口,该混合设备适合使可冷凝气体与第一液化天然气流混合,以产生冷却的混合流;冷凝器容器,其包括第二液化天然气流的入口、混合流的入口、内部结构元件和冷凝物产品的出口,该内部结构元件为液化天然气与混合流的接触提供表面积,从而使混合流在接触和与第二液化天然气流混合时冷凝,以形成冷凝物产品;和导管,其用于从混合设备的出口将混合流传送至冷凝器容器的混合流入口。
在进一步的实施方案中,本发明涉及汽化液化天然气的系统,其包括混合设备,其具有第一液化天然气流的入口、可冷凝气体的入口以及出口,该混合设备适合使可冷凝气体与第一液化天然气流混合,以产生冷却的混合流;冷凝器容器,其包括第二液化天然气流的入口、混合流的入口、内部结构元件和混合的冷凝物产品的出口,所述内部结构元件为液化天然气与混合流的接触提供表面积,从而使混合流在接触和与第二液化天然气流混合时冷凝,以形成混合的冷凝物产品;导管,其用于从混合设备的出口将混合流传送至冷凝器容器的混合流入口;泵,其具有与冷凝器容器的出口流体连通的入口以及出口;和至少一个汽化器,其用于使混合的冷凝物产品汽化成天然气产品,该至少一个汽化器具有与泵的出口流体连通的混合冷凝物产品的入口、热传递流体的入口、热传递流体的出口以及与天然气传输管线的入口流体连通的天然气产品的出口。
本发明的重要特征是,通过使用冷的LNG输出作为冷凝流体,可将可冷凝气体如空气、氮气和甚至是NGL和其它可燃烃如二甲基醚(取决于期望的GHV变化或其它天然气规格)冷凝成LNG。选择所用的可冷凝气体的类型和数量,使得所得组合冷凝物具有与预期用于汽化组合冷凝物时的天然气产品的管线或商业应用相符的GHV值或其它天然气规格。
其它特征和优点是本发明公开的方法和系统所固有的,或者通过阅读以下详细描述及其附图,对于本领域技术人员将变得显而易见。
附图简述

图1是本发明实施方案的示意图,其包括可冷凝气体流如氮气稀释气体的冷凝,通过与低温LNG流接触,以产生具有相对于低温LNG流调节的GHV的LNG产品。
图2是本发明另一实施方案的示意图,其包括用于产生氮气流的空气分离设备,该氮气流在图1描述的方法中可用作可冷凝气体。图2还包括空气分离设备与图1的方法的结合,因为通过用图1的方法汽化LNG产品获得的冷的热传递流体,如水/乙二醇(WEG)的混合物,被用来冷却空气分离设备的各个流,如空气进料流或由空气分离设备产生的氮气流。
发明详述在附图的描述中,相同的数字用来表示相同或类似的组件。而且,如本领域技术人员已知的,为了简单起见,并非所有实现本方法所必需的热交换器、泵、阀等都示出了。
现在参见图1,示出了根据本发明汽化LNG的系统的实施方案。通常,汽化LNG的方法是基于这样的系统,其中例如用海运(oceangoing)罐将LNG通过管线11传送到LNG储罐12中。罐12是本领域技术人员已知的用于储存LNG的低温罐。另外可用位于罐12邻近的工艺通过管线来供应LNG,或用任何其它来源供应。
如上所述,这种LNG通常具有比管线中存在的或另外商业使用的国产天然气高的GHV;通常从大多数天然气生产地区进口的LNG的GHV大于1065BTU/ft3,通常为1070BTU/ft3~1200BTU/ft3,更优选为1080BTU/ft3~1150BTU/ft3。
如图所示,使用罐内的低压泵14从罐12通过管线16泵送LNG,其中LNG通常储存在约-255(-159.4℃)~约-265(-165℃)的温度下,和约2~5psig(0.138~0.345bar)的压力下。通常泵14通过管线16泵送LNG的压力为35psig(2.4bar)~200psig(13.8bar),优选为约50psig(3.4bar)~约150psig(10.4bar),并且在基本上罐12中储存LNG的温度下泵送。
传送的LNG不可避免地遭受一些气体蒸气损失(如前所述的集体煮出的蒸气),并且如图所示通过管线20从罐12被传送。通过管线20传送的这种煮出的蒸气通常在压缩机24中被再压缩,该压缩机由未示出的电源驱动。该电源可为燃气汽轮机、燃气机、发动机、蒸汽汽轮机、电动机等。如图所示,压缩的煮出的蒸气通过管线26被送至冷凝器容器30,其中它在入口28进入该容器。如图所示,通过将一定量冷的LNG从罐12由管线16和管线19送至冷凝器容器30中,来冷凝煮出的蒸气,其中正处于增加压力下的煮出的蒸气在冷凝器容器30的接触区域32中与来自管线19的冷LNG接触。在接触和与冷的LNG流混合时,煮出的蒸气冷凝并与LNG流合并,以期望的产生基本上液态的LNG流,其可通过管线44回收。管线17用来将一部分冷的LNG从管线16直接导入高压泵46(下文将描述),并由此绕过冷凝器容器30。由管线17传送的冷LNG的量将取决于汽化器50中将产生的天然气产品的量(如当地市场需求所需要的量),和由管线18和19传送的冷LNG的量,如在冷凝器容器30中冷凝煮出的气体和可冷凝气体所必需的量。
为了调节LNG的GHV,通过管线36提供可冷凝气体(其可没有GHV或具有不同的GHV)的来源,其用于降低GHV,期望为空气或氮气(分子氮或N2)。优选地,可冷凝气体为氮气,因为这种气体通常是惰性的,并不会对接触容器30或任何相关的下游装置产生腐蚀。在期望提高GHV的情况下,可冷凝气体可为相对于使用的LNG具有更高GHV值的流,如相对富NGL的烃流,其具有较高的C2+碳含量如乙烷、丙烷和丁烷,或其它易燃烃如二甲基醚。可冷凝气体的用量将取决于所用的具体LNG和可冷凝气体,也取决于将可冷凝气体冷凝成LNG所得的期望GHV值。在使用氮气作为可冷凝气体的实施方案的优选实施方案中,由于管线规格,使用氮气的量使得惰性物(氮气和二氧化碳)的总含量为约4摩尔%或以下。在通常稍微高于冷凝器容器30操作压力的压力下供应可冷凝气体。
使用的氮气可来自本领域已知的任何来源,包括但不限于,通过根据众所周知的技术从空气中分离氮气获得。可选择地,可使用一个或多个膜分离器单元,也根据众所周知的可商业获得的技术,从空气中产生和分离氮气。如果不在本发明描述的位置上或附近产生氮气,氮气可从外部源供应并储存在容器中,如一个或多个储罐,直到根据本方法使用。
在如图1所示的实施方案中,首先将可冷凝气体导入混合设备40,其通常使可冷凝气体与通过管线18提供至混合设备40的冷的LNG流混合。提供混合设备40来使可冷凝气体与冷的LNG流混合,以使可冷凝气体减温并促进该可冷凝气体在冷凝器容器30中的冷凝。优选地,混合设备40是静态在线混合器,其对本领域的技术人员是众所周知的,并可从各种厂家购得。混合设备40也使混合设备30的接触区域32上的冷凝负荷最小。在混合设备40中处理冷凝气体也有助于减小冷凝器容器30所需要的尺寸。在混合设备40中使可冷凝气体达到要求之后,冷凝气体的压力为35psig(2.4bar)~200psig(13.8bar),优选为50psig(3.4bar)~150psig(10.3bar),温度为-260(-165℃)~-150(-162.2℃)。但是,如果在足够低的温度和流速下供应冷凝气体,该温度和流速使高压泵46的入口处蒸气或冷凝气体的存在最小化,优选基本上消除这种存在,可省略混合装置40。
冷凝器容器30可为任何本领域已知的容器,其用于冷凝来自LNG储罐和容器的煮出的蒸气,如美国专利6,470,706 B1和6,564,579 B1所述,其教导的全部内容在此处作为参考。尤其是美国专利6,470,706中描述的冷凝器容器和相关装置优选用于本发明的实践。冷凝器容器30通常具有设置在容器内的内部元件,如许多填充件,如2英寸(5.1cm)鲍尔环,以提供接触区域32,其对于LNG与煮出的气体和冷凝气体的接触具有提高的表面积。蒸气/气体在接触区域32中冷凝的传热和传质也可通过本领域众所周知的塔中气/液接触的任何各种可选择方法来提高,如通过结构填充、板式塔和喷淋元件。在混合设备40中使冷凝气体达到要求之后,由管线41将冷凝气体传送至冷凝器容器30,其中它通过入口42被引入。优选地,入口42在接触区域32处或下方。在接触和与被引入冷凝器容器中的冷LNG混合时,冷凝气体也与煮出的蒸气一起冷凝,并形成混合的冷凝物,然后该混合的冷凝物由管线44被传送至高压泵46。
在一些实施方案中可省略冷凝器容器30,从而使可冷凝气体与冷的LNG流混合,由此在混合设备40中,使可冷凝气体在接触和与之混合时冷凝,如前所述,对于混合设备40优选使用静态的在线混合器。在这些实施方案中,液压条件应该足以使得在被引入在后文描述的高压泵46之前,所得的混合冷凝流基本上为液相并具有足够的体积,即湍振(surge)效果,从而避免或最小化以两相流到所述泵中。
冷凝器容器30通常操作的压力为35psig(2.4bar)~200psig(13.8bar),优选为50psig(3.4bar)~150psig(10.3bar),温度为-265(-165℃)~-200(-128.9℃),优选为-265(-165℃)~-260(-162.2℃)。
高压泵46通过管线17接收冷的LNG,并通过管线44接收混合的冷凝物,由此提高其压力;通常高压泵46在适合于传送至管线的压力下将所得的LNG混合物排放到管线47中。这种管线压力通常为约800psig(55.2bar)~约1200psig(82.7bar),可高达1450psig(100bar),虽然这些规格对于一个管线与另一个管线可不同。将管线47中的LNG混合物传送至汽化器50的入口48或本领域众所周知的用于汽化LNG的其它热交换器。天然气产品在出口52处排出汽化器50,适于引入到现存的天然气输送管线或系统中,或用于其它商业应用。通常天然气从出口52排出的温度为约30(1℃)~50(10℃),但是这也可变化。
根据GHV,在一些实施方案中,管线47中的LNG混合物将在1065BTU/ft3或以下汽化时得到天然气产品,对于这些实施方案优选为1020BTU/ft3~1065BTU/ft3。
汽化器50可为本领域已知的用于汽化LNG流的任何类型,如壳管式换热器、浸没燃烧式汽化器或开架式汽化器。例如,可使用水或空气作为换热介质,或者换热器可为用火加热的单元(fired unit)。这些变化是本领域技术人员众所周知的。在实施本发明时优选使用水,或水和其它换热流体如乙二醇的混合物,作为汽化器50中的换热介质。在图1中示出了冷却循环。热传递介质的冷流如50/50(重量)水和乙二醇的混合物,通过管线56排出汽化器50。示出了管线58,其中一部分冷的热传递介质,由管线58传送至系统的外面,用于其它地方,例如用作冷却剂来调节空气进料或与氮气/氧气空气分离设备有关的其它过程流,该空气分离设备如图2所示,并在下文讨论。冷的热传递介质也可用来冷却冷凝气体,如从分离设备或其它地方获得的氮气,并用于如本文所述的方法。泵62用来将热传递介质通过管线59、61、63和54传送至汽化器50中。换热器64可用来将热传递介质的温度调节至在汽化器50中使用所期望的温度。
现在参见图2,示出了本发明的实施方案,其包括一体化的空气分离设备,以提供氮气作为用于图1冷凝器容器30的可冷凝气体。通过管线66将空气进料至空气分离设备,空气最初被导入压缩机70,其中压力被增至用于空气分离设备的通常压力,如250psig(17.2bar)~400psig(27.6bar),用未示出的电源驱动该压缩机70。该电源可为燃气汽轮机、燃气机、发动机、蒸汽汽轮机、电动机等。压缩之后,通过管线72将空气进料流导入调节单元78,其中过滤空气以从中除去任何颗粒物质,而且也通过使用分子筛脱水、膜或变压吸附(PSA)使空气脱水,所有这些方法是本领域众所周知的。然后通过管线82将空气进料导入换热器80,其中在低温蒸馏之前,将空气预冷却至优选为55(12.8℃)~100(37.8℃)的温度。作为另一个一体化特征,换热器80使用通过管线58传送的热传递介质(冷却剂),其包括部分如前所述的冷的热传递介质,其由用于在图1汽化器50中汽化LNG的冷却循环获得。管线86将热传递介质返回到如图1所示使用热传递介质的冷却循环的管线59。使用这种冷的热传递介质可导致显著节省操作成本。而且,使用热传递介质来将热从空气进料流间接传递给被汽化的冷LNG,使得能够有利地使用冷的LNG,而没有安全(爆炸性燃烧)问题,而如果在换热器中使用冷的LNG流来将热从空气进料流直接传递给LNG和/或由空气分离获得的相对富、但是冷的O2流,可能存在安全问题。
在预冷却之后,通过管线88将空气进料传送至换热器90,其中通过与由后文所述的管线96和94提供的冷过程流热交换,将空气进一步冷却至-100(-73.3℃)~-250(-156.7℃)的温度。换热器90通常为本领域技术人员众所周知类型的多路、板翅换热器。然后通过管线92将冷却的空气流传送至涡轮膨胀机102,其中在涡轮膨胀机102中使冷却的空气流膨胀,以提供温度为-260(-162.2℃)~-300(-184.4℃)的冷却的空气流,其通过管线104被传送至蒸馏塔110。
在蒸馏塔110中,冷凝的空气流被分成相对纯的氮气和氧气流,其分别通过管线96和94从蒸馏塔110回收。在蒸馏过程中使用再沸器,如本领域技术人员所已知的,并且为简化起见未示出。蒸馏塔110使用众所周知的空气分离技术来将空气分离成氮气和氧气的各自流。通过管线96将氮气流传送至换热器90,其中它在交换关系中用来冷却通过管线88引入换热器90中的空气进料。然后通过管线98将氮气流传送至压缩机112,其通过得自涡轮膨胀机102中的空气膨胀的功来驱动,该功通过轴114被传送至压缩机112。在压缩机112中最初压缩之后,然后通过管线115将氮气流传送至压缩机120,其中它被进一步压缩至适合用于图1冷凝器容器30的50psig(3.4bar)~150psig(10.3bar)的压力。然后在换热器121中冷却压缩的氮气流,使用取自管线58的一部分冷却的换热介质(水、乙二醇或其混合物),该部分通过管线124被传送至换热器121。然后通过管线36将压缩的氮气流传送至冷凝器容器30。类似地,通过管线94将氧气流传送至换热器90,其中它也在换热关系中用来冷却被引入换热器90的空气进料。此后通过管线100从过程中回收氧气并用于其它目的。
由此已经参考某些优选实施方案描述了本发明,应该理解,本发明描述的实施方案是解释性的,而实际上不是限制性的,并且在本发明的范围内许多变化和改进是可能的。
权利要求
1.一种调节液化天然气的GHV的方法,该方法包括使可冷凝气体与液化天然气混合,该液化天然气的量足以冷凝至少一部分可冷凝气体,并由此产生混合的冷凝物。
2.一种调节液化天然气的GHV的方法,该方法包括提供其中具有接触区域的冷凝器容器;将可冷凝气体导入冷凝器容器;将一部分液化天然气导入冷凝器容器,其量足以在接触和与之混合时冷凝至少一部分可冷凝气体;和使该部分液化天然气与可冷凝气体在冷凝器容器的接触区域中接触,以将可冷凝气体冷凝进入液化天然气,并由此获得混合的冷凝物。
3.一种汽化具有初始GHV的液化天然气的方法,以获得具有与管线或商业要求相符的最终GHV的天然气产品,该方法包括提供其中具有接触区域的冷凝器容器;将可冷凝气体导入冷凝器容器;将一部分液化天然气导入冷凝器容器,其量足以在接触和与之混合时冷凝至少一部分可冷凝气体;使该部分液化天然气与可冷凝气体在冷凝器容器的接触区域中接触,以将可冷凝气体冷凝进入液化天然气,并由此获得混合的冷凝物;和使该混合的冷凝物汽化以产生天然气产品。
4.权利要求1、2或3的方法,其中所述液化天然气最初在汽化时的GHV为1070BTU/ft3~1200BTU/ft3。
5.权利要求1、2或3的方法,其中可冷凝气体是含氮气的气体。
6.权利要求5的方法,其中可冷凝气体是氮气。
7.权利要求2或3的方法,还包括在将可冷凝气体引入冷凝器容器之前,使可冷凝气体与最初部分的液化天然气混合,以降低可冷凝气体的温度。
8.权利要求2或3的方法,其中使冷凝器容器保持-265(-165℃)~-200(-128.9℃)的温度。
9.权利要求2或3的方法,其中使冷凝器容器保持35psig(2.4bar)~200psig(13.8bar)的压力。
10.权利要求6的方法,还包括通过从空气中分离氮气来提供氮气。
11.权利要求5的方法,还包括通过使用一个或多个氧气可渗透的膜分离器单元,分离出空气中的至少一部分氧气,来提供含氮气的气体。
12.权利要求2或3的方法,还包括将蒸气流导入冷凝器容器,在将液化天然气汽化和传送到管线系统中之前,通过从设计为储存液化天然气的储罐中煮出液化天然气来获得该蒸气流;和使蒸气流与该部分液化天然气和可冷凝气体在冷凝器容器的接触区域中接触,以使蒸气流在冷凝器容器中冷凝,并被包括在混合的冷凝物中。
13.权利要求1、2或3的方法,其中可冷凝气体包括乙烷、丙烷、丁烷、二甲基醚或其混合物。
14.权利要求1、2或3的方法,其中使混合的冷凝物与第二部分的液化天然气混合,以产生液化天然气混合物。
15.权利要求14的方法,其中所述天然气混合物在汽化时的GHV为1020BTU/ft3~1065BTU/ft3。
16.权利要求14的方法,还包括提高液化天然气混合物的压力,以产生加压的液化天然气混合物;和使该加压的液化天然气混合物汽化,以产生天然气产品。
17.一种汽化具有初始GHV的液化天然气的方法,以获得具有满足商业规格或适于在管线中传输的最终GHV的天然气产品,该方法包括提供其中具有接触区域的冷凝器容器;提供空气分离设备,以通过分离空气来获得氮气;使氮气与最初部分的液化天然气混合,以冷却该氮气;将冷却的氮气导入冷凝器容器;将蒸气流导入冷凝器容器,在将液化天然气汽化和传送到管线中之前,通过从设计为储存液化天然气的储罐中煮出液化天然气来获得该蒸气流;将第二部分的液化天然气导入冷凝器容器,其量足以在接触和与之混合时,冷凝至少一部分氮气和蒸气流,以获得混合的冷凝物;使第三部分的液化天然气与该混合的冷凝物混合,以获得液化天然气混合物;将该液化天然气混合物的压力提高至期望的压力;使该液化天然气混合物汽化,以在汽化器中产生天然气产品,该汽化器利用热传递流体来汽化该液化天然气混合物;和将热传递流体导入空气分离设备中,以与空气分离设备的或多个过程流热交换。
18.权利要求17的方法,其中使用热传递流体来冷却空气分离设备的空气进料。
19.权利要求17的方法,其中使用热传递流体来冷却从空气分离设备获得的氮气。
20.一种汽化具有初始GHV的液化天然气的方法,以获得具有满足商业规格或另外适于在管线中传输的最终GHV的天然气产品,该方法包括提供其中具有接触区域的冷凝器容器;使可冷凝气体与最初部分的液化天然气混合,以冷却该可冷凝气体;将冷却的可冷凝气体导入冷凝器容器;将蒸气流导入冷凝器容器,在将液化天然气汽化和传送到管线中之前,通过从设计为储存液化天然气的储罐中煮出液化天然气来获得该蒸气流;将第二部分的液化天然气导入冷凝器容器,其量足以在接触和与第二部分的液化天然气混合时,冷凝至少一部分可冷凝气体和蒸气流,并由此获得混合的冷凝物;使第三部分的液化天然气与该混合的冷凝物混合,以获得液化天然气混合物;将该液化天然气混合物的压力提高至期望的压力;和使该液化天然气混合物汽化以产生天然气产品。
21.一种调节液化天然气的GHV的系统,该系统包括混合设备,其具有第一液化天然气流的入口、可冷凝气体的入口以及出口,该混合设备适合使可冷凝气体与第一液化天然气流混合,以产生冷却的混合流;冷凝器容器,其包括第二液化天然气流的入口、冷却的混合流的入口、内部结构元件和冷凝物产品的出口,所述内部结构元件为第二液化天然气流与混合流的接触提供表面积,从而使混合流在接触和与第二液化天然气流混合时冷凝,以形成冷凝物产品;和导管,其用于从混合设备的出口将混合流传送至冷凝器容器的混合流入口。
22.一种汽化液化天然气的系统,其包括混合设备,其具有第一液化天然气流的入口、可冷凝气体的入口以及出口,该混合设备适合使可冷凝气体与第一液化天然气流混合,以产生冷却的混合流;冷凝器容器,其包括第二液化天然气流的入口、冷却的混合流的入口、内部结构元件和混合的冷凝物产品的出口,所述内部结构元件为第二液化天然气流与混合流的接触提供表面积,从而使混合流在接触和与第二液化天然气流混合时冷凝,以形成混合的冷凝物产品;导管,其用于从混合设备的出口将混合流传送至冷凝器容器的混合流入口;泵,其具有与冷凝器容器的出口流体连通的入口以及出口;和至少一个汽化器,其用于使冷凝物产品汽化成天然气产品,该至少一个汽化器具有与泵的出口流体连通的混合冷凝物产品的入口、热传递流体的入口、热传递流体的出口以及与天然气传输管线的入口流体连通的天然气产品的出口。
23.权利要求21或22的系统,其中所述的冷凝器容器还包括从液化天然气储罐煮出的气体蒸气流的入口。
24.权利要求21或22的系统,其中所述的混合设备是静态在线混合器。
25.权利要求21或22的系统,其中所述可冷凝气体是通过在空气分离设备中从氧气中分离出氮气获得的氮气。
26.权利要求22的系统,其中所述至少一个汽化器的热传递流体出口与换热器流体连通,该换热器用来冷却空气分离设备的空气进料。
27.权利要求22的系统,其中所述至少一个汽化器的热传递流体出口与换热器流体连通,该换热器用来冷却通过在空气分离设备中从氧气中分离出氮气而获得的氮气。
28.权利要求26或27的系统,其中所述热传递介质是水、乙二醇或其混合物。
29.一种调节液化天然气的GHV的系统,该系统包括冷凝器容器,其包括液化天然气流的入口、可冷凝气体流的入口、通过汽化液化天然气而获得的煮出蒸气流的入口、内部结构元件和混合的冷凝物产品的出口,所述内部结构元件为液化天然气流与可冷凝气体流和煮出的蒸气流的接触提供表面积,从而使可冷凝气体与煮出的蒸气在接触和与液化天然气流混合时冷凝,以形成混合的冷凝物产品。
全文摘要
本发明公开了使液化天然气(LNG)汽化的方法和系统,其使用冷凝气体流来调节LNG的总热值(GHV),从而在汽化时获得满足管线或其它商业规格的天然气产品。冷凝气体可为空气、氮气,或者在一些实施方案中为NGL,如乙烷、丙烷或丁烷,或其它可燃烃如二甲基醚(DME),取决于期望的GHV变化。在一些实施方案中,所述方法和系统使用一体化的空气分离设备来产生用作冷凝气体的氮气,其中热传递介质的冷流,如水、乙二醇、其它普通热传递流体或其混合物在LNG的汽化过程中通过热传递而获得,用来预冷却空气分离设备的空气进料,或者用来冷却与之相关的其它过程流。
文档编号F25J3/04GK1894537SQ200480037440
公开日2007年1月10日 申请日期2004年12月8日 优先权日2003年12月15日
发明者帕特里克·B·沃德 申请人:Bp北美公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1