氢精制装置及其使用方法

文档序号:4917134阅读:191来源:国知局
氢精制装置及其使用方法
【专利摘要】本发明提供一种从含有气体氢、气体氧以及液体水的混合流体精制得到氢的氢精制装置及其使用方法。本发明的氢精制装置具有:混合流体流路,在该流路中含有气体氢、气体氧以及液体水的混合流体流通;第1气体流路,其与混合流体流路相邻,且在该流路中含有气体氢以及气体氧的混合气体流通;第2气体流路,其与第1气体流路相邻,且在该流路中气体氢或氧流通;气液分离膜,其构成混合流体流路与第1气体流路之间的壁面的至少一部分,且从混合流体流路的混合流体分离混合气体,并向第1气体流路提供;以及,氢或氧分离膜,其构成第1气体流路与第2气体流路之间的壁面的至少一部分,且从第1气体流路的混合气体分离气体氢或氧,并向第2气体流路提供。
【专利说明】氢精制装置及其使用方法
【技术领域】
[0001]本发明涉及从含有气体氢、气体氧以及液体水的混合流体精制得到氢的氢精制装置,特别是涉及从在液体水中含有气体氢以及气体氧的气泡的混合流体精制得到氢的氢精制装置。另外,本发明涉及使用该氢精制装置精制以及制造氢的方法。
[0002]相关技术
[0003]近年来,曾提出了很多的使用清洁能源氢来作为能源的方案。
[0004]为了制造氢,一般进行使用烃燃料的水蒸气改性。另外,近年来也曾考虑通过水的分解、特别是通过使用太阳能的水的分解来从水得到氢。在通过水的分解得到氢的情况下,有时所得到的生成物成为氢、氧和水的混合物。该情况下,为了得到氢,需要从该混合物只分离取得氢。 [0005]关于从这样的氢、氧和水的混合物分离氢,在特开2004-35356以及特开2004-292284中曾提出了使用只使氢选择性透过的氢分离膜的方案。再者,在特开2008-207969中曾提出了为了从通过使用烃燃料的水蒸气改性得到的混合气体分离氢而使用氢分离膜的方案。

【发明内容】

[0006]本发明提供一种从含有气体氢、气体氧以及液体水的混合流体高效率地精制得到氢的氢精制装置。另外,本发明提供一种使用该氢精制装置精制以及制造氢的方法。
[0007]本发明的氢精制装置,具有:
[0008]混合流体流路,在该流路中含有气体氢、气体氧以及液体水的混合流体流通;
[0009]第I气体流路,其与混合流体流路相邻,且在该流路中含有气体氢以及气体氧的混合气体流通;
[0010]第2气体流路,其与第I气体流路相邻,且在该流路中气体氢或氧流通;
[0011]气液分离膜,其构成混合流体流路与第I气体流路之间的壁面的至少一部分,且从混合流体流路的混合流体分离混合气体,并向第I气体流路提供;和
[0012]氢或氧分离膜,其构成第I气体流路与第2气体流路之间的壁面的至少一部分,且从第I气体流路的混合气体分离气体氢或氧,并向第2气体流路提供。
【专利附图】

【附图说明】
[0013]图1是说明本发明的氢精制装置的第I方式的图。
[0014]图2是说明本发明的氢精制装置的第2方式的图。
[0015]图3是表示本发明的氢精制装置的混合流体流路的例子的图。
[0016]图4是表示本发明的氢精制装置的混合流体流路的其他的例子的图。
【具体实施方式】
[0017]本发明的氢精制装置,是为了从含有气体氢、气体氧以及液体水的混合流体精制得到氢而使用的装置。更具体而言,本发明的氢精制装置,是从含有气体氢、气体氧以及液体水的混合流体利用气液分离膜分离含有气体氢以及气体氧的混合气体,而且,从该混合气体利用氢或氧分离膜分离氢或氧而得到氢的装置。在此,含有气体氢、气体氧以及液体水的混合流体,例如能够通过分解水、特别是电分解水而得到,另外,该混合流体,例如是在液体水中含有气体氢以及气体氧的气泡的流体。
[0018]根据本发明的氢精制装置,能够在利用氢或氧分离膜从含有气体氢以及气体氧的混合气体分离氢或氧之前,利用气液分离膜从含有气体氢、气体氧以及液体水的混合流体分离液体水。据此,能够抑制在氢或氧分离膜上形成水被膜,由此能够抑制氢或氧分离膜上的水被膜所致的氢或氧分离效率的降低。
[0019]在含有气体氢、气体氧以及液体水的混合流体中,由于比重的差别,气体氢以及气体氧比较多地存在于铅垂上方。因此,为了促进采用气液分离膜进行的混合气体的分离,优选气液分离膜的至少一部分构成混合流体流路的垂直(铅垂)上方的壁面的至少一部分。
[0020]为了利用本发明的氢精制装置实现氢的分离,可以使混合流体流路的压力大于第I气体流路的压力,且第I气体流路的压力大于第2气体流路的压力。具体的压力依赖于本发明的氢精制装置的工作温度、使用的膜的分离性能以及强度等,例如,特别优选:将混合流体流路的压力设为I大气压以上,将第I气体流路的压力设为低于I大气压且在0.01大气压以上,并且,将利用氢或氧分离膜分离的氢或氧的在第2气体流路中的分压设为比氢或氧的在第I气体流路中的分压小的压力。
[0021]另外,可以在利用本发明的氢精制装置进行的氢的精制之前,利用其他的装置从混合流体预先取出氢和/或氧的一部分。另外,进而,也能够在利用本发明的氢精制装置进行的氢的精制之后,利用其他的装置从混合流体取出剩余部分的氢和/或氧的一部分。作为该情况下的其他的氢精制装置,可举出利用重力、离心力等的容器式的气液分离装置。
[0022]再者,用本发明的氢精制装置、以及任意的其他装置处理后的混合流体,实质上由水构成,因此可以废弃、和/或再度分解而形成为含有气体氢、气体氧以及液体水的混合流体。
[0023]作为本发明中所使用的「气液分离膜」,能够使用:能够使作为气体成分的气体氢以及气体氧从含有气体氢、气体氧以及液体水的混合流体选择性透过的任意的膜。在此,气体氢以及气体氧的透过量与液体水的透过量的摩尔比{(H2+02) /H2O),例如在操作温度下可以为2以上、10以上、50以上、100以上、或1000以上。
[0024]作为这样的气液分离膜,已知很多的气液分离膜,例如能够使用对多孔质陶瓷体进行了憎水性(拨水性)的涂敷而成的气液分离膜。另外,有时关于强度方面优选将多孔质陶瓷体、金属网等的通气性的支持体层叠于气液分离膜而使用。
[0025]作为本发明中所使用的「氢分离膜」,能够使用:能够使氢比氧优先地从含有气体氢以及气体氧的混合气体透过的任意的膜。在此,氢的透过量与氧的透过量的摩尔比(H2/O2),例如在操作温度下可以为2以上、10以上、50以上、100以上、或1000以上。
[0026]作为这样的氢分离膜,已知很多的氢分离膜,可参照例如特开2008-055295、特开2002-128512、特开 2004-008971、特开 2005-319383、特开 2006-290686 号公报等。另外,有时关于强度方面优选将多孔质陶瓷体、金属网等的通气性的支持体层叠于氢分离膜而使用。[0027]作为本发明中所使用的「氧分离膜」,能够使用:能够使氧比氢优先地从含有气体氢以及气体氧的混合气体透过的任意的膜。在此,氧的透过量与氢的透过量的摩尔比(O2/H2),例如在操作温度下可以为2以上、10以上、50以上、100以上、或1000以上。
[0028]作为这样的氧分离膜,已知很多的氧分离膜,可参照例如特开2008-062188号公报等。作为具体的氧分离膜,能够使用包含如CaTiO3那样的具有氧离子和电子的混合传导体的复合氧化物的氧分离膜。另外,有时关于强度方面优选将多孔质陶瓷体、金属网等的通气性的支持体层叠于氧分离膜而使用。
[0029](氢精制装置的第I方式)
[0030]本发明的氢精制装置,在第I方式中,具有:含有气体氢、气体氧以及液体水的混合流体流通的混合流体流路;与混合流体流路相邻,且含有气体氢以及气体氧的混合气体流通的第I气体流路;与第I气体流路相邻,且气体氢流通的第2气体流路;构成混合流体流路与第I气体流路之间的壁面的至少一部分,且从混合流体流路的混合流体分离混合气体,并向第I气体流路提供的气液分离膜;以及,构成第I气体流路与第2气体流路之间的壁面的至少一部分,且从第I气体流路的混合气体分离气体氢,并向第2气体流路提供的氢分离膜。
[0031]在使用本发明 的氢精制装置的第I方式,从含有气体氢、气体氧以及液体水的混合流体精制得到氢的情况下,例如如图1所示,将该混合流体(h2+o2+h2o)向混合流体流路
(12)供给,将该混合流体的气体成分(H2+02)利用构成混合流体流路与第I气体流路之间的壁面的至少一部分的气液分离膜(13)分离,并向第I气体流路(14)提供,来作为含有气体氢以及气体氧的混合气体(h2+o2),而且,将该混合气体(h2+o2)之中的氢利用构成第I气体流路与第2气体流路之间的壁面的至少一部分的氢分离膜(15)分离,并向第2气体流路
(16)提供。
[0032]在该方式中,氢能够从第2气体流路(16)得到。再者,从第I气体流路(14)得到的部分(组分:fraction),作为含有较多量的氧的部分,可以废弃、使其再循环而进一步获取氢、用于其他的用途等等。
[0033]该第I方式,从通过将透过分离氧和氢的氢分离膜的气体成分作为氢回收,减少混入到所得到的氢中的氧的量较容易这点来看是优选的。
[0034](氢精制装置的第2方式)
[0035]在本发明的氢精制装置的第2方式中,使用氧分离膜来代替第I方式的氢分离膜。在此,该氧分离膜构成第I气体流路的壁面的至少一部分,且从第I气体流路的混合气体分离气体氧,并向第2气体流路提供。
[0036]在使用本发明的氢精制装置的第2方式,从含有气体氢、气体氧以及液体水的混合流体精制得到氢的情况下,例如如图2所示,将该混合流体(Η2+02+Η20)向混合流体流路
(22)供给,将该混合流体的气体成分(H2+02)利用构成混合流体流路与第I气体流路之间的壁面的至少一部分的气液分离膜(23)分离,并向第I气体流路(24)提供,来作为含有气体氢以及气体氧的混合气体(h2+o2),而且,将该混合气体(h2+o2)之中的氧利用构成第I气体流路与第2气体流路之间的壁面的至少一部分的氧分离膜(25)分离,并向第2气体流路
(26)提供。
[0037]在该方式中,氢能够从第I气体流路(24)得到。再者,从第2气体流路(26)得到的部分(组分:fraction),作为含有较多量的氧的部分,可以废弃、使其再循环而进一步获取氢、用于其他的用途等等。
[0038]在含有气体氢、气体氧以及液体水的混合流体通过水的分解而得到的情况下,理论的氢与氧的摩尔比为2:1。因此,该第2方式,从能够使必须透过分离氧和氢的气体分离膜的气体的量较少这点来看是优选的。
[0039](分离促进机构)
[0040]本发明的氢精制装置的混合流体流路,可具有用于促进从液体水分离气体氢以及气体氧的分离促进机构。作为这样的分离促进机构,可举出例如如图3以及图4所示那样的机构。
[0041]在图3所示的氢精制装置中,气液分离膜(13)的至少一部分构成混合流体流路
(12)的垂直上方的壁面的至少一部分,且混合流体流路(12)具有从混合流体流路的垂直上方的壁面向下方延伸的混合气体捕集部件(51),由此,混合气体捕集部件(51)从在混合流体流路中流通的混合流体捕集含有氢以及氧的混合气体、特别是该混合气体的气泡(42),并使其接触气液分离膜(13)。
[0042]根据该图3所示那样的氢精制装置,利用气体捕集部件保持在混合流体流路中流动的混合流体中所含有的混合气体、特别是混合气体的气泡,使气液分离膜与气体氢以及气体氧切实接触,由此能 够促进由气液分离膜从混合流体分离气体氢以及气体氧。
[0043]该混合气体捕集部件,特别是为了促进混合流体中所含有的混合气体的捕集,也可以如图3所示那样,朝着混合流体流路中的混合流体的流动方向,向斜下方延伸。另外,该混合气体捕集部件,特别是也可以相对于混合流体流路中的混合流体的流动方向大致垂直、或沿着流动的方向向斜下方延伸。
[0044]在图4所示的氢精制装置中,混合流体流路具有搅拌混合流体的搅拌机构(61)。
[0045]根据具有搅拌混合流体的搅拌机构的氢精制装置,例如如图4所示,促进在混合流体流路(12)中流动的混合流体中所含有的混合气体的气泡(42)与气液分离膜(13)的接触,由此能够促进由气液分离膜从混合流体分离混合气体。另外,根据该图4所示那样的氢精制装置,能够促进混合流体中所含有的多个气泡结合而形成为比较大的气泡。
[0046]该搅拌机构,特别是为了促进混合流体中所含有的混合气体的气泡(42)与气液分离膜(13)的接触,也可以是如图4的箭头(62)所示那样,能够使混合流体流路中的混合流体朝向气液分离膜(13)流动的搅拌机构。(混合流体)
[0047]向本发明的氢精制装置供给的混合流体、即含有气体氢、气体氧以及液体水的混合流体,可以是采用任意的方法得到的混合流体。因此,例如该混合流体可以是通过水的分解、特别是通过水的直接热分解、热化学分解、或光催化分解而得到的混合流体。关于这些水分解,在下面进行说明。
[0048]水的直接热分解,是用于将水分解得到氢和氧的最基本的方法,是在数千。C的高温下直接将水分解成氢和氧的方法。该反应本来需要数千。C的温度,但通过利用催化剂,能够在2000°C左右的温度实现。
[0049]水的热化学分解法,是通过组合化学反应,在比直接热分解的情况低的温度进行水的分解的方法。热化学分解法、特别是利用金属与金属氧化物之间的氧化还原反应的热化学分解法、或利用氧化状态不同的金属氧化物间的氧化还原反应的热化学分解法,能够按比例扩大(scale-up),实用化也有了眉目。
[0050]作为利用金属与金属氧化物之间的氧化还原反应的热化学分解法,已知利用镁(Mg)、铝(Al)、铁(Fe)等金属与其金属氧化物之间的氧化还原反应的方法。另外,作为利用氧化状态不同的氧化金属间的氧化还原反应的热化学分解法,已知利用不同的氧化状态的氧化铁的氧化还原反应的方法。另外,作为其他的热化学分解法,已知被称为ι-s (碘-硫)循环法的方法。
[0051]水的光催化分解法,是通过向与水接触的氧化钛等光催化剂照射光而将水分解成氢和氧的方法。`
【权利要求】
1.一种氢精制装置,从含有气体氢、气体氧以及液体水的混合流体精制得到氢,该装置具有: 混合流体流路,在该流路中含有气体氢、气体氧以及液体水的混合流体流通; 第I气体流路,其与所述混合流体流路相邻,且在该流路中含有气体氢以及气体氧的混合气体流通; 第2气体流路,其与所述第I气体流路相邻,且在该流路中气体氢或氧流通; 气液分离膜,其构成所述混合流体流路与所述第I气体流路之间的壁面的至少一部分,且从所述混合流体流路的混合流体分离所述混合气体,并向所述第I气体流路提供;和 氢或氧分离膜,其构成所述第I气体流路与所述第2气体流路之间的壁面的至少一部分,且从所述第I气体流路的混合气体分离气体氢或氧,并向所述第2气体流路提供。
2.根据权利要求1所述的氢精制装置, 所述气液分离膜的至少一部分构成所述混合流体流路的垂直上方的壁面的至少一部分,并且, 所述混合流体流路具有从所述混合流体流路的垂直上方的壁面向下方延伸的混合气体捕集部件,由此,所述混合气体捕集部件从在所述混合流体流路中流通的所述混合流体捕集所述混合气体,并使其接触所述气液分离膜。
3.根据权利要求1或2所述的氢精制装置,所述混合流体流路具有搅拌所述混合流体的搅拌机构。
4.根据权利要求1~3的任一项所述的氢精制装置,所述混合流体流路的压力大于所述第I气体流路的压力,且所述第I气体流路的压力大于第2气体流路的压力。
5.根据权利要求1~4的任一项所述的氢精制装置,所述气液分离膜的至少一部分构成所述混合流体流路的垂直上方的壁面的至少一部分。
6.一种使用权利要求1~5的任一项所述的氢精制装置从含有气体氢、气体氧以及液体水的混合流体精制氢的方法,包括: 将所述混合流体向所述混合流体流路供给; 将所述混合流体流路的所述混合流体之中的所述气体氢以及气体氧利用所述气液分离膜分离,并向所述第I气体流路提供,来作为所述混合气体;而且, 将所述第I气体流路的所述混合气体之中的氢利用所述氢分离膜分离,并向第2气体流路提供,从所述第2气体流路得到被精制了的氢,或者,将所述第I气体流路的所述混合气体之中的氧利用所述氧分离膜分离,并向第2气体流路提供,从所述第I气体流路得到被精制了的氢。
7.一种由水制造氢的方法,包括: 分解水,得到含有气体氢、气体氧以及液体水的混合流体;和 采用权利要求6所述的方法,从所述混合流体精制氢。
【文档编号】B01D53/22GK103748034SQ201180072811
【公开日】2014年4月23日 申请日期:2011年8月11日 优先权日:2011年8月11日
【发明者】中西治通, 中村德彦, 有川英一, 藤原弘文, 久保秀人, 藤敬司, 熊野明子, 松本祥平 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1