异构化催化剂的制作方法

文档序号:11159575阅读:488来源:国知局
本发明涉及链烷烃异构化催化剂以及涉及异构化烃进料的方法。
背景技术
:辛烷值是汽油或石油(petrol)点火性的标示。支链烷烃通常比线性化合物具有更高的辛烷值,并从而提高相同沸程的原料的质量。可以各种方式实现支化,例如催化重整、异构化和烷基化。异构化涉及将直链重排至它们的支链异构体,其具有非常小的沸点变化。异构化产生的产物的至少90wt.%、更特别地至少95wt.%、最特别地至少98wt.%在进料的沸点范围内沸腾。AntoniodeLucas等人的文章“Liquidphasehydroisomerizationofn-octaneoverplatinum-containingzeolite-basedcatalystswithandwithoutbinder”(Ind.Eng.Chem.Res.,2006,45,8852-8859)描述了使用包含β沸石的催化剂对正辛烷进行液相加氢异构化,其中β沸石具有13.0的硅铝比,其相当于26.0的二氧化硅/氧化铝摩尔比(SAR)。在TreesdeBaerdemaeker等人的文章“CatalyticapplicationsofOSDA-freeBetazeolite”(JournalofCatalysis,308(2013),73-81)描述了在由无模板β沸石组成的催化剂样品的存在下的异构化,所述催化剂样品通过离子交换接着用Pt(NH3)4C12的水溶液处理以NH4+形式引入。含铂β沸石样品被压缩、破碎并筛分以获得测试的催化剂小球。由于在研究的温度窗口中的正癸烷的高度转化,因此在常规异构化条件下,对于包含β沸石的催化剂小球期望高的裂化产率,所述β沸石具有4.5和12.4的Si/Al比(分别为9和24.8的SAR)。在应用于具有25.2、36和55的Si/Al比(SAR分别为50.4、72和100)的催化剂样品中时,蒸汽脱铝之后的酸处理导致酸性位点数量的减少和更高的异构化产率。现在,已经令人惊讶地发现,在异构化中β沸石基催化剂的性能可通过使用特定种类的载体来得到改善,所述载体即包含氧化铝和具有5-15的SAR的β沸石的载体,所述β沸石优选通过不使用有机结构导向剂的特定方法制备。令人惊讶地发现,使用此催化剂载体提高了包含至少5个碳原子和/或获得的产物的研究辛烷值的化合物的产率。不希望受任何理论约束,据认为氧化铝粘合剂的存在允许相对高量的铂沉积在氧化铝上,而不是沉积在改善酸性位点和金属位点之间距离的沸石上。本发明的催化剂可使用未被脱铝的β沸石。因此,本发明现涉及包含0.01-5wt.%的在含氧化铝和β沸石的载体上的第VIII族贵金属的链烷烃异构化催化剂,所述β沸石具有5-15的二氧化硅/氧化铝摩尔比(SAR)。进一步地,本发明涉及通过在150-300℃温度和0.1-30巴绝压的压力下使包含具有4-8个碳原子的链烷烃的烃进料与根据本发明的催化剂接触来异构化所述烃进料的方法。异构化催化剂通常与包含4-8个碳原子(包括值4和8)的饱和烃、更特别地包含5或6个碳原子的饱和烃一起使用。烃优选为正烷烃。合适的进料烃的实例包括(但不限于)正丁烷、正戊烷、正己烷、正庚烷、正辛烷、环己烷、甲基环戊烷、环庚烷和甲基环庚烷,通常在氢的存在下。通常,烃进料由40-100wt.%的具有4-8个碳原子的链烷烃组成,更优选包含5或6个碳原子的链烷烃。优选地,进料包含至少50wt.%的此类链烷烃,更特别至少60wt.%,更特别至少70wt.%以及最特别至少80wt.%。通常,将氢与烃进料混合,以形成与包含于异构化区的本发明异构化催化剂接触的进料混合物。在此接触步骤期间,进料混合物中的氢浓度可广泛变化。优选地,氢/烃摩尔比为至少0.01比1,通常在0.01比1和5比1之间,更优选在0.5比1和5比1之间,以及最优选在0.02比1和2比1之间(摩尔/摩尔)。通常,饱和进料烃和氢在至少150℃、通常至少200℃、更特别至少220℃的反应温度下,与通常存在于固定床中的催化剂接触。发现本发明的催化剂尤其适合在至多300℃,更特别至多290℃,更特别至多280℃,更特别至多270℃,最特别至多260℃的温度下使用。通常,饱和烃进料流的重时空速,即每小时每克催化剂的液体进料烃的克数,为0.1-15。异构化区中的反应压力通常在1巴绝压至25巴绝压的范围内,更特别5-20巴绝压。烃进料流的气时空速通常为10-2,000升氢/升催化剂/小时,以产生上述氢∶烃比。本发明的异构化催化剂包含特定β沸石,其具有5-15,优选5-12,更特别5-11的二氧化硅/氧化铝摩尔比(SAR)。本发明的催化剂不需要包含氯化物,更尤其不需要包含任何卤素。因此,本发明的催化剂优选不包含氯化物,更尤其不包含卤素。用于本发明的催化剂中的β沸石优选不包含有机结构导向剂。后者表示在合成期间无需直接使用有机结构导向剂(SDA)而生产β沸石。然而,应理解当使用晶种材料如纯β沸石时,晶种材料可使用或不使用SDA来制备。因此,此术语指的是以下事实:在任何处理步骤期间,产生的β产物从未与有机结构导向剂(SDA)直接接触,但倘若最多与孔结构残余接触或次级接触,晶种材料可使用SDA来制作。通常地用于制备β沸石的SDA(如四乙基氢氧化铵和二苄基二甲基氢氧化铵)不仅昂贵,而且它们还不可避免地被包封于沸石骨架中,使得需要移除步骤,例如热处理,用于它们的移除。通过避免使用有机模板,在晶体材料中,产生的β沸石没有不需要的有机材料。因此,用于从结晶材料中移除SDA的一种或多种合成后处理如煅烧是不需要的。另外,当使用有机SDA来制备β沸石时,通常获得高二氧化硅产物。例如,在SDA帮助下制备的合成β沸石的典型SAR超过20,通常超过40。本发明优选包含通过以下方法制备的β沸石,所述方法包括:(a)混合并搅拌碱金属氧化物源、氧化铝源、二氧化硅源和水,以合成具有以下原材料摩尔比的初始铝硅酸盐凝胶:SiO2/Al2O3=15-45,Na2O/SiO2=0.20-0.50,H2O/SiO2=4-50,(b)添加沸石晶种并使混合物在升高的温度下结晶以获得具有5-15的二氧化硅/氧化铝摩尔比(SAR)的β沸石晶体。优选地,使混合物在100-180℃的温度下结晶12-24小时。优选使用的β沸石已经详细描述于US-A-2011/0286914中。β沸石限定并描述在“AtlasofZeoliteFrameworkTypes,”ed.Baerlocher等,第六次修订版(Elsevier2007)中。在优选的实施方式中,β沸石具有通过扫描电子显微术确定的10-1000纳米、更尤其50-500纳米的体积平均晶粒尺寸。通过根据ASTM测试D3663-03的B.E.T.法测量,其表面积优选为400-800m2/g,更特别550-750m2/g。通过ASTM测试D4365-95确定,微孔体积优选为0.10-0.40cc/g,更特别0.15-0.30cc/g。用于本发明的催化剂载体优选包含50-98wt.%的用于本发明的β沸石。更优选地,所述载体包含至少60wt.%,更特别至少70wt.%的这种β沸石。所述载体优选包含至多95wt.%,更特别至多90wt.%的此这种沸石。催化剂载体可包含进一步的沸石,但优选由β沸石和氧化铝粘合剂组成。氧化铝粘合剂通常以基于载体的2-50wt.%、更特别2-40wt.%、更特别5-30wt.%、更特别10-30wt.%、最特别10-25wt.%的量存在。粘合剂是任选地与其它化合物组合的氧化铝,所述其它化合物如二氧化硅、氧化铝、二氧化钛、氧化锆、二氧化铈和/或氧化镓。优选地,无机粘合剂由氧化铝与高达50wt.%其它化合物组成,更特别高达20wt.%,更特别高达10wt.%,最特别高达5wt.%。优选地,无机粘合剂由氧化铝组成。在本发明中,待用作无机粘合剂的氧化铝可源于任何来源。优选地,粘合剂是勃姆石,如可从Sasol购得的Catapal或Pural系列。本发明进一步涉及制备根据本发明的异构化催化剂的方法,所述方法包括(a)混合氧化铝和具有5-15的SAR的β沸石,挤出获得的混合物并任选地干燥和煅烧获得的挤出物,以及(b)用含铂溶液浸渍步骤(b)中获得的挤出物,接着干燥并任选地煅烧浸渍的挤出物。方法步骤(b)的浸渍溶液优选为包含一种或多种氯化铂盐的水溶液,更特别是根据通式XnPtClm的盐,其中X是阳离子,n是1-6的整数,优选2-4,最优选2,并且m是4-8的整数,最优选6。X优选选自铵和氢。最优选地,浸渍溶液包含六氯合铂酸。典型地,β沸石和粘合剂为粉末形式并与水混合,且如果期望或需要,可添加其它化学助剂(如胶溶剂、絮凝剂、粘合剂或其它化合物),以形成可形成为团块或成形颗粒的混合物或糊状物。理想的是挤出混合物以形成各种形状例如圆柱形和三叶形中的任意一种或多种的挤出物,其具有如1/16英寸、1/8英寸和3/16英寸的标称尺寸。可在标准干燥条件下干燥所述团块或成形颗粒,所述标准干燥条件可包括50-200℃,优选75-175℃,更优选90-150℃范围内的干燥温度。干燥后,通常在标准煅烧条件下煅烧所述成形颗粒,所述标准煅烧条件包括250-900℃,优选300-800℃,且最优选350-600℃范围内的煅烧温度。本发明的催化剂包括第VIII族贵金属。所述贵金属优选为铂和/或钯,更优选为铂。第VIII族贵金属的量优选为0.1-3wt.%。贵金属优选通过浸渍、更特别地通过孔隙体积浸渍引入到载体中。为此,载体优选用与所述载体的孔隙体积相当的含贵金属溶液进行浸渍以获得浸渍的催化剂组合物。优选地,使用含铂溶液。合适地,含铂溶液具有0-5范围内、更优选0-4范围内、更优选0-3范围内、更优选0-2范围内的pH值,包含含铂化合物,如六氯合铂酸。合适地,在5-60℃范围内的温度下、优选在15-30℃范围内的温度下进行浸渍。合适地,浸渍进行30分钟至2小时的时间段,优选45分钟至1.5小时,尽管也可使用更长的时间段。优选地,随后煅烧浸渍的催化剂组合物。煅烧可在进行生产的地点进行,或者可替代地将浸渍的催化剂组合物转移至其待使用的地点。合适地,在300-650℃范围内,优选450-550℃范围内的温度下进行浸渍载体的煅烧。煅烧进行的时间段将不是关键的。合适地,其可进行30分钟至3小时的时间段,优选45分钟至1.5小时,尽管也可使用更长的时间段。催化剂通常在使用前被还原。这通过在高温和高压下,如150-700℃范围内的温度和2-40巴绝压范围内的压力下,使煅烧的催化剂与氢接触来实现。提出以下实施例以进一步阐明本发明并不应解释为过度限制本发明的范围。实施例1-合成包含β沸石的催化剂将水、NaOH(50%)和铝酸钠(23.5%Al2O3,19.6%Na2O)混合在一起。将硅胶(可从PQ公司购得)添加至溶液中并剧烈混合1小时。最终,将商业可购得的β沸石(可从ZeolystInternational购得)以相对于浆体的二氧化硅含量10wt.%的量添加至混合物并搅拌24小时。所述凝胶具有以下摩尔组成:20.0SiO2∶1.0Al2O3∶6.0Na2O∶400H2O将凝胶装入2升Parr高压釜中,并加热至125℃并维持在该温度48小时,同时在175rpm下搅拌。冷却后,通过过滤和洗涤回收产物。为移除残余的钠,使固体在3.6MNH4NO3溶液中被浆化并在90℃下搅拌2小时。重复此NH4NO3交换过程两次。过滤、洗涤和干燥之后,最终产物具有9.8的二氧化硅/氧化铝比(SAR)。产物的BET表面积为668m2/g,并且微孔体积为0.23cc/g。将获得的β沸石与氧化铝粘合剂(SasolPuralSB1)以80∶20的重量比,以及1.5wt.%硝酸和0.3wt.%SuperflocN混合。混合物具有53%的烧失量。挤出此混合物以获得1.4mm直径的挤出物,在140℃下干燥2小时和在500℃下煅烧2小时。利用六氯合铂酸溶液通过孔隙体积浸渍来浸渍煅烧的挤出物,并且随后在140℃下干燥和在450℃下煅烧。最终的催化剂包含按照金属计算的0.3wt.%的铂,并具有0.3kg/l的压实体积密度。实施例2-异构化方法该实施例阐明了按照实施例1中所述制备的催化剂(催化剂1)在正戊烷、正庚烷和环己烷的混合物的异构化中的用途。为了对比,我们还测试了在包含20wt.%氧化铝粘合剂和80wt.%β沸石的挤出物上包含按照金属计算的0.3wt.%铂的催化剂,所述β沸石具有25的SAR并且具有0.48kg/l的压实体积密度(催化剂A)。我们进一步测试了在包含20wt.%氧化铝粘合剂和80wt.%β沸石的挤出物上包含按照金属计算的0.3wt.%铂的对比催化剂,所述β沸石具有18的SAR和675m2/g的表面积(催化剂B)。每种催化剂在200℃下干燥并且在10巴绝压和300℃下用氢还原,并且在60wt.%正-C5、35wt.%正-C6和5wt.%环-C6的原料上测试。以1.90cc进料/cc催化剂/小时的液时空速下进行测试,同时维持氢气流的流率以提供1.2∶1的氢/进料比(氢体积对进料体积)。借助气相色谱分析异构化产物。辛烷吨产率(octanetonneyield)为计算的产物产率乘以计算的辛烷值。以上催化剂在各种温度下的辛烷吨产率显示于下面表1中。表1辛烷每吨产率催化剂A催化剂B催化剂1235℃650067507000250℃740075007600当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1