自适应喷淋清洁系统的制作方法

文档序号:13918106阅读:226来源:国知局
自适应喷淋清洁系统的制作方法

本专利申请要求2015年9月3日提交的、名称为“太阳能辅助的大型清洁系统”的、序列号为62/213895的美国临时专利申请(代理人案卷号600.985PRV) 的优先权的权益,在此通过整体引用而将该临时专利申请并入本文。

此外,本专利申请要求2016年1月8日提交的、名称为“太阳能辅助大型清洁系统”的、序列号为62/276,589的美国临时专利申请(代理人案卷号600.985PV2)的优先权的权益,在此通过整体引用而将该临时专利申请并入本文。

版权声明

本专利文件的一部分公开内容含有受版权保护的材料。由于本专利文件或专利公开出现在专利与商标局的专利文档或记录中,所以版权所有者不反对任何人复制它,但保留凡除此之外的所有版权权利。以下通知适用于如下描述的以及在形成本文件一部分的附图中的软件和数据:明尼苏达大学(明尼苏达州明尼阿波利斯市)的版权董事。保留所有权利。

技术领域

本文件一般地但非限制性地涉及用于从大气空气和工艺气体中去除颗粒、微生物和气体的清洁系统。



背景技术:

大气污染物包括悬浮在大气中的各种不同的基于颗粒和流体的污染物。大气污染物是由工业过程、汽车排气和与城市和工业中心相关的其它活动产生的。在至少一些实例中,大气污染物特别是在城市或工业中心中产生了不希望的霾。在其它实例中,大气污染物引入了刺激性气味或有害气味。

颗粒污染物的一个实例包括PM2.5。PM2.5是指在空气中动力学直径小于2.5 微米的颗粒物质(PM)的质量浓度。美国的环境空气要求是由美国环境保护局 (USEPA)建立于1997年以保护公共健康。在美国,该标准多年来已被逐步加强,并且目前被设定为在24小时内35μg/m3而年平均值为12μg/m3。PM2.5包括主要由在大气中的燃烧和气体到颗粒的转化过程产生的空气污染物的微细颗粒。主要来源包括煤-油-汽油-柴油-木材燃烧、来自冶炼厂和钢厂的高温工业过程、车辆排放和生物质燃烧。由于PM2.5的小颗粒尺寸,它们在大气中具有几天到几周的寿命,并且可以飘扬数千公里(例如,通过盛行风)。PM2.5中的大部分颗粒具有接近光波长的粒径,因此散射光,从而导致可见度降低。在一些实例中, PM2.5被捕集在人呼吸道内,并且可能引起肺部疾病、心脏疾病和过早死亡。

在一个实例中,通过使用过滤介质、袋式过滤器、静电除尘器等过滤污染空气来去除或减少PM2.5。诸如PM2.5的颗粒被捕集在过滤器中,而空气以净化状态从过滤器中处释放出来。在另一个实例中,使污染空气在带静电电荷的板之间通过,并且沿着接地的板收集离子化的颗粒。



技术实现要素:

除此之外,本发明人已认识到,要解决的问题能够包括不能根据污染物的变化动态调节,诸如在大气或工艺气体中污染物的浓度、污染物的类型等。在一些实例中,污染物的浓度和类型根据一天中的时间(例如,高峰时间)、一个星期中的天(例如,工作日)或季节中的一个或多个而变化。在一些实例中,包括过滤介质、袋式过滤器和静电除尘器的示例性过滤器系统被固定地配置成在其构造时处理特定类型的污染物和特定浓度的污染物。例如,污染物浓度的变化引起了过滤器的过早结垢、过滤器的过早和重复的更换,或静电除尘器的板的洗涤以及用于更换和清洁而伴随的停机时间和劳动中的一种或多种。

诸如通过配置成处理负载有污染物的大气的清洁系统,本主题能够帮助对这个问题提供解决方案。如本文所述,在一个实例中,自适应喷淋清洁系统(例如,受控的除尘器)被配置成动态改变其操作(例如,一个或多个喷淋特征) 以响应于污染物浓度或类型的变化。该系统包括喷淋器组件的一个或多个喷嘴。该喷淋器组件(例如,受控的除尘器)包括在至少第一喷淋器构造和第二喷淋器构造之间可调节的至少一个喷淋构造特征。可选地,第一喷淋器构造和第二喷淋器构造包括多个构造(例如,范围、连续体等),该多个构造根据进入的污染流体(例如,污染空气、工艺气体等)的变化促进喷淋器组件的动态变化。示例性喷淋构造特征包括但不限于:操作喷嘴的次数;喷嘴位置(例如,包括喷嘴在喷淋通道内的位置、取向或定向等);喷嘴类型(例如,用于不同液滴尺寸的不同或可调节的喷嘴);多级喷嘴,诸如用于第一液滴尺寸(大)的第一级喷嘴和用于第二液滴尺寸(小)的第二级喷嘴;化学添加剂(以促进空气中的污染物的分解);审美添加剂和示踪添加剂(例如,香料、药用添加剂(桉树) 和促进追踪净化空气的芳香剂)。

在一个实例中,该喷淋器组件包括本文描述的多个喷嘴。多个喷嘴被配置成用诸如水的液体淋洗包括颗粒(例如,PM2.5)的进入空气。淋洗的液体夹带颗粒并有效地从空气中去除该颗粒。含有夹带颗粒的水被接收到液体收集槽、池、坑等。可选地,处理(例如,过滤、处理等)液体以去除颗粒,并回收该液体以在淋洗阵列中再次使用。

在实例中,自适应喷淋清洁系统使用多个模块化单级或多段喷嘴阵列来产生淋洗(喷淋)以去除或处理进入气体(例如,空气)中的污染物,从而清洁该进入气体。自适应喷淋清洁系统的适应性提高了效率,并促进由小系统(1 立方米每分钟)到大规模系统(几百万立方米每分钟)的规模扩大。通过以一个或多个喷淋角度、喷淋液滴尺寸、喷淋流速、喷淋液体的化学性质和喷嘴阵列的布置来操作本文描述的系统,本文描述的自适应喷淋清洁系统被配置成自适应地去除或处理不同尺寸和浓度的颗粒、微生物和气体。本文描述的系统可被配置成使用单级或多级(例如,单级或多级的喷淋器阵列)以增强颗粒和气体污染物的去除效率,其中每一级可选地具有不同的构造(喷嘴尺寸、角度、喷嘴密度等)、不同的操作参数(流速、一个或多个喷嘴阵列的选择和操作等) 和不同的喷淋液体(例如,不同的添加剂、不同的载体流体、液体的温度、液体的流速等)。

另外,在一些实例中包括该系统的其它可选方式。例如,将静电电荷施加到液滴上以促进对特定污染物的粘附。在另一个实例中,将化学添加剂添加到喷淋液体中,以增强颗粒、微生物和其它污染物的去除。在其它实例中,本文描述的系统与静电除尘器和催化材料(例如,光催化材料等)组合使用,以进一步增强污染物的处理或去除。

除此之外,本发明人已进一步认识到,要解决的问题能够包括从包括由化石燃料燃烧和其它工业过程产生的诸如二氧化碳等的气态污染物的大气降低高污染物浓度。

诸如通过作为自适应喷淋清洁系统的一部分的喷淋器组件,本主题能够有助于对这个问题提供解决方案。该喷淋组件提供一个或多个喷淋流体流(例如,喷淋流体的雾化液滴),以拦截污染气体的移动流。该喷淋流体包括一种或多种污染物催化或捕集添加剂(例如,二氧化碳捕集介质),其被配置成与气体中的污染物反应并从气体中去除该污染物。含有最小浓度的一种或多种污染物的净化气体(例如,空气)离开该系统并被排放。可选地处理污染物的各组分,诸如二氧化碳(捕集介质的组分与二氧化碳组分结合)、二氧化硫等,以回收添加剂(例如,用于二氧化碳的继续捕集),并储存或丢弃捕集的污染物组分。

可选地将本文提供的各个实施方式扩大规模到建筑物中使用并且高达甚至超过一千米或更大的尺寸(在一个实例中,使环境空气成漏斗形流入喷淋器组件的锥形护罩具有一千米或更大的直径),以促进清洁相应大规模的大气。使用可再生资源(包括水和太阳能)使该系统所需的能量输入最小化(消除或最小化)。此外,该系统可选地不使用需要丢弃和更换的过滤器。

本实用新型内容用于提供本专利申请的主题的概述。它不是用于提供本申请的排他性或穷尽的说明。具体实施方式用于提供本专利申请的进一步信息。

附图说明

在未必按比例绘制的附图中,相同的附图标记可以在不同视图中描述相同的部件。字母后缀不同的相同附图标记可以代表不同情况的相同部件。附图一般是通过举例方式而不是通过限制方式来说明本文件中讨论的各种实施方式。

图1是自适应喷淋清洁系统的一个实例的透视图。

图2是自适应喷淋清洁系统的另一个实例的示意图。

图3A是包括自适应喷淋清洁系统的水平气体通道的一个实例的示意图。

图3B是包括自适应喷淋清洁系统的竖直气体通道的一个实例的示意图。

图4A是示出包括多个喷嘴阵列的喷淋器组件的一个实例的平面图。

图4B是示出包括多个喷嘴阵列的喷淋器组件的另一个实例的侧视图。

图4C是示出包括多个喷嘴阵列的喷淋器组件的另一个实例的侧视图。

图4D是示出包括多个喷嘴阵列的喷淋器组件的另一个实例的侧视图。

图5A是配置成释放第一液滴尺寸的喷嘴的第一实例的横截面示意图。

图5B是配置成释放第二液滴尺寸的喷嘴的第二实例的横截面示意图。

图6是喷淋流体控制模块的一个实例的示意图。

图7是配置成清洁流体的在线喷淋流体清洁系统的一个实例的示意图。

图8是作为排热系统的协作部件的自适应喷淋清洁系统的另一个实例的示意图。

图9是作为建筑物通风系统的部件的自适应喷淋清洁系统的又一个实例的示意图。

图10是示出用于自适应地清洁污染气体的流的方法的一个实例的框图。

图11A是自适应喷淋清洁系统的一个实例的透视图。

图11B是图11A所示的自适应喷淋清洁系统的示意图。

图12A是自适应喷淋清洁系统的另一个实例的俯视图。

图12B包括与图12A所示的自适应喷淋清洁系统一起使用的喷嘴阵列的喷淋器组件的一个实例的透视图。

图12C是图12A所示的自适应喷淋清洁系统的一部分的示意图。

图12D是图12A所示的自适应喷淋清洁系统的液体收集槽的示意图。

图13是示例性静电除尘器的示意图。

图14A是自适应喷淋清洁系统的另一个实例的示意性俯视图。

图14B是图14A所示的自适应喷淋清洁系统的示意性侧视图。

具体实施方式

本文描述的自适应喷淋清洁系统使用多个模块化的单级或多级喷淋器阵列来产生淋洗以处理进入气体(例如,环境空气、由诸如发电、制造等生产过程产生的气体)中的污染物,从而清洁该进入气体。这些设计提供了自适应且易于扩大规模的气体清洁系统。通过选择包括但不限于喷淋流体(喷嘴)取向(例如,角度)、喷淋液滴尺寸、喷淋流体流速、喷淋液体的化学性质(例如,添加剂的组成、浓度等)和喷嘴阵列的布置(喷嘴密度、位置等)的一个或多个可变的喷淋构造特征,该系统适于去除不同尺寸和浓度的颗粒、其它污染物组分,诸如微生物和气态污染物等。包括多个喷淋器阵列(无论是交错定位还是统一定位)的多级系统为每个喷淋器阵列提供不同的设计、不同的操作参数和不同的喷淋液体(例如,一个或多个不同的可变的喷淋构造特征),以增强污染气体的处理,包括提高颗粒和气体污染物的去除效率。本文描述的设计自适应喷淋清洁系统是模块化的,并且促进并联的、串联的或沿着气体通道统一定位的多个模块(例如,喷淋器阵列、喷淋流体供应等)的选择和组装,以适应不同的操作条件和应用。

通过将一种或多种静电荷引入液滴或将污染物处理添加剂加入喷淋流体以增强污染物组分(例如,颗粒、微生物和气体污染物)的去除,来实现对清洁性能的进一步增强。本文描述的适应性喷淋清洁系统可选地与包括但不限于静电除尘器、催化材料(例如,配置成与一种或多种污染物组分反应的光催化剂、纳米材料等)的其它清洁技术组合使用。此外,气体捕集介质能被添加到喷淋流体中,以将颗粒去除功能和气体去除功能(例如,二氧化碳去除)组合到单个系统中。本文描述的自适应喷淋清洁系统克服了过滤装置的缺点,并且在清洁操作的流线型化和维护复杂性方面具有额外的好处。

在一个实例中,本文描述的系统用于去除污染物颗粒的机制是通过使颗粒扩散到喷淋液滴上。在一个实例中,在相对低的空气速度下,颗粒有更多的时间扩散到液滴上(例如,被夹带)。颗粒的夹带提供了高的去除效率,这随着较小直径的液滴而增加。在一个实例中,颗粒去除效率被量化为去除的颗粒数除以规定的(例如,使用的)喷淋液体量。

如本文所述,自适应喷淋清洁系统包括一个或多个喷淋器阵列,每个喷淋器阵列具有一个或多个喷嘴。喷嘴和阵列通常基于应用要求进行定位和布置。喷嘴阵列的布置及其选择(例如,在使用期间选定的操作和所操作的阵列的控制)匹配于污染空气流动模式(流速分布)、污染物组分(诸如颗粒、微生物和气体)、空气流中的污染物的浓度模式(浓度分布)和指定的污染物去除效率。此外,可选地调节(例如,控制)喷淋流体,包括其电学性质和化学性质,以进一步增强污染物处理。可选地,例如通过调节喷淋器阵列和可选的喷淋流体的操作和操作参数(例如,可变的喷淋构造特征)的控制系统,单独地、协作地或类似地使用包括多个多变的喷淋器阵列、喷淋流体等的多级系统。每个级 (例如,阵列)本身可以包括由具有类似或不同喷淋特性的不同数量(密度) 的喷嘴组成的多个模块,以及具有一种或多种不同电学性质或化学性质的不同喷淋流体。

在至少一些实例中,喷淋器阵列部件中的每个喷嘴包括喷淋角、喷淋流体流速、液滴尺寸和喷淋模式(宽、窄等)。喷嘴可选地是与喷淋流体分配管道或管件系统分开的部件或在管道或管件系统本身中形成的孔。本文描述的系统的喷嘴供给有喷淋流体,然后在使用之后通过重力、液体泵等从系统中排出该喷淋流体。例如使用本文描述的控制器,可选地对用于将喷淋流体分配到喷嘴的泵、喷淋流体的化学性质等进行远程控制,从而通过自动控制选择性地操作每个喷淋器阵列(以及喷淋器阵列的组件模块)以动态地响应正在变化的特征,诸如测得的或历史的污染物特征,包括但不限于:改变速度分布、浓度分布、污染物浓度、污染物类型等。

自适应喷淋清洁系统可选地与通风系统一起使用或被用作通风系统,该通风系统包括住宅、商业和公共通风系统中一个或多个。一些住宅HVAC系统具有用于去除颗粒材料的介质过滤器和用于在干燥期间(诸如在冬季月份期间) 将水分添加到空气的单独的加湿系统。本文描述的自适应喷淋清洁系统促进这些其它单独特征的组合,并提供包括维护减少和性能改进的益处。

例如,通过使用本文描述的系统,有效地去除气溶胶颗粒,而不需要介质过滤器(包括推荐的周期性更换所需的成本和劳力)。相反,许多加湿器使用材料基质(网格等)来用棉芯从水池或填充材料中吸出水,使得水随着空气通过而沿着基质流下。这些基材会被矿物质堵塞并需要定期更换。通过使用自适应喷淋清洁系统,对空气进行加湿和过滤,而没有使用棉芯、网状填充材料或过滤介质。

类似地,可选地将自适应喷淋清洁系统放置在商业建筑空气处理单元 (AHU)中以替换过滤器组和水或蒸汽加湿器系统。通过控制喷淋流体液滴的化学性质(例如,添加剂的组成、浓度等),对穿过该单元的空气进行除湿(或增湿),这在夏季是需要的。通过将该单元放置在冷却盘管上游的商业建筑空气处理系统(AHU)中,该系统提供颗粒材料的空气过滤并在空气进入冷却盘管之前干燥空气。在一些实施例中,然后该冷却盘管以没有促进微生物生长的湿表面或湿排水盘的干盘管操作。

自适应喷淋清洁系统中的喷嘴供给有例如来自一个或多个喷淋流体供应的喷淋流体。典型的喷淋流体压力为10psi水压。所使用的喷淋流体通过重力或外部液体泵而从系统中排出。除了用于调节喷淋流体的流动(例如,到喷嘴)的液体泵、阀等之外,也可选地自动控制喷淋液体的化学性质。因此,喷淋流体供应可选地远离自适应喷淋清洁系统的其余部分进行放置。此外,因为自适应喷淋清洁系统是具有因压力破裂而损坏的低可能性和产生电火花(它能够引起燃烧和/或爆炸)的最小可能性的相对低压系统,所以这些系统易适用于在包括但不限于地下煤矿、谷物升降机、弹药厂、石油化工厂、化工厂等的环境中清洁空气。

当诸如水的喷淋流体通过自适应喷淋清洁系统进行再循环时,喷淋流体温度将接近进入气体(例如,空气)湿球温度(《热环境工程第3版》第10章)。然后,气体随着它穿过喷淋流体而被冷却并增湿。经加湿并冷却的气体具有增加的密度。为了将排出气体驱向到上流自然通风系统中的系统出口(例如,气体出口),进入系统的气体的密度必须小于环境气体(例如,环境空气)的密度。在一个实例中,气体在离开喷淋器阵列之前或之后进行加热。

在一个实例中,添加到穿过系统的气体的热能由一种或多种被动太阳能提供,或者由从热的喷淋流体滴添加到空气中的热量提供。在一些系统中,热水用于从发电厂冷凝器、各种工业过程和空调冷却器的冷凝器去除热量。冷却塔用于通过水和空气之间的直接接触将热量排放到环境空气。最终的散热器变成环境空气湿球温度而不是环境干球温度,并且湿球温度通常比干球温度低几度。通过使用(本文描述的)自适应喷淋清洁系统作为冷却塔,热水也在该系统中使用。来自热水(例如,热的喷淋流体)的热量被添加到穿过该系统的空气中,以提供热浮力来驱动气流穿过自然通风系统。以类似于湿式冷却塔的方式同时冷却水。使用热的喷淋流体(例如,热水)来提供热浮力可选地不依赖于太阳能的波动或需要在晚上和在低太阳能辐射强度的条件期间没有风扇的情况下操作大规模空气净化系统所需的热存储。在一些实例中,热的喷淋流体由一个或多个过程(诸如冷凝的发电厂水等提供)。

在其它实例中,湿冷却塔由于蒸发而失去几个百分比的进入系统的水。一部分的损失归因于离开的空气流带走的液滴(被称为“漂移流”(drift)),而另一部分的损失归因于为控制所收集的固体的积聚而向下排到排水管的水(被称为“排污流”(blow down))。在一些实例中,这些损失保证在一些地方难以获得或昂贵地获得补充水的添加。这些类型的损失在本文描述的系统中得以降低。

在一个实例中,通过设计系统,例如通过设计收集池、槽等来减少排污流以降低污泥积聚的量,使得喷淋流体(诸如水)将连续地冲洗表面以降低材料积聚的量和物理清洁的需要。过滤至少一部分的再循环喷淋流体还将降低所收集的材料的累积浓度。通过保持喷淋到系统中的最小液滴尺寸来减少漂移流,该最小液滴尺寸大到足以使移动穿过系统的气流中的夹带和损失最小化(例如,消除或最小化)。在包括现有冷却塔的过滤器(例如,填充、网格等)的至少一些实例中,观察到溅射。在一些实例中,溅射可以产生小到足以随着移动离开系统的气体而被带走的液滴。本文描述的自适应喷淋清洁系统不使用填充物,因此经历最小的溅射。消除板可选地用于通过惯性冲击尽可能多地去除漂移颗粒。然而,在一些实例中,小到足以随着缓慢移动的空气流而被带走的颗粒对于通过惯性冲击进行的有效收集而言太小。可选地,通过将电荷添加到喷淋液滴(例如,如本文所述,利用电极)并将相反的电荷添加到消除板,另外的收集机构用于去除足够小的液滴,否则其随着诸如清洁空气的排出气体一起而损失。

此外,在喷淋流体包括水的情况下,通过调节液滴化学性质来减少水蒸发。当纯水液滴被喷淋到空气中时,与液滴表面接触的空气在液滴温度下是饱和的 (100%相对湿度)。当在没有添加或去除热能的情况下再循环水时,它的温度将最终匹配(例如,接近)进入空气的湿球温度的温度。因此,与液滴接触的空气在进入空气的湿球温度下是饱和的。然后穿过上述系统的大量空气在进入空气的湿球温度下趋向于该饱和条件,100%相对湿度。这通过从液滴的表面将水蒸发到空气流中,从而加湿并冷却空气而发生。相反,如果使用的化学溶液不是纯水并且与液滴直接接触的空气处于比进入空气更低的相对湿度,则水分将从空气凝结到液滴上。这使得空气变得更干燥并且温度升高,因为水蒸气的能量高于吸收的水的能量。从而,冷凝的潜热用于提高液滴和周围空气的温度。包括盐(诸如氯化钠和氢氧化钠(NaCl和NaOH))的各种化学品用于实现这一点。对于使用对水具有亲和性的化学溶液,如果化学品浓度低(例如稀释的),则一些水从液滴中蒸发直到达到平衡。相反,如果浓度高,则水蒸气从空气凝结到液滴上。因此,浓度自动趋向于在没有水从液滴蒸发或冷凝在其上时的平衡值。因此,通过将化学添加剂(诸如本文描述的盐)与喷淋流体混合,使从喷淋液滴中蒸发的水损失最小化(例如,消除或最小化)。在这个实例中,喷淋流体液滴通过显冷却而不是通过潜冷却将热量传递给气体(例如,污染气体,诸如环境空气)。这将环境热沉温度从环境湿球温度改变到环境干球温度。在一些实例中,可能存在与此相关的能量损耗(损失),因为自适应喷淋清洁系统存在(例如,用于回收)的溶液温度可以高于使用纯水时的溶液温度。然而,能源的损失通过水资源的保持而抵消。因此,如果当地水资源被认为比能源变化更重要,则这是有价值的选择。在这样的实例中,作为热交换器的喷淋流体起干热交换器的作用,但因为缺乏将具有其固有的热阻和每单位体积的液滴的高表面积的两种流体(例如,喷淋流体和气体)分开的材料而具有显著更高的总传热系数。

在水资源紧缺的地方,可选地通过保持液滴化学性质使得水被吸收到液滴上来从污染气体(诸如环境空气)中去除水。通过使用反渗透或一些其它方法 (例如,沸腾、蒸发等)去除过量的水,使液滴的化学性质(例如,一种或多种亲水性添加剂的浓度)保持在吸收模式下,并连续供应水。离开的干燥空气可选地被供给到建筑物或工艺(例如,用于压缩空气、通风等)。

湿式洗涤器的操作原理在某些方面上类似于本文描述的自适应喷淋清洗系统。自适应喷淋清洁系统与湿式洗涤器的区别在于本文描述的喷淋器控制系统提供的自适应控制。自适应喷淋清洁系统对用于颗粒和气体污染物去除的性能提供了动态的控制和在某些情况下的反馈自动化的控制。根据ASHRAE指南 12-2000和ASHRAE标准188-2015,当在建筑物中使用、气溶胶产生雾化器、雾化器、空气清洗器、加湿器、冷却塔和蒸发式冷凝器时,需要管理并控制水系统的与建筑水感染相关的军团菌病的风险。有两种主要控制方法来消毒肺炎杆菌热处理和化学消毒:(McCoy,2006;Stout,2007;Liu et al.2011)。通过用大于 60℃~70℃的热水冲洗出水口5分钟来进行热处理,并建议更长的时间(Sidari III et al.2004)。用热水冲洗实施起来很昂贵。有时使用的化学消毒方法包括但不限于:高氯化,其中,保留在水系统出口(即,用于在冷却塔中收集喷淋水的槽或池)处的为1ppm~2ppm的游离的氯残余物;或使用二氧化氯。此外,银或铜离子化是控制军团菌的另一种方法。通常,对于铜和银,浓度的范围分别控制为0.2~0.8ppm(mg/L)和0.02~0.08ppm(mg/L)。然而,除了将水加热至60℃~70℃并冲洗超过5分钟之外,如果为了另一目的将另一种化学品(诸如用于CO2洗涤的NaOH)添加到系统中,则其它化学方法可以引起液体系统中不希望的化学反应。可选地,本文描述的喷淋流体包括配置成使微生物的生长最小化(例如,消除或最小化)的一种或多种杀生添加剂。

除了军团菌之外,在冷却塔的水系统中能够生长其它微生物,例如,致病细菌、原生动物和病毒。臭氧化已被用作一种其它处理。臭氧化已应用于欧洲国家。然而,臭氧化在过程完成后没有留下残余臭氧来控制水的污染。不过,该方法可应用于含有用于在一定的水运行循环后对水进行臭氧处理的水箱的水系统中。臭氧化可选地与本文描述的一种或多种自适应喷淋清洁系统一起使用来以清洁喷淋流体。

也已被发现膜过滤有效地去除水生微生物(Sheffer et al.2005)。已经对具有不同孔径(0.005μm~0.4μm)的不同材料膜关于具有不同液体性质(例如,不同的离子强度,不同的pH值和颗粒上的电荷极性)的亚微米和纳米尺寸的颗粒(0.002-0.5μm)的膜过滤进行了理论和实验研究。(Chen et al.2015;Lee et al. 2016a,b;Süβ et al.2015)。结果表明,我们基于这些研究的新开发的模型预测了膜过滤器的颗粒去除效率。通过使用该模型,水再循环系统(例如,本文描述的流体处理器)被设计成具有用于去除微生物和由喷淋器阵列收集的颗粒的膜过滤处理。

在本文描述的其它实例中,自适应喷淋清洁系统被配置成处理多种污染物。例如,用喷淋器阵列同时将CO2与颗粒一起去除。在这样的实例中,自适应喷淋清洁系统(或包括自适应喷淋清洁系统的湿式洗涤器)的总资本成本降低,因为统一的自适应喷淋清洁系统用于减少颗粒、CO2排放和可选的其它污染物 (例如,用本文描述的其它污染物处理添加剂)。例如,包括一个或多个喷淋器阵列的自适应喷淋清洁系统产生了包括二氧化碳捕集介质的液体喷雾(例如,可溶于喷淋载体流体的捕集介质,诸如水)来去除大气CO2。在液体基质(液滴)中喷射二氧化碳捕集介质(例如,NaOH、胺等)的大覆盖范围(例如,在气体通道内的体积)的喷嘴阵列增加了与气体(诸如空气)的接触界面,并有效地捕集并去除CO2。在一个实例中,TiO2被用作碳酸钠的苛化剂,因为在一些实施例中总能量消耗比使用Ca(OH)2的能量消耗低50%。图1示出了在包括但不限于建筑物、雕像、艺术品或者与建筑物的结构一体化的外壳102内的自适应喷雾清洁系统100的一个实例。在另一个实例中,本文描述的自适应喷淋清洁系统100被包含作为另一个系统的一部分,另一个系统包括但不限于HVAC系统、通风系统或生产气体处理系统(例如,用于处理烟道气、来自发电厂或制造组件的废气等)。再次参照图1,示出了自适应喷淋清洁系统100具有相对于外壳102的其余部分基本上竖直延伸的气体通道104。如同所示,气体通道104包括相对于气体入口108处于升高位置的气体出口110。在图1所示的实例中,气体通道104包括护罩106。在一个实例中,护罩106提供了将气体入口108横向定位在与气体通道104的其余部分横向间隔开的位置处。在一个实例中,护罩106包括半透明材料或透明材料,半透明材料或透明材料促进阳光透射穿过来加热污染气体,诸如护罩106下方的环境空气或生产气体。根据护罩106的锥度,加热气体被动地沿气体通道104向上流动。在另一个实例中,气体通道104包括主动气体移动器,例如,风扇、鼓风机等中的一种或多种。

如本文中将描述,自适应喷淋清洁系统100包括具有一个或多个喷嘴阵列的喷淋组件,所述一个或多个喷嘴阵列被配置成在污染气体(例如,在气体入口 108处流入并穿过气体通道104到达气体出口110的气体)的流内提供流体的喷雾。在一个实例中,喷淋器组件被设置在图1所示的护罩106的一部分上。例如,靠近气体通道104的其余部分垂直延伸至气体出口110。在另一个实例中,喷淋器组件设置在气体通道(诸如气体通道104)的竖直或水平部分内。

无论在护罩106处还是在气体通道104的其余部分内的流体的喷雾被导向到移动气体(例如,污染气体),并且喷淋的流体拦截污染气体内的颗粒物质并在喷雾中夹带颗粒物质。颗粒物质与喷淋流体一起从污染气体中排出,进入集水池、收集槽等。

在另一个实例中,喷淋流体包括被配置成与一种或多种污染物(例如,包含在污染气体中的气态污染物)相互作用的一种或多种添加剂。添加剂催化(分解)或捕集污染气体内的一种或多种污染物。在一个实例中,分解的污染物与剩余的净化气体一起无害地离开。在另一个实例中,捕集或分解的污染物被喷淋流体夹带并在收集池、收集槽等处被收集。可选地,捕集或分解的污染物组分在收集池处或在与池连通的处理系统中进行处理(例如,收集、回收、进一步分解等)。

图2以便于描述示例性自适应喷淋清洁系统200的每个部件的示意图方式示出了自适应喷淋清洁系统200的另一个实例。图2所示的自适应喷淋清洁系统200 包括在气体入口204和气体出口206之间延伸的气体通道202。如图2进一步所示,在一个实例中,气体移动器208被设置在气体通道202内的一个或多个位置处。例如,在所示的实例中,与气体入口204和气体出口206中的一个或多个靠近的气体移动器208以虚线示出。在另一个实例中,自适应喷淋清洁系统200包括被动气体移动器。例如,包括气体通道202的一个或多个太阳能加热透过的半透明 (例如,透明或半透明)的板来促进污染气体上升通过自适应喷淋清洁系统200。在另一个实例中,盛行风被用于例如以在气体入口204和气体出口206之间往复或振荡的方式驱动污染气体通过气体通道202。在一个实例中,例如使用盛行风作为气体移动器208,气体入口204和气体出口206在操作期间根据盛行风向动态地移动。

在另一个实例中,一个或多个气体移动器208包括主动气体移动器,诸如风扇或鼓风机或者例如在气体通道202内内嵌设置的两者。在另一个实例中,诸如风扇或鼓风机的主动气体移动器208被设置在气体通道202的外部,例如在相对于自适应喷淋清洁系统200的远的位置处。在一个实例中,自适应喷淋清洁系统 200被提供作为另一个系统的部件,例如,通风系统。在一些实例中,通风系统包括鼓风机、风扇等中的一个或多个,并且因此通风系统将气体远距离地移入并移出自适应喷淋清洁系统200。

如图2进一步所示,自适应喷淋清洁系统200包括喷淋器组件210。在所示的实例中,喷淋器组件210包括多个喷淋器阵列,诸如,喷淋器阵列212、214和216。在其它实例中,自适应喷淋清洁系统200包括一个或多个喷淋器阵列,诸如一个或多个喷淋器阵列212~216。喷淋器阵列212~216中的每一个包括至少一个喷嘴 218,喷嘴218被配置成将流体喷雾从喷淋流体供应源222、224(本文所述)提供到一个或多个喷嘴218。如前所述,来自一个或多个喷嘴218的喷淋流体拦截了正在流动的污染气体并且与气体中的污染物相互作用以进行一种或多种处理功能,处理功能包括但不限于:污染气体中颗粒的夹带或者与污染气体内的一种或多种污染物组分的相互作用(例如,催化、捕集等)。来自污染物的夹带的颗粒和一种或多种(例如,催化或捕集的)污染物组分在一个实例中用喷淋流体供应源(例如,222、224)进行收集和处理,包括但不限于:回收、过滤、储存等。

在用喷淋组件210处理之后,离开气体出口206的气体包括浓度最小(例如,相对于气体入口204处的浓度最小)的一种或多种污染物。在一个实例中,在气体入口204处接收的污染气体包括例如从建筑物的外部或内部收集的环境空气。在另一个实例中,在气体入口204处接收的气体包括一种或多种生产气体,生产气体包括但不限于:锅炉烟道气、燃烧气体、来自制造或工业过程的废气等,然后用自适应喷淋清洁系统200进行处理。

如图2进一步所示,喷淋器阵列212、214、216中的每一个包括在其中的示例性喷嘴218。如图所示,喷淋器阵列212、214、216中的每一个包括不同的喷嘴218,以示意性地示出喷淋器阵列212中的每一个包括一个或多个不同的可变的喷淋构型特征,诸如相对于其它阵列或喷嘴不同的喷嘴尺寸、取向、位置等。喷淋器阵列212、214、216被配置成独立地或协作地操作,以相应地去除或处理移动穿过气体通道202的污染气体流中的污染物。

如本文将描述,在一个实例中,喷淋器组件210与控制器236和一个或多个传感器联通。控制器236和一个或多个传感器用于测量一个或多个污染物特征,然后根据传感器(参见,诸如入口传感器232和出口传感器234)的测量来操作一个或多个喷淋器阵列212、214、216。具有各种喷嘴218、喷嘴类型、尺寸、喷嘴密度(喷嘴的数量)、喷嘴构造(包括角度、取向、喷淋流体在气体通道内的停留时间等)的一个或多个喷淋器阵列212、214、216的受控的操作根据在喷淋构造控制器(诸如控制器236)中存储的一个或多个特定的处理配置进行处理污染气体。另外,在其它实例中,在喷淋器阵列212、214、216中的每一个或者一个或多个中使用的喷淋流体由控制器236控制。控制器236调节喷淋流体的一个或多个特性。例如,对于一个或多个喷淋器阵列212、214和216,控制器控制 (例如,改变、调节等)一个或多个可变的喷淋构造特征,包括:污染物处理添加剂的选择、污染物处理添加剂的浓度、喷淋流体的流速、喷淋流体的压力等。在一个实例中,如图2所示,控制器236与一个或多个喷淋流体供应源222、 224联通,以控制喷淋流体可用的可变的喷淋构造特征。

如前所述,在一些实例中,一个或多个喷淋流体供应源222、224为喷淋器阵列212、214、216供给喷淋流体。如图2所示,在一个实例中,普通的喷淋流体供应源222供给喷淋器阵列212、214。在另一个实例中,喷淋器阵列216分别提供有来自喷淋流体供应源224的喷淋流体。通过提供协作供应、独立供应等中的一种或多种,污染物处理添加剂、添加剂浓度等根据通过气体通道202输送的污染气体中的特定污染物的特性而被供给到喷淋器阵列212、214、216中的每一个。例如,在一个实例中,在检测到特定污染物(诸如二氧化碳等)的浓度相对高(例如,相对于中间额定值或其它阈值)时,控制器236在一个实例中提高了喷淋流体供应源222的载体流体中的捕集介质(例如,污染物处理添加剂)的浓度。包括较高浓度的添加剂的喷淋流体例如通过阵列入口226而被供给到相应的喷淋器阵列212、214,以处理包括更高浓度的二氧化碳的污染气体。在一个实例中,然后通过阵列出口228收集喷淋流体。阵列出口228将用过的喷淋流体转移到例如集水池、收集槽等,用于清洁用过的喷淋流体、回收用过的喷淋流体、过滤在其中的一种或多种捕集的污染物等。相反,如果污染物的测得浓度相对于中值或其它阈值较低,则控制器236可选地例如通过用额外的载体流体稀释添加剂而降低喷淋流体中的添加剂浓度。

如前所述且如图2所示,在一个实例中,自适应喷淋清洁系统200包括喷淋器组件控制系统230。在所示的实例中,喷淋器组件控制系统230包括与一个或多个传感器联通的控制器236。如图2所示,传感器包括入口传感器232或出口传感器234中的一种或多种。在一个实例中,喷淋器组件控制系统230包括在气体入口204和气体出口206处的传感器232、234,以便于一个或多个污染物特征的输入和输出测量。

入口传感器232和出口传感器234各自包括一个或多个传感器,所述一个或多个传感器被配置成测量污染气体的一个或多个污染物特征,该污染物特征包括但不限于:污染气体的流速、污染气体的速度、污染气体的温度、污染气体的湿度、在污染气体内的一种或多种颗粒类型的颗粒计数(密度)、颗粒尺寸、污染气体的化学组成(例如,污染物识别)等。例如,入口传感器232和出口传感器234包括但不限于:流速传感器、速度传感器、温度计、湿度计、颗粒计数器、粒度仪、光度计、气体分析仪或透射计中的一种或多种。控制器236使用由入口传感器232和出口传感器234中的一个或多个进行的测量,以相应地调节喷淋器阵列212、214、216或喷淋流体供应源222、224的一个或多个可变的喷淋构造特征。控制器236通过喷淋器阵列212、214、216或喷淋流体供应源222、224 中的一个或多个的选择和操作(包括各种喷嘴尺寸、喷嘴取向等)进行选择并实现可变的喷淋构造特征,以处理移动穿过气体通道202的污染气体中测得的各种污染物特征。

在一个实例中,喷淋构造控制器236根据在气体入口204和气体出口之间移动的污染气体内的一种或多种污染物的浓度(由入口传感器232和出口传感器 234中的一个或多个测得)来操作喷淋器阵列212、214、216中的至少一个。例如,当在污染物中检测到高浓度的颗粒或其它污染物时,操作多个喷淋器阵列 212、214(均包括一个或多个喷嘴)以相应地处理污染物中测得的污染物特征的上升。在另一个实例中,其中,指定相对于检测到的具体污染物增加喷淋流体的停留时间,以例如确保用添加剂对污染物进行的处理(诸如捕集或催化),操作另一个喷嘴阵列,诸如喷淋器阵列216,该喷淋器阵列216具有使喷淋流体 (通过重力)上下运动的倾斜喷嘴218。

在另一个实例中,在例如通过入口传感器232或出口传感器234中的一个或多个检测到高浓度的污染物时,操作例如包括较小的喷嘴218的喷淋器阵列212,以为喷淋流体提供更小的液滴尺寸,使得其与污染气体内的较高浓度的污染物更充分地相互作用(例如,提供增强的夹带、捕集或催化)。在一个实例中,在污染物的浓度相对较低(例如,相对于高浓度或另一阈值)时,通过控制器236 操作喷嘴阵列213的较大喷嘴218,以相应地提供较大的液滴并使用较少的资源 (相对于喷淋器阵列212),而同时处理污染气体中的较低浓度的污染物。

在一些实例中,将控制器236配置成操作喷淋流体供应源222、224中的一个或多个。如本文所述,在一个实例中,控制器236例如通过将测得量的添加剂添加到喷淋流体供应源222、224或稀释添加剂(例如,添加载体流体,诸如水) 来改变喷淋流体的一种或多种污染物处理添加剂的浓度,以处理污染气体中的一种或多种污染物的浓度变化。在另一个实例中,控制器236操作喷淋流体供应源222、224中的一个或多个,以使指定的喷淋流体的流以指定的流速、压力、浓度、组成等提供到喷淋器阵列212、214、216中的一个或多个。在一个实例中,控制器236协作操作喷淋器阵列212、214、216以及喷淋流体供应源222、224,以选择性地提供(例如,控制)一个或多个可变的喷淋构造特征,包括但不限于:喷嘴取向、喷嘴密度(数量)、一个或多个喷嘴阵列(具有喷嘴数量的相应变化)、喷淋流体的液滴尺寸;以及一个或多个喷淋流体的特征(也被包括作为可变的喷淋构造特征的实例)的变化,包括但不限于:喷淋流体中的添加剂浓度、添加剂组成(例如,一种或多种添加剂或没有添加剂)、喷淋流体流速,压力等。

本文描述的自适应喷淋清洁系统200(包括本文的其它示例性系统)能够根据由一个或多个传感器(例如,入口传感器232或出口传感器234)识别的污染气体中的一个或多个污染物特征(例如,气体中的污染物的组成、污染物的浓度、颗粒尺寸、密度等)动态地调节。在一个控制构造中,一个或多个入口传感器232和出口传感器234与控制器236联通,并且形成反馈控制系统,反馈控制系统促进喷淋器阵列212、214、216或喷淋流体供应源222、224中的一个或多个的操作响应于各种污染物和污染物特征处理气体。

如图2所示,在一个实例中,控制器236与一个或多个喷嘴或阵列212、214、 216中的每一个通过一个或多个控制器接口238与传感器232、234联通。在一些实例中,控制器接口238包括但不限于:无线连接、有线连接、光学连接、无线电连接等。另外,在另一个实例中,控制器236与喷淋流体供应源222、224中的每一个联通,以调节(例如,控制)阀、泵等中的一个或多个,该阀、泵等配置成操作喷淋流体供应源222、224中的每一个(例如本文的图6所示)。控制器 236与例如具有控制器接口(像接口238)的喷淋流体供应源222、224相互作用,控制器接口包括但不限于:有线连接、无线连接、光学连接、无线电连接等。

尽管图2示出了具有与一个或多个入口传感器232和出口传感器234联通的控制器236的系统,但是在另一个实例中,控制器236使用开环控制构造。例如,控制器236根据一个或多个开环控制来控制喷淋器阵列212、214、216或喷淋流体供应源222、224中的一个或多个,开环控制包括但不限于:已知的污染物季节性变化、污染物每日变化和污染物浓度(例如,接近高峰时间、在繁忙的假期中等)。控制器236这个实例根据一个或多个开环控制构造来自动调节喷淋器阵列212、214、216或喷淋流体供应源222、224中的一个或多个。例如,在大城市地区的驾驶增加的夏季,由于增加的夏季驾驶,控制器236根据历史平均值(包括季节性增加)来操作喷淋器组件210。因此,喷淋器阵列212、214、216中的一个或多个可选地与由喷淋流体供应源222、224供给的添加剂的增加浓度进行组合操作。相反,在冬季,当驱动频率降低时,关闭喷淋器阵列212、214、216 中的一个或多个,并且减少来自供应源222、224的喷淋流体内的添加剂,以使通过气体通道202循环的环境空气中的污染物浓度降低。

类似地,在工业环境(例如,发电厂、制造厂或校园等)中和在工业操作的峰值期间,污染物和污染气体的可预测的上升是已知的或估计的,并且用于自动操作喷淋器阵列212、214、216或喷淋流体供应源222、224中的一个或多个以处理增加的污染物产生。如本文所述,参见喷淋流体供应源222、224的喷淋器阵列212、214、216中的一个或多个的控制。这些阵列或喷淋流体供应中的一个或多个的操作不是相互排斥的。相反,控制器236被配置成独立地、协作地操作喷淋器阵列212、214、216和喷淋流体供应源222、224中的每一个。

图3A和图3B示出了自适应喷淋清洁系统300、320的两个实例。图3A所示的自适应喷淋清洁系统300处于示例性水平配置,而图3B所示的自适应喷淋清洁系统320处于竖直配置。

首先参考图3A,自适应喷淋清洁系统300包括与本文提供的前述清洁系统 200类似的部件。例如,清洁系统300包括从左向右延伸的气体通道302。此外,气体通道302包括气体入口304和气体出口306。如图3A进一步所示,在一个实例中,例如,在气体移动器308以相反的方向操作时,切换气体入口和气体出口的取向。例如,由图3A中的分叉虚线分开的上部一对箭头和下部一对箭头示出相反的操作方向。例如,污染气体在气体入口304处进行接收,在包括喷淋器阵列312的喷淋器组件310内进行处理,然后在气体出口306处从自适应喷淋清洁系统300中排出。在此实例中,气体移动器308,例如为主动气体移动器(诸如风扇、鼓风机或处于负压的系统),并且将污染气体吸入气体通道302,然后从气体出口306排出经处理(例如,经清洁)的气体。

在另一个实例中,气体移动器308用于正压系统。例如,污染气体在气体入口306(先前用作出口)处进行接收(如下面的分叉虚线所示)。气体移动器308 将污染气体移动到包括至少一个喷淋器阵列(诸如喷淋器阵列312)的喷淋器组件310中,在喷淋器阵列中,(例如通过夹带一种或多种颗粒、使一种或多种污染物组分反应或捕集一种或多种污染物组分等)污染气体进行处理,然后通过气体出口304(先前用作入口)排出。

如图3A进一步所示,自适应喷淋清洁系统300包括至少一个喷淋器阵列 312。在所示的实例中,喷淋器阵列312包括多个喷嘴314、316。喷嘴314被设置在喷淋器阵列312的上部,而喷嘴316被设置在下部并且向上定向。如本文所述,多个喷淋器阵列构造在多个附图中示出,并且易于适应(例如,模块化)并用于一个或多个自适应喷淋清洁系统,诸如例如系统300、200(以及本文描述的其它示例性系统)。

在另一个实例中,本文描述的自适应喷淋清洁系统包括多个喷嘴阵列,其提供多种可变操作、选择等(无论是单独还是组合)的喷淋构造特征,以提供自适应喷淋清洁系统内接收的污染气体的定制和指定的处理(例如,用控制器 236)。在一个实例中,如本文前面所述,例如在图2中示出的自适应喷淋清洁系统200包括作为喷淋器组件控制系统230的一部分的控制器236。控制器236操作喷淋器阵列212、214、216中的一个或多个以及本文描述的任何喷淋器阵列,例如,本文图3A,图3B和本文其它附图所示的阵列。另外,在另一个实例中,控制器236操作一个或多个喷淋流体供应源222、224,以相应地为喷淋器阵列中的每一个提供喷淋流体的指定配置(例如,可变的喷淋构造特征的其它实例)。返回到图3A,其中所示的喷淋器阵列312包括与通道交叉取向的喷嘴314、316。也就是说,对喷嘴314、316进行导向为与气体通道302交叉,从而以相对于正在移动的污染气体的方向成一定角度的方向(例如,直角的、相对于水平、垂直的角度等)相应地提供流体的喷雾。在一个实例中,流体的喷雾冲击污染气体中的颗粒和污染物组分中的一种或多种,以通过夹带颗粒以及捕集污染物组分或与污染物组分反应(分解)来处理污染物。

如图3A进一步所示,在一个实例中,喷淋器阵列312的喷嘴316被导向成竖直或向上倾斜的构造,而将其配置成提供与重力方向相反的流体喷雾。在这种实例中,喷淋流体(无论成直角等)向上进行定向。当时,相对于喷嘴314,来自喷嘴316的流体喷雾因喷淋流体在气体通道302内上下移动而在气体通道302 内具有增加的停留时间。因此,随着流体上下移动(例如,通过污染气体两次),污染物在喷淋流体内具有增加的停留时间。在另一个实例中,由于液滴同时存在于向上移动的方向和向下移动的方向上,因此增加的停留时间提高了任何时候气体通道302中的喷淋液滴的量。喷淋流体的增加的停留时间增强了在喷淋流体中的处理,包括但不限于:颗粒的夹带、用相应的污染物处理添加剂捕集或催化一种或多种污染气体组分等。

在另一个实例中,气体通道302包括例如沿着气体通道302的一个或多个表面(诸如通道壁)设置的催化剂基质318。在另一个实例中,气体通道302包括在其上设置有催化剂基质318的基质、通风百叶窗等。在一个实例中,催化剂基质318被设置在气体通道302内易于去除和替换的一个或多个特征部上,诸如百叶窗、筛网等。在一个实例中,催化剂基质318是被配置成使气体通道302中接收的污染气体内的一种或多种污染物组分反应并分解的基质。

催化剂基质318包括但不限于:二氧化钛、光催化剂或纳米材料中的一种或多种,其被配置成分解污染气体内的一种或多种污染物组分。气体通道302内的气体的移动例如通过气体移动器308被动地或主动地引起污染气体沿着例如由图3A中的上表面和下表面所示的气体通道302的一个或多个表面(例如,气体通道壁、通道筛、通道介质等)流动。污染气体的污染物组分在它流过气体通道302时与催化剂基质318相互作用。可选地,气体通道302包括翅片、滚花、立柱、通路、筛网、凹槽、脊等中的一个或多个,其被配置成增大气体通道302 的表面积并有助于气体流形成涡流通过气体通道302。增加的表面积、涡流等增强了污染气体和催化剂基质318之间的相互作用。

可选地,催化剂基质318包括在暴露于光时进行催化的光催化剂,诸如二氧化钛。如前所述,在一个实例中,气体通道(例如,护罩等)的一部分是半透明的(例如,透明或半透明的),以促进接收太阳光和催化催化剂基质318。在一个实例中,图3A中所示的气体通道302的壁是半透明的,并且催化剂基质318 在太阳光透射通过壁时进行催化。

图3B示出了竖直取向的自适应喷淋清洁系统320的另一个实例。例如,自适应喷淋清洁系统320包括竖直的气体通道322,其具有至少一部分竖直取向的通道。气体通道322包括气体入口324和气体出口326,它可选地被使用(例如,切换)作为相反的出口或入口中的任一个。换句话说,气体移动器328(诸如风扇或鼓风机)根据自适应喷淋清洁系统320的规格以向上或向下的方式移动污染气体。

如图3B进一步所示,在此实例中,喷淋器组件330包括至少一个喷淋器阵列,诸如喷淋器阵列332。如同所示,喷淋器阵列332的喷嘴以向上的方式(例如,相对于气体通道322向上)进行定向。以与图3A所示的喷嘴316类似的方式,喷淋器阵列332的喷嘴呈竖直的角度(例如,在此实施例中,竖直地呈一定角度;在其它实施例中,相对于水平呈向上的角度),以增加喷淋器流体的停留时间。如图3B中提供的示意性箭头所示,喷淋流体在气体通道322内向上喷淋,并随后落回(例如,通过喷淋器阵列332)。喷淋流体(例如,具有颗粒、污染物组分等)例如在气体通道322的下部被收集到收集池、槽、管、容器等中。

如图3B进一步所示,在一个实例中,喷淋器阵列332包括多个阵列,例如,第一喷嘴阵列334、第二喷嘴阵列336和第三喷嘴阵列338。在一个实例中,喷淋器阵列被设置在气体通道322内的局部位置处的复合组件中。在这样的实例中,阵列334、336、338在整个气体通道322内提供一个或多个覆盖区域。例如,如图3B所示,第一喷嘴阵列334被设置在气体通道322的中心附近。相反,第二阵列336和第三阵列338被设置在从第一喷嘴阵列334向气体通道322的边缘逐渐间隔开的位置处。

在一个实例中,第一喷嘴阵列334相对于第二喷嘴阵列336或第三喷嘴阵列 338包括密度较高的喷嘴(例如,较大的总喷嘴计数)。在另一个实例中,密度较高的第一喷嘴阵列334包括与第二喷嘴阵列336或第三喷嘴阵列338相比数量更大的喷嘴。可选地,第一喷嘴阵列334中的密度较高的喷嘴等于以紧密布置分布在通道的一部分中的数量较小的喷嘴(相对于其它阵列)。例如,在第一喷嘴阵列334中存在较少的喷嘴,但是相对于第二阵列或第三阵列的更多数量的喷嘴,其喷嘴紧密地填充。如图3B进一步所示,第二喷嘴阵列336和第三喷嘴阵列338相对于第一喷嘴阵列334具有逐渐更少的喷嘴或以较少的填充布置的喷嘴。

在一个实例中,第一喷嘴阵列334、第二喷嘴阵列336和第三喷嘴阵列338 中的每一个之间的喷嘴密度的变化根据通过气体通道322的污染气体的速度分布而变化。例如,污染气体的速度分布朝向气体通道322的中部较大而朝向气体通道322的外围(例如,沿着气体通道322的壁)相对较小。由于通过气体通道 322的中间部分的污染气体的速度较高,在第一喷嘴阵列334中设置密度较高的喷嘴,以在相应位置处更好地处理相对较大的污染气体流。在一个实例中,如第二喷嘴阵列336和第三喷嘴阵列338所示,随着气体的速度和相应的流速朝向气体通道322的外围减小,喷嘴的密度减小。

在一些实例中,同时操作第一喷嘴阵列334、第二喷嘴阵列336和第三喷嘴阵列338中的每一个。在另一个实例中,单独操作第一喷嘴阵列334、第二喷嘴阵列336和第三喷嘴阵列338中的一个或多个。例如,单独操作或一起操作第一喷嘴阵列334或第二喷嘴阵列336中的一个或多个,而不操作第三喷嘴阵列338 (例如,以低的污染气体流速、低的污染物浓度等)。在另一个实例中,单个阵列334(例如,第一喷嘴阵列334)由其本身进行操作,其污染物特征(例如,浓度、颗粒物计数或大小等)没有保证第二喷嘴阵列336或第三喷嘴阵列338的协作使用的污染物特征严重。

图4A示出了至少在一些方面与图3B所示的喷淋器阵列332类似的复合喷淋器阵列400的一个实例。图4A所示的示例性阵列被设置在平面图中,以示出复合喷淋器阵列400内的多个喷嘴。如图4A所示,复合喷淋器阵列400包括具有密度增加的喷嘴409的第一喷淋器阵列404和具有密度降低的喷嘴409的第二喷淋器阵列406。在一个实例中,复合喷淋器阵列400位于气体通道402内的单个位置,而第一喷淋器阵列404和第二喷淋器阵列406中的每一个位于沿着气体通道长度的相同的线性位置。

如图4A所示,气体通道壁402环绕第一喷淋器阵列404和第二喷淋器阵列 406中的每一个。在另一个实例中,复合喷淋器阵列400提供多个喷淋器阵列的实例,诸如第一喷淋器阵列404和第二喷淋器阵列406,它们位于沿着气体通道 401基本上相同的位置。如本文所述,喷淋器阵列的其它实例位于不同位置,例如在气体通道内交错或分段的位置,以在沿着气体通道401的一个位置或多个位置处提供多个喷嘴阵列。

再次参考图4A,第一喷淋器阵列404和第二喷淋器阵列406中的每一个示出了不同密度的喷嘴409。例如,第一喷淋器阵列404包括朝向气体通道401的内部区域408(例如,朝向通道的中心或远离壁402)相对堆积布置的喷嘴409。如前所述,在一个实例中,气体通道内的污染气体的速度(和流量)分布朝向气体通道的内部区域408最大。因此,在第一喷淋器阵列404中设置密度较高的喷嘴409,以处理流速相对较大的通过内部区域408的污染物气体。相反,在另一个实例中,第二喷淋器阵列406包括与第一喷淋器阵列404相比较小的第二密度的喷嘴409。如图4A所示,喷嘴409以更分散的方式设置在气体通道401的外部区域410内。第二喷淋器阵列406的喷嘴409更靠近气体通道壁402并且相对于内部区域408相对较远。靠近气体通道壁402的污染气体的降低的速度(和流速)分布能够包括较不致密的喷嘴409(例如,以相对于第一喷淋器阵列404较小的密度)以处理污染气体相对于原本通过内部区域408的污染气体减小的流量。尽管喷嘴409以基本相同的构造示出(通过图4A提供的示意圆),但是,在另一个实例中,喷嘴409在第一喷淋器阵列404和第二喷淋器阵列406之间变化。例如,喷淋器阵列404、406中的每一个的喷嘴尺寸不同(具有不同的液滴尺寸、流速等),在方向或方向上不同,以在一个或多个不同的方向(如本文所述)等上提供喷淋流体。

图4B示出了多个喷淋器阵列的另一个实例,例如,具有不同密度的第一喷淋器阵列412和第二喷淋器阵列414。如图4B所示,气体通道416在不同位置,第一位置418和第二位置420处包括第一喷淋器阵列412和第二喷淋器阵列414。与图4A的第一阵列404和第二阵列406相反,第一喷淋器阵列412和第二喷淋器阵列414位于不同位置,并且相应地将一种或多种喷雾分级应用到气体通道416 内的污染气体。

第一喷淋器阵列412以与第二喷淋器阵列414的喷嘴413相比较不致密(例如,一个或多个数量较少或较不密集布置)的配置提供其喷嘴413。第一喷淋器阵列412包括与第二喷淋器阵列414的喷嘴的密度相比密度降低的喷嘴413。相反,第二喷淋器阵列414包括与第一喷淋器阵列412的密度相比密度较高(例如,一个或多个数量较多或更密集地布置)的喷嘴413。在一个实例中,根据各种污染物特征选择性地操作第一喷淋器阵列412和第二喷淋器阵列414。例如,在一个实例中,对于高的污染物浓度,第二喷淋器阵列414自身进行操作或与第一喷淋器阵列412组合进行操作,以增强污染物气体内的污染物的整体夹带或催化。在另一个实例中,例如,对于具有较低浓度的污染物的污染气体,具有降低密度的喷嘴413的第一喷淋器阵列412本身进行操作,以相应地保存喷淋流体和自适应喷淋清洁系统的其它资源,而同时处理具有较低浓度的污染物的污染气体。

图4C示出了喷淋器组件422的另一个实例,喷淋器组件422包括彼此位于交错或阶梯的位置的多个喷淋器阵列。尽管图4C示出了在气体通道424内的不同线性位置处的多个喷淋器阵列426、428、430,但是,在另一个实例中,喷淋器阵列整体被合并为整体复合喷淋器阵列,其包括在其中并且位于通道内的单个位置的喷淋器阵列中的每一个。

再次参考图4C,如图所示,喷淋器组件422包括多个喷淋器阵列,其中每一个均具有喷淋构造特征的不同实例。如本文先前所描述,在一个实例中,自适应喷淋清洁系统200包括被配置成操作一个或多个喷淋器阵列的控制器236。控制器236可选地被配置成根据例如污染物特征测量的一个或多个输入操作本文描述的任何示例性喷淋器阵列,它包括一起的或者分开的喷淋器阵列426、 428、430。

首先参考气体通道424中示出的喷淋器阵列426和430,喷淋器阵列426、430 各自的喷嘴432和436中的每一个沿着气体通道424(例如,基本上平行于气体通道内的污染气体流的方向)定向。在具有喷淋器阵列430的喷嘴436的第一实例中,喷淋流体被向上定向。在将喷淋流体向上输送指定距离(对应于从喷嘴436 输送出喷淋流体的压力)之后,喷淋流体转向(例如,参见示意性箭头)并落入气体通道424内。根据在气体通道424内的上下运动,喷淋流体的停留时间增加能够增强污染气体的处理,包括但不限于:颗粒的夹带,或者用喷淋流体与一种或多种污染物组分反应或将其捕集。

以类似的方式,包括喷嘴432的喷淋器阵列426被设置在气体通道432与喷淋器阵列428、430相比相对升高的位置处。喷嘴432被配置成以向下的方式(例如,平行于在气体通道424内移动的污染气体)定向喷淋流体。喷淋器阵列426的位置(例如,在与喷淋器阵列相比的升高位置处)促进增加来自喷嘴432的喷淋流体的停留时间。因此,在一个实例中,喷淋流体从喷嘴432中输送出(例如,在低压下,由于没有使用向上加压喷淋),然后依靠重力和气体通道424的长度来增加在气体通道424内的停留时间。喷淋器阵列426、430中的每一个提供喷淋构造特征,包括:增加的停留时间、喷嘴432、436的不同取向等。通过增加喷淋流体处理(包括一个或多个夹带)的停留时间,从而增强喷淋流体与污染物的反应或污染物的捕集。

如图4C进一步所示,另一个喷淋器阵列428被设置到气体通道424内的另一个内嵌位置。如图所示,喷淋器阵列428的喷嘴434以螺旋方式被定向在气体通道424内。例如,一致示出的喷嘴434以从右向左上升的方式定向,而以虚线在背景中(例如,沿着气体通道的后壁)示出的喷嘴434以从左到右上升的升序配置定向喷淋流体。因此,在一个实例中,喷淋器阵列428的喷嘴434提供了喷淋流体的气旋构造或螺旋构造,以相应地以旋转或漩涡方式在气体通道424内移动喷淋流体以增加停留时间(例如,以增强本文描述的污染气体的处理)。喷淋器阵列426、428、430中的每一个由此示出了喷淋构造特征的多个实例,包括:喷嘴的取向、气体通道内的方向(例如,相反、在污染气体的相同方向上、以一定角度等)。

图4D示出了以水平方式取向的系统的另一个实例。如图所示,喷淋器组件 438包括多个喷淋器阵列442、444。在此实例中,喷淋器阵列442、444被设置到气体通道440内的单独位置(例如,多级构造)。在另一个实例中,并且如本文先前所示,喷淋器阵列442、444被合并成复合喷淋器阵列,复合喷淋器阵列包括例如图4A所示的第一喷淋器阵列和第二喷淋器阵列,它们在气体通道401内的基本上相同的内嵌位置处具有第一喷淋器阵列404和第二喷淋器阵列406。

如图4D进一步所示,喷淋器阵列442、444中的每一个包括不同的喷嘴446、 448。在一个实例中,喷嘴446、448包括被配置成根据喷淋器组件438的规格(例如,根据由例如图2所示的控制器236提供的控制)分别分配大液滴或小液滴的喷嘴。在一个实例中,基于在气体通道440内接收的污染物的不同条件,各自的喷淋器阵列442、444使用不同的喷嘴。如图4D所示,在一个实例中,喷淋器阵列442配置有喷嘴446,以分配具有与由喷淋器阵列444的喷嘴448得到的喷淋液滴452相比更大的直径或尺寸的喷淋液滴450。

在一个实例中,较小的喷淋液滴(诸如由喷淋器阵列444产生的喷淋液滴 452)被使用在具有高污染物浓度的一个实例中,以相应地增强污染物浓度较高的污染气体中的污染物的处理(例如,夹带和反应或捕集)。相反,在另一个实例中,较大的喷淋液滴450(例如,与喷淋器阵列442一起示出的喷淋液滴)与具有与喷淋器阵列444一起使用的相比降低的污染物浓度的污染气体一起使用。较大的喷淋液滴450能够更有效操作喷淋器组件438(例如,降低喷淋流体的流速),而同时还处理污染物气体中的污染物具有较低的污染物浓度。在另一个实例中,喷淋器阵列442、444在其它实例中都例如以极高的污染物浓度进行操作,从而协作地工作以减少污染气体内的高浓度的污染物。

图5A和图5B示出了被配置成提供具有不同液滴尺寸(诸如分别为第一液滴尺寸506和第二液滴尺寸508)的一个或多个喷淋液滴504、512的喷嘴500、508 的实例。出于说明的目的,图5A、图5B中所示的并且另一个实例中预先示出的液滴尺寸506、508在图4D中被放大。

首先参考图5A,喷嘴500被配置成提供与喷嘴508的第二液滴尺寸508相比更小的第一液滴尺寸506。例如,在一个实例中,喷嘴500具有与喷嘴508的相应构造相比更小的开嘴构造。因此,喷淋流体在喷嘴500处被接收时被分配成与喷嘴508原本分配的相比更细的喷雾中的较小的液滴。在另一个实例中,图5A所示的喷嘴500被包含在喷嘴阵列中,诸如图4B所示的喷淋器组件的第二喷淋器阵列414。相反,在一个实例中,较大的喷嘴508被包含在另一喷淋器阵列中,诸如图4B所示的喷淋器组件的第一喷淋器阵列412。

现在参考图5B,喷嘴508比喷嘴500更大。在一个实例中,较大的喷嘴508 和喷嘴500被夸大,以示出喷嘴500、508的差异,并且相应地示出液滴尺寸(诸如第一液滴尺寸506和第二液滴尺寸508)的差异。如同所示,第二液滴尺寸508 与第一液滴尺寸506相比相对较大,并相应地提供具有与由喷嘴500分配的喷淋流体相比具有较大的整体液滴尺寸的(更粗的)喷雾。

如图5A和图5B进一步所示,在一个实例中,本文描述的一个或多个喷嘴(诸如喷嘴500、508)包括一个或多个静电电极502、510。首先参考图5A,在一个实例中,一个或多个电极(诸如静电电极502)沿着喷嘴500被设置在一个或多个位置处,例如,靠近喷嘴500的金属或其它传导性壁。在一个实例中,静电电极502设置有净电荷,以相应地为喷淋液滴504提供相应的净电荷。

在一个实例中,喷淋液滴504设置有静电荷(诸如所示的正电荷),以相应地与具有净负电荷的一种或多种污染物或污染物组分相互作用并结合。因此,带电的喷淋液滴504易于与这些组分结合,并且,在一个实例中,增强喷淋流体内的污染物(例如,污染物颗粒等)的夹带。在一个实例中,本文描述的喷淋器阵列中的一个或多个包括静电电极502、510(正、负或两者)中的一个或多个,并且选择性地进行操作,以相应地为相应的液滴提供期望的净电荷,以与污染气体内的一种或多种不同类型的污染物(具有净相反的从而吸引液滴的电荷)相互作用。

如图5B进一步所示,喷嘴508包括静电电极510的另一个实例,在此实例中,静电电极510具有净负电荷。带电的喷淋液滴512具有相应的负电荷,并且,在一个实例中,被配置成易于与一种或多种污染物组分(例如,具有净正电荷的离子)结合。根据在带电喷淋液滴512和一种或多种污染物组分之间的相反(和吸引)电荷,由此增强污染气体的处理,包括但不限于:喷淋流体与一种或多种污染物组分的夹带或相互作用。

图6示出了喷淋流体供应源600的一个实例。在一个实例中,喷淋流体供应源600对应于一个或多个喷淋流体供应源222、224(图2所示)。示例性喷淋流体供应源600包括一个或多个容器,包括但不限于:喷淋流体池602、载体流体供应源604和添加剂供应606。如本文将描述,喷淋流体供应源600使用相关的容器中的一个或多个,以对一个或多个喷淋器阵列(诸如图2所示的喷淋器阵列212、 214、216以及本文描述的任何其它喷淋器阵列)提供添加剂(例如,与载体流体混合的添加剂)。

再次参考图6,喷淋流体供应源602与延伸到喷淋流体池602中的阵列输出 608(例如,喷淋流体回路、排水管等)一起示出。在一个实例中,阵列输出608 对应于图2所示的阵列输出228中的一个或多个,并且与相应的喷淋流体供应源222、224相关。阵列输出608使包括夹带的颗粒、捕集的污染物、催化的污染物等中的一种或多种的喷淋流体返回到喷淋流体池602。在一个实例中,喷淋流体池602包括流体处理器610,流体处理器610被配置成例如通过喷淋流体的过滤、筛选、清洁,喷淋流体的组分(诸如收集的污染组分)的反应等中的一种或多种来回收喷淋流体。在一个实例中,如图6所示,流体处理器610从喷淋流体中去除污染物组分,并且相应地例如通过回收的流体输入610和相关泵616将喷淋流体的清洁流或回收流提供到喷淋流体供应源600的其余部分。内嵌泵616和回收流体输入610将回收的喷淋流体提供到一个或多个喷淋器阵列,例如,图2所示的喷淋器阵列212、214、216。如图6所示,回收输入610(和其它输入612、 614)与控制阀620联通,控制阀620例如通过由(如图2在先所示和本文描述的) 喷淋器组件控制系统230的控制器236提供的控制来调节喷淋器阵列到喷淋流体的流。

在另一个实例中,喷淋流体供应源600包括载体流体供应源604和添加剂供应源606。载体流体供应源604和添加剂供应源606组合使用,以例如启动喷淋器阵列212、214、216中的一个或多个的操作。例如,在控制阀620上游的汇合处,以指定浓度混合由载体流体供应源604提供的载体流体和添加剂供应源606提供的添加剂。在一个实例中,与添加剂供应源606和载体流体供应源604相关的泵 616中的一个或多个进行组合操作,以相应地确保添加剂与载体流体604的精确混合和相应浓度。混合的喷淋流体通过控制阀620(在另一个实例中,与包括具有所需浓度的喷淋流体的储存体积的储存容器联通的泵)而被输送到一个或多个喷淋器阵列。

在另一个实例中,载体流体供应源604和添加剂供应源606与喷淋流体602 组合使用,以将补充喷淋流体添加到从喷淋流体池602中回收的喷淋流体。在又一个实例中,添加剂供应源606和载体流体供应源604组合使用,以调节喷淋流体中的添加剂的浓度(例如,维持浓度、增加浓度或降低浓度中的一个或多个)。在一个实例中,喷淋器组件控制系统230的控制器236协作地操作添加剂输入 614、载体流体输入612和回收喷淋流体输入610中的一个或多个中的泵616、阀等中的每一个,以选择性地混合来自添加剂供应源606的添加剂、来自载体流体供应源604的载体流体和来自喷淋流体池602的回收喷淋流体。因此,例如通过经由添加剂输入614将添加剂添加到或将载体流体604选择性地添加到喷淋流体以稀释喷淋流体,控制器236选择性地将载体流体或添加剂添加到来自喷淋流体池602的回收的喷淋流体,以控制喷淋流体的浓度。在一个实例中,喷淋流体供应源600中的一个或多个或本文描述的自适应喷淋清洁系统的另一部分(例如,系统200、300等)包括被配置成测量添加剂、污染物等的一个或多个传感器。控制器236接收测量值(以及可选地接收传感器232、234中的一个或多个的测量值),并相应地操作喷淋流体供应600以调节喷淋流体,包括但不限于:添加剂浓度、喷淋流体流速、喷淋流体的总体积等。

在另一个实例中,喷淋流体供应600包括喷淋流体温度调节器618。在一个实例中,喷淋流体温度调节器618包括一个或多个加热元件或冷却元件,温度计等,其被配置成在输送到喷淋器阵列之前调节喷淋流体的温度(例如,加热或冷却)。因此,喷淋流体温度调节器618例如用在特定温度下提供增强处理(例如,夹带、捕集、催化、反应等中的一个或多个)的添加剂来控制喷淋温度。在其它实例中,本文描述的自适应喷淋清洁系统用于通风或工业气体系统。因此,喷淋流体温度调节器618加热或冷却喷淋流体,以相应地加热或冷却用自适应喷淋清洁系统(例如,用于住宅冷却或加热、生产气体处理等)处理的气体。

在又一个实例中,喷淋流体供应源600在一个实例中包括多个添加剂供应源 606。例如,多个添加剂供应源606包括但不限于:多种不同的添加剂、添加剂纯度等,其被配置成用于可控地添加到喷淋流体。在一个实例中,例如图2所示的控制器236操作与各自添加剂供应606相关的泵、阀等中的每一个,以控制喷淋流体中包括(或不包括)每种添加剂和这些添加剂的浓度。在另一个实例中,本文在先描述并在图6中示出的流体处理器610在一个实例中使用,以例如在污染气体不包括原本指定一种或多种添加剂的使用的特定组分时从喷淋流体中去除一种或多种添加剂。因此,在一个实例中,喷淋流体池602(特别是流体处理器610)不仅用于清洁在其中的污染物或污染物组分的喷淋流体,而且还用于清洁不再需要或指定喷淋流体的一种或多种添加剂。

再次参考图6,如前所述,在一个实例中,喷淋流体供应源600包括一个或多个添加剂供应源606。在一个实例中,一个或多个添加剂供应源606中的每一个包括一种或多种污染物处理添加剂,包括但不限于:配置成与一种或多种污染物(例如,污染气体中的污染物)反应并使其分解的催化添加剂;捕集介质,诸如二氧化碳捕集介质(例如,氢氧化钠、胺等);或亲水性添加剂,包括但不限于氯化钠或氢氧化钠中的一种或多种,其被配置成保持或调节喷淋流体供应源600中的水的体积。

在一个实例中,污染物处理添加剂包括亲水性添加剂。根据由自适应喷淋清洁系统指定的浓度,亲水性添加剂促进从在自适应喷淋清洁系统中接收的污染气体中抽吸或吸收水分。当亲水性添加剂的浓度高于平衡阈值时,喷淋流体 (例如,此实施例中的水)的量将随着喷淋流体从气体中吸收另外的流体而逐渐增加,直到水相对于亲水性添加剂达到平衡。在另一个实例中,例如通过在喷淋流体供应源602处用流体处理器610进行处理,载体流体中的亲水性添加剂浓度的降低能够从喷淋流体中蒸发出水,直到喷淋流体中的水的平衡值达到喷淋流体中的亲水性添加剂的浓度。

可选地,亲水性添加剂以比平衡浓度(或阈值)更高的浓度保持在喷淋流体中,以将水吸入该系统中。因此,在一个实例中,喷淋流体供应源600可选地用于从大气中收集水,并因此也可以用作水源。例如,收获用于一种或多种应用的水包括但不限于:用作喷淋流体、制造或发电用水、饮用水、灌溉等。

在另一个实例中,亲水性添加剂浓度相对于平衡浓度(或阈值)降低。载体流体(例如水)然后从喷淋流体中蒸发,直到达到新的平衡浓度。在一个实例中,水的蒸发用于冷却。蒸发将热量从系统(例如,系统200或本文中的其它实例系统)的污染气体传递到喷淋流体。因此,随着喷淋流体蒸发(例如,至少喷淋流体的水成分),蒸发冷却将污染气体冷却。在一个实例中,净化气体(例如,具有最小化的污染物)用于通风系统,例如,作为输送到住宅建筑物、家庭、办公室、结构等中的一个或多个的冷却空气。

现在参考图7,提供了自适应喷淋清洁系统702的一个实例的示意图。喷淋流体供应源700与自适应喷淋清洁系统702的喷淋器组件710联通。如先前图6所示,喷淋流体供应源600的一个实例包括各种容器,诸如喷淋流体池602、载体流体供应源604和一个或多个添加剂供应源606。在图7所示的实例中,喷淋流体供应源700包括流线型系统,该流线型系统提供:阵列输入712,其被配置成将喷淋流体提供到喷淋器组件710;和阵列输出714,其被配置成使用过的喷淋流体(其中具有夹带的颗粒、污染物组分等)返回到喷淋流体供应700。在其它方面,包括喷淋器组件710的自适应喷淋清洁系统702以与本文描述的清洁系统类似的方式进行操作。例如,系统702包括具有气体入口704和气体出口706的气体通道708,而在气体入口704和气体出口706之间内嵌设置有喷淋器组件710。

再次参考图7,喷淋流体供应源700与阵列输出714一起示出,阵列输出714 分叉成旁路718和流体处理器716作为供应源700的分支。旁路718与包括流体处理器716的喷淋流体供应源700的部分在从流体处理器716到阵列输入712的下游再次接合,以将喷淋流体供给到喷淋器组件710。在一个实例中,旁路718将喷淋流体的一部分(例如,包括一些量的颗粒、分解的污染物等的喷淋流体)转向回到阵列输入712和喷淋器组件710。

相反,喷淋流体的一部分(例如,基于流体中的污染物测量的不同百分比,或者5%、10%、15%、20%等的规定值)相反转向到流体处理器716。在流体处理器716处,对喷淋流体进行清洁、回收、再生等。例如,在一个实例中,设置过滤器或筛选系统以从喷淋流体中过滤出颗粒。在另一个实例中,流体处理器 716包括一种或多种清洁或反应性化学品,该一种或多种清洁或反应性化学品被配置成与喷淋流体中的一种或多种组分(例如,捕集的污染物组分、颗粒等) 相互作用以相应地将其从喷淋流体中去除。可选地,在另一个实例中,流体处理器716包括蒸馏系统,蒸馏系统被配置成蒸馏出喷淋流体,并且相应地提供净化的喷淋流体,以与原本通过旁路718输送的喷淋流体的部分混合。

如前所述,在一个实施例中,喷淋流体包括一种或多种添加剂。例如,一种或多种捕集介质被配置成捕集污染物组分(诸如二氧化碳),催化添加剂被配置成分解一种或多种污染物组分(例如,二氧化硫等),或者亲水性添加剂(诸如氯化钠或氢氧化钠)被配置成调节喷淋流体中的水的量(用于添加剂的载体流体的实例)。另外,一种或多种添加剂(例如包括亲水性添加剂,诸如氯化钠,氢氧化钠等)被用作喷淋流体中的盐,以防止(例如,消除或最小化)微生物生长,从而消除(例如,最小化或完全消除)对喷淋流体中的防止其中的微生物生长的一种或多种另外的添加剂(诸如生物灭杀剂等)的需要。

图8示出了传热系统800的一个实例。传热系统800可选地是公用系统、制造环境等的部件,包括但不限于发电厂。如图8所示,传热系统800包括自适应喷淋清洁系统802,其被配置成在它被输入到自适应喷淋清洁系统802中时调节污染气体的温度并且还起到传热机构的作用。

自适应喷淋清洁系统802包括气体入口804、气体出口806和在它们之间延伸的气体通道808。如进一步所示,自适应喷淋清洁系统802包括在气体入口804 和气体出口806之间设置的喷淋器组件803。在图8所示的实例中,气体通道808 在一个实例中是相对于自适应喷淋清洁系统802的其余部分竖直延伸的烟囱、管道等。在另一个实例中并且如本文所示,气体通道以水平或成角度的构造进行设置。

在一个实例中,自适应喷淋清洁系统802在气体入口804处接收污染气体的流入物,诸如相对冷的环境空气。相对较冷的污染空气通过自适应喷淋清洁系统802(例如,从气体入口804到气体出口806)输送并喷淋喷淋流体,以相应地处理空气的一种或多种污染物,该污染物包括但不限于:颗粒、气体污染物组分等。可选地加热喷淋流体(例如,通过其它相关或不相关过程中产生的热量、加热元件、太阳能加热等中的一种或多种),并且喷淋流体相应地加热冷却的污染空气,同时从污染气体中去除一种或多种污染物组分。在气体出口806处,提供净化的并加热的气体流。在传热系统800用于清洁并加热环境污染空气的实例中,气体入口804接收污染的环境空气,而气体出口806相应地将温热(相对干净)的环境空气排放到例如大气、用于通风、加热的建筑结构的内部等。

如图8所示,在一个实例中,输入喷淋流体810是加热的流体,而输出喷淋流体812是冷却的流体。在一个实例中,加热的流体包括但不限于由高压蒸汽(例如用于发电循环)转化的冷凝水。冷凝水被供给到喷淋器组件803中并被用作喷淋流体,以从在气体入口804处接收的冷的污染气体中去除一种或多种污染物。冷的污染气体相应地降低喷淋流体中使用的加热的水的温度,并且相应地冷却输出喷淋流体812。之后,在一个实例中,将输出喷淋流体812从传热系统800 中排放到例如湖泊、河流等。在另一个实例中,输出流体812被回收到一个或多个过程中,例如,回收到锅炉中用于产生蒸汽和发电,在一个或多个制造过程等中使用。

在又一个实例中,传热系统800在一个实例中被反向使用。例如,加热的污染气体在自适应喷淋清洁系统802处被接收,并且当在气体出口806处排出时相应地被清洁和冷却。相应地,在一个实例中,输入喷淋流体810是通过自适应喷淋清洁系统802输送的相对冷的流体(与加热的气体相比)。根据从污染气体到喷淋流体的热交换,加热输出喷淋流体812。在一个实例中,在将流体(诸如水) 输送到锅炉之前,自适应喷淋清洁系统802被用作预热器。因此,通过自适应喷淋清洁系统802的预热,在锅炉处节省了资源,并且可选地提供温度接近水到蒸汽的转变温度的水,以使有效发电(在涡轮机处产生用于发电的蒸汽)最大化。

图9示出了包括自适应喷淋清洁系统902的通风系统900的一个实例。在许多方面,自适应喷淋清洁系统902包括先前描述且本文示出的部件,包括但不限于:一个或多个喷淋器阵列,诸如图2所示的喷淋器阵列212、214、216,每个喷淋器阵列包括一个或多个喷嘴。在图9所示的实例中,通风系统900包括自适应喷淋清洁系统902的一个或多个部件,包括:气体通道908(例如,在一个实例中,通风井)、气体入口904和气体出口906。如图9进一步所示,系统902包括:多个气体出口906,其被配置成通过阻尼器912将净化的气体输送到大气;以及结构 910的一个或多个房间、区域、地板等(例如,建筑物、容器等)。

自适应喷淋清洁系统902包括至少在一些方面与本文描述的喷淋器组件(例如,包括一个或多个喷淋器阵列)类似的喷淋器组件903。如同所示,污染气体 (诸如冷却的污染气体)在气体入口904处被接收并且通过喷淋器组件903进行输送。自适应喷淋清洁系统902在喷淋流体输入914处提供喷淋流体的一种或多种喷雾(例如,在一个实例中被加热到高于在气体入口904处接收的冷却的污染空气的温度),并且喷淋流体用于处理(例如,夹带、捕集或催化)在气体入口 904处接收的污染气体中的一种或多种污染物组分。当喷淋流体以相对较冷的温度(从喷淋流体出口916)离开自适应喷淋清洁系统902并且净化的污染气体以 (相对)加热的温度离开喷淋器组件903时,在加热的喷淋流体和冷却的污染气体之间发生热传递。在一个实例中,清洁且加热的气体例如通过气体通道908 进行输送并且在一个或多个气体出口906处通过结构910进行分布,其包括在结构910内的不同层和位置处设置的阻尼器912。可选地,在一个或多个气体出口 906(或喷淋组件903的下游)处设置过滤器(可更换的、可洗的等),以在输送气体之前捕集喷淋流体的液滴、剩余颗粒物质等。

在图8和图9所示的每个实例中,例如,对于传热系统800和通风系统900,包括自适应喷淋清洁系统802、902促进调节喷淋器组件803、903的操作,以相应地对在喷淋器组件803、903处接收的污染气体中的不同的污染物组分和浓度进行反应和调节。因此,净化的气体并且在一些情况下加热或冷却的气体通过具有指定空气质量的自适应喷淋清洁系统802(或902)而被排出。

在另一个实例中,通过例如采用本文描述的方法和结构(例如,采用操作一个或多个喷淋器阵列、喷淋流体供应源等的喷淋组件控制系统230)的自适应喷淋清洁系统802、902,易于调节环境空气质量的变化(例如一种或多种污染物暴发)。喷淋清洁系统802、902(本文描述的200等)的适应性操作确保了排出的气体,例如,将从每个系统排出的环境空气、生产气体等以甚至随着输入气体的污染物特征而变化的指定质量(例如,空气质量、指定的污染物量,诸如百万分之几等)提供到适应性喷淋清洁系统。例如,在一个实例中,当一个或多个污染物的浓度相对于先前条件增大时,本文描述的自适应喷淋清洁系统被配置成适应并调节喷淋器组件的操作,以相应地从污染气体中去除相应的浓度较高的污染物。例如来自图8和图9中的气体出口806、906的所得排出气体以可预测的指定方式进行设置(例如,指定降低排出气体中的污染物浓度)。类似地,当一种或多种污染物浓度相对于先前条件减小时,本文描述的自适应喷淋清洁系统被配置成调节喷淋器组件803、903的输出(例如,可变的喷淋构造特征,包括但不限于:一个或多个流速、所用的喷淋器阵列、喷嘴密度、喷嘴取向、添加剂浓度等),以实现排出气体中的污染物的指定浓度。

图10示出了例如使用本文描述的一个或多个系统自适应地清洁污染气体流的方法1000的一个实例。在描述方法1000时,参考本文描述的一个或多个组分、特征、功能、步骤等。为了方便参考,用附图标记标注部件、特征、功能、步骤等。提供的附图标记是示例性的而非排他的。例如,方法1000中描述的组件、特征、功能步骤等包括但不限于对应编号的元件或本文描述的其它对应的特征 (编号的和未编号的)以及它们的等同物。

在1002中,方法1000包括使污染气体流(例如,污染气体)移动通过气体通道。例如,在图2中示出了气体通道202的一个实例。可选地,用一个或多个的气体移动器(包括被动气体移动器),使污染气体移动通过气体通道202(例如,以一定角度或竖直取向设置气体通道202,并且太阳能加热或被动加热用于加热污染的气体以使它在气体通道202内上升)。在另一个实例中,气体移动器包括主动气体移动器(诸如风扇或鼓风机),例如,图2所示的气体移动器208。

在1004中,测量污染气体的至少一种污染物特征。例如,一个或多个传感器(诸如入口传感器232、出口传感器234或两者)设置有图2所示的自适应喷淋清洁系统200。在一个实例中,一个或多个传感器232、234(每个可选地包括一个或多个传感器)被配置成测量一种或多种污染物特征,包括但不限于颗粒尺寸、颗粒密度(例如,颗粒计数);进行一种或多种化学分析等以相应地识别污染物、其浓度等。

在1006中,用喷淋器组件,诸如图2所示的喷淋器组件210(以及本文描述的任何其它实例),从污染气体流中去除至少一种污染物(例如,颗粒污染物化学物质或气体污染物等)。如前所述,喷淋器组件210包括至少一个喷淋器阵列 212(以及喷淋器阵列214、216中的一个或多个或本文提供的喷淋器阵列的任何组合),每个喷淋器阵列具有至少一个喷嘴,诸如喷嘴218。在一个实例中,从污染气体去除至少一种污染物包括在1008处根据污染气体流的至少一种污染物特征的测量来控制至少一种可变的喷淋构造特征。至少一种可变的喷淋构造特征包括但不限于:喷嘴密度、喷嘴方向(取向、角度等)、喷嘴阵列选择(例如,具有用于选择的多个喷嘴阵列)、液滴尺寸、液滴电荷、喷淋流体组成、喷淋流体温度和喷淋流体输出(例如,流速)等中的一个或多个。

在1010中,方法1000包括用来自至少一个喷淋器阵列(例如,图2所示的喷淋器阵列212、214、216中的一个或多个)的流体喷淋喷淋污染气体。例如,根据基于测得的至少一种污染物特征而指定的一个或多个受控的可变的喷淋构造特征,以受控的方式用喷淋流体喷淋污染气体。如本文先前所描述,自适应喷淋清洁系统200在实例中包括与传感器234、234联通的控制器236、喷淋器阵列 212中的一个或多个、喷淋流体供应源222、224等。因此,在至少一个实例中,控制器236调节具有基于测得的至少一种污染物特征所选的一个或多个可变的喷淋构造特征的喷淋流体对污染气体的喷淋。

例如来自一个或多个喷淋器阵列的喷淋流体对污染气体的喷淋相应地在 1012处用喷淋流体处理至少一种污染物。例如,在一个实例中,用喷淋流体处理至少一种污染物被配置成夹带污染物气体内的一种或多种颗粒污染物。在另一个实例中,用喷淋流体处理至少一种污染物包括施加(通过喷淋流体)一种或多种添加剂,该一种或多种添加剂被配置成与污染物气体中的一种或多种污染物组分相互作用或将其捕集。例如,在一个实例中,喷淋流体包括捕集介质,例如,被配置成与污染气体内的二氧化碳相互作用并将其捕集的二氧化碳捕集介质。在另一个实例中,喷淋流体包括一种或多种其它化学品、添加剂等,它们被配置成与污染气体内的一种或多种污染物相互作用并将其催化。

方法1000的几个选项如下。在一个实例中,测量至少一种污染物特征包括不间断测量至少一种污染物特征。例如,测量至少一种污染物特征以间隔、连续等方式进行。在一个实例中,控制所述至少一种可变的喷淋构造特征包括根据不间断测量来反馈控制至少一种可变的喷淋构造特征。例如,在一个实例中,通过保持在系统控制器236和一个或多个传感器(例如,入口传感器232和出口传感器234中的一个或多个)之间的反馈回路,相应地控制流速、添加剂浓度、喷嘴密度、喷嘴阵列选择等(例如,可变的喷淋构造特征的实例)中的一个或多个。

至少一个测得的污染物特征包括颗粒尺寸、颗粒密度(计数)或者污染物的识别或其在污染气体内的浓度中的一个或多个。在一个实例中,控制至少一种可变的喷淋构造特征包括根据测得的颗粒尺寸来控制喷淋流体的液滴尺寸。方法1000进一步包括用喷淋流体喷淋气流,包括以与测得的颗粒尺寸对应的液滴尺寸喷淋污染气体。在另一个实例中,至少一种污染物特征包括颗粒密度(计数)等。类似地,控制至少一种可变的喷淋构造特征包括根据测得的颗粒密度或计数可选地控制喷淋流体的液滴尺寸。对于更高的特定计数,在一个实例中使用更细的喷淋,以相应地夹带更多污染气体中的浓缩颗粒。相反,对于浓度降低的颗粒,操作较大的液滴尺寸(例如,来自具有较大喷嘴的另一喷淋器阵列)以提供易于在较低颗粒计数时使用的较大液滴,以在节省资源的同时相应地处理具有颗粒的污染气体。

在另一个实例中,至少一种污染物特征包括颗粒密度。在实例中,控制至少一种可变的喷淋构造特征包括根据测得的颗粒密度来控制喷嘴密度(例如,喷嘴的数量、在气体通道的特定区域内的喷嘴数量等)。方法1000进一步包括用喷淋流体喷淋污染气体的实例,包括以与受控的喷嘴密度对应的多个喷嘴喷淋气流。可选地,控制喷嘴密度包括通过第一颗粒密度的测量选择第一喷嘴阵列,并且通过第二颗粒密度的测量选择第二喷嘴阵列。在一个实例中,第二颗粒密度大于第一颗粒密度,并且第二喷嘴阵列包括比第一喷嘴阵列更多数量的喷嘴。可选地,在一个实例中,包括更多数量的喷嘴的第二喷嘴阵列被配置成相对于第一喷嘴阵列提供更细的液滴尺寸,例如,更小的液滴尺寸。

在另一个实例中,用一个或多个传感器测得的至少一种污染物特征包括污染物浓度。在另一个实例中,喷淋流体包括可变浓度的污染物处理添加剂。在此实例中,方法1000包括根据测得的污染物浓度来控制至少一种可变的喷淋构造特征,诸如喷淋流体中的污染物处理添加剂的可变浓度。在另一个实例中,用喷淋流体喷淋污染气体包括用包括浓度与测得的污染物浓度对应的污染物处理添加剂的喷淋流体喷淋污染气体。在另一个实例中,控制可变浓度的喷淋流体包括通过第一污染物浓度的测量(例如,利用一个或多个传感器,诸如入口传感器232和出口传感器234)选择第一可变浓度,并通过第二污染物浓度的测量选择第二可变浓度,其中,第二污染物浓度大于第一污染物浓度。污染物处理添加剂的对应的第二可变浓度大于第一可变浓度,例如,对应于污染气体中的污染物的较大浓度(第二污染物浓度)。

包括本文先前描述的特征、功能或元件中的一个或多个的各种实例在下面被描述为预示性实例并且示于图11A~图14B。这些实例示出了本文先前讨论的多个概念的应用。

如前所述,为了改善城市和工业中心以及办公室、家庭和其它结构中的空气质量,需要从大气中过滤包括颗粒物质(诸如PM2.5)的大气污染物(例如,来自环境空气)。大气污染包括悬浮颗粒物(PM)和在大气中形成二次PM2.5的前体气体,诸如二氧化硫(SO2)、氮氧化物(NOx)以及挥发性有机化合物(VOC) 和氨(NH3)。

本文描述的系统例如通过去除、催化、捕集污染物等来处理污染气体,诸如空气。系统的一个实例包括图11A和图11B所示的太阳能辅助清洁系统1100。系统1100被配置成处理载有颗粒的大气。如本文所述,太阳能辅助清洁系统1100 包括由玻璃板1106组成的锥形护罩1102(在一些情况下直径为一千米或更大),锥形护罩1102从升高的中心部分(例如,接近塔1104)朝向下部周边部分1110 成锥形。清洁空气塔1104位于升高的中心部分内,并且包括与锥形护罩1102下方的区域连通的一个或多个入口管道。锥形护罩1102加热护罩下方的空气(例如,像温室,或通过利用光伏元件等加热)。加热的空气在锥形护罩1102内上升,并根据锥度而被输送到清洁空气塔1104。空气的运动将额外的空气吸入在下部周边部分1110处的锥形护罩中。

如图11B所示,自适应喷淋清洁系统1112被包含在护罩1102中,例如,靠近一个或多个升高的中心部分和清洁空气塔1104。系统1112捕集颗粒,并相应地使原本加热(清洁)的空气继续到达以清洁空气塔1104进行排气。系统1112包括设置在锥形护罩的升高的中心部分下方的一个或多个喷淋器阵列(本文描述的实例)。该一个或多个喷淋器阵列包括多个喷嘴(例如,分配管道中的喷嘴、孔、开口等),并且多个喷嘴被配置成用喷淋流体淋洗包含颗粒(例如,PM2.5) 的进入空气,喷淋流体例如为水、包括一种或多种污染物处理添加剂的载体流体等。喷淋流体夹带颗粒并有效地从空气中去除颗粒。夹带颗粒的喷淋流体被接收到液体收集槽、集水池,容器等中。可选地,例如在流体处理器1114处处理(例如,过滤,处理等)喷淋流体,以去除颗粒并回收喷淋流体用于在一个或多个喷淋器阵列中再次使用。

可选地,太阳能板1116被安装到护罩上(或较远地),以产生电力用于为位于系统1100内的一个或多个气体移动器1118(例如,风扇、鼓风机等)提供电能。对于自适应喷淋清洁系统1112,与筒式过滤器系统相比,喷淋流体上的压降最小。由太阳能电池板产生的电能因此足以驱动风扇以提高并调节通过系统 1100的流量。

护罩1102上的玻璃面板1106(例如,半透明气体通道材料的实例)在玻璃板1106的上表面和下表面中的一个或多个上涂覆有催化剂(包括但不限于: TiO2、其它光催化剂、纳米材料等)。在通过阳光照射时,上表面使沉积的烟灰和污染物光氧化。分解的污染物被雨水冲洗而进行自清洁。在护罩和地面之间的空间(例如,本文描述的气体通道的部分)中的空气是涡流。催化剂使在大气中形成二次PM2.5的前体气体VOC、NOx和SO2光氧化。

可选地将本文提供的各个实施方式扩大规模到一千米或更大的尺寸(例如,锥形护罩可选地包括一千米或更大的直径),以促进清洁相应大规模的大气。护罩1102包括多变的形状(例如,矩形)以适应城市街区或圆形(全部或部分弧) 的内部,以有效地适应农村地区。使用包括水和太阳能的可再生资源使操作系统1100所需的能量输入最小化(例如,消除或最小化)。此外,系统1100可选地不使用需要丢弃和更换的过滤器。

现在参考图12A和图12B,自适应喷淋清洁系统1112(可选地与太阳能辅助系统1100一起使用或与其它系统协作使用或者如本文所述地单独使用)包括靠近塔1104(图11A)安装的多个喷嘴的一个或多个喷淋器阵列1200,以有效地且以低成本收集PM2.5。当PM2.5从护罩1102的顶部落下时,水滴聚结(例如,夹带)PM2.5。系统1100提供本文描述的自适应喷淋阵列,以受控的方式提供喷淋流体以确保聚结(夹带)过程的成功。如图12A所示(对于具有2.5km半径的大的圆形单元),喷淋器阵列1200以距离塔轴为约300米~420米的距离被安装在护罩1102的升高部分下方。喷淋器阵列和分配的喷淋流体与塔1104间隔开,以使喷淋液滴下落到护罩1102下方最大化并且使喷淋液滴进入塔1104中最小化。如本文所讨论的,使一部分(例如,1%或更多)回收的喷淋流体通过液体过滤系统,并去除固体颗粒,并可选地处理或去除其它污染物。

在一个实例中,商用喷嘴用于产生不同的喷淋液滴尺寸并产生在指定压力下具有指定流速的喷雾。通过在系统中部署的可用喷嘴的组合,液滴尺寸、液滴强度和系统1100空气流速能够以80%或更高的效率去除PM2.5。PM2.5饱和的喷淋流体被排放到收集池、罐、集水池、容器等中,在其中处理(例如,过滤、筛选、处理等)喷淋流体以去除PM2.5。可选地将回收的喷淋流体再次供给到喷淋器阵列1200。这有助于系统1100的低成本和可持续操作。

以下段落包括示例性中型自适应喷淋清洁系统的详细设计以及PM2.5去除效率计算。图12C是自适应喷淋清洁系统1112的一部分的示意图,其中,至少一个喷淋器阵列1200的喷嘴大致位于管道增压室(例如,宽度或半径约为22.5m 的护罩1102)中间或距离塔1104的中心13.5m。22.5m(长)×2m(宽)×0.5m(高) 的喷淋流体集水池1202被安装在喷淋器阵列1200下方,以捕集喷淋流体(例如,其中具有夹带、捕集或处理的污染物组分)。可选地将筛网1204设置在集水池 1202的底部上方,使得大颗粒和团块通过筛网并在下面静止的喷淋流体(例如,水)中沉降(例如,如图12D所示的沉降1206)。在筛网1204上方,携带颗粒的喷淋流体被抽出到流体处理器1114(例如,诸如水过滤系统)。一旦喷淋流体被过滤,就可选地通过用泵将其供给到喷淋器阵列1200而将其回收。

基于40.1m3/s的估计气体流速和示例性自适应喷淋清洁系统1112的尺寸,根据等式(例如,Seinfeld and Pandis(2006)中的20.45-20.57)计算喷淋器阵列 1200的液滴尺寸(mm)和沉淀强度(hr),以确保PM2.5的质量去除效率大于80%。发现当液滴直径为0.5mm时,自适应喷淋清洁系统1112就低喷淋流体使用量(例如,水)、低蒸发、高PM2.5去除效率等而言具有几乎最佳的操作。表1(下面) 示出了0.5mm液滴直径系统1112对于具有一定尺寸范围的颗粒的去除效率。当沉淀强度(RS强度)为530mm/hr和800mm/hr时,PM2.5去除效率为约80%~100%。

表1:沉淀强度(RS强度)为530mm/hr和800mm/hr的0.5mm喷淋流体(例如,水)的颗粒去除效率与颗粒尺寸。

液滴喷淋覆盖的示例性深度(例如,喷嘴展开的深度)通过空气速度和液滴从喷淋器阵列1200下落到护罩1102的底部(例如,气体通道的底部)的总时间相乘进行计算,在一个实例中该深度为约1米。在其它实例中,基于其它值、液滴尺寸等进行计算。通过具有该深度的喷淋液滴,根据计算的效率有效地去除连续进入的PM2.5。因此,在一个实例中,总的所需喷淋流体使用量对于 80%的PM2.5去除效率为0.53m/h×22.5m×1m或者约12m3/h(例如,约53gal/min),而对于接近100%的PM2.5去除效率为约18m3/h或约81gal/min。这些计算是实例,并且实际效率、喷淋器阵列1200的深度等可能在实际实践中或考虑其它设计因素而变化。

通过考虑液滴尺寸(例如,数量中值直径或NMD)、流速容量、喷淋角度和指定压力,在实例中使用了来自伊利诺斯州惠顿市的喷雾系统有限公司的全锥形喷嘴1/8G-3。该喷嘴产生了VMD(体积中值直径)为1.6mm、喷淋角为约60°且在10psi下容量(例如,流速)为约0.3gal/min的液滴。在假设几何标准偏差为1.8时,相应的NMD为约0.5mm。图12B示出了对于80%效率实例的示例性喷嘴部署方案。1/8G-3喷嘴的总数为180(4×45)。在该实例中,考虑到安全系数和喷淋的角度,使用1.5m深度而不是示例性计算的1m深度。

发现来自喷淋液滴的喷淋流体(诸如水)的示例性蒸发损失在历史的夏天条件下为约870L/h。可选地通过添加来自水源的补充水、使用亲水性添加剂(如本文所述)等来补充损失。

在一个实例中,例如使用具有约10马力马达的水泵(诸如来自Dayton的 12A081或来自Goulds Water Technology的9BF1L4A0)将喷淋流体同时输送到示例性的180个喷嘴。这些泵在50~250英尺的水头处具有50~300gal/min的流速。在一个实例中,包含夹带颗粒的喷淋流体通过具有150gal/min的设计流动能力的超高流量过滤器系统(Part 3455K21和3455K35,McMaster Carr,Elmhurst, IL)进行过滤。

示例性自适应喷淋清洁系统1112系统的总成本小于20000美元,相比之下筒式过滤器系统的总成本超过100000美元。自适应喷淋清洁系统1112相对于筒式过滤器系统具有喷淋器阵列1200上的压力低、成本低和固体废物处理问题最小的优点。它是一种用于从气体(包括环境空气)中去除PM2.5和其它污染物组分的可持续系统。

可选地,如果不使用太阳能加热和相应的空气移动,则使护罩1102(在图 11A、图11B和图12A的实例中示出)最小化,或者通过包括气体移动器,诸如风扇、鼓风机等而去除该护罩1102。在不需要烟囱来提供气流时,也可选地消除塔或使塔最小化。相反,本文的一些实例中所示的气体通道替代地用于容纳一个或多个喷淋器阵列1200,并且促进气体通过其进行输送。这促进系统的收缩(例如,减小其在结构、城市街区等内的轮廓),并使初始建造成本最小化。太阳能光伏板可选地被安装在系统(例如,诸如护罩1102的剩余部分)上或建筑物、结构、较远的其它地方等,以提供一些或全部电力来操作气体移动器,所以系统1112仍然是太阳能辅助的。

可选地,气体通过系统1112(例如,作为太阳能辅助清洁系统1100的一部分)的流动方向根据在系统1100中接收的气体的加热或冷却而变化。例如,通过在清洁过程期间(例如,在冷却塔应用中)将热量添加到空气中,气体在护罩1102的周边处进入系统并从塔1104离开,以降低离开的温热的浮力空气被重新夹带回到系统1100中的可能性。因此,在一个实例中,气体移动器(诸如风扇)应将空气从护罩1102中吸入系统并吹到塔1104的上部(参见图11A 和图11B)。相反地,当在清洁过程期间没有向气体添加热量或者用自适应喷淋清洁系统1112冷却气体(例如,并且使用几乎纯净的水、经处理的喷淋流体等) 时,气体移动器可选地从塔1104的上部处的开口向下抽吸气体并且从护罩1102 的周边处排出净化气体。这使净化气体(例如,空气)重新引入系统1100中最小化,并且还在靠近单元的底部处以低速提供冷却的净化空气。在一些实例中,这为接近系统1100的区域、半封闭式庭院内的区域、结构内的区域等提供局部空气净化和空气调节。

在其它实例中,在CO2生成源处进行CO2处理,例如在烟囱处处理烟道气。换句话说,在烟道塔处或在交叉流冷却塔型填充塔内进行CO2的捕集。相比之下,本文描述的实例使用一个或多个喷淋器阵列1200来去除CO2。可选地,在自适应喷淋清洁系统1112中,同时去除CO2与PM2.5。在这样的实例中,对于额外的CO2去除,建筑、公用事业和资本成本进行共享并且得以大大降低。

如本文所述,在一个实例中,喷淋器阵列1200被配置成使用具有二氧化碳捕集介质的喷淋流体(例如,包括载体流体,诸如水)作为污染物处理添加剂 (例如,可溶于水的捕集介质)。二氧化碳捕集介质去除自适应喷淋清洁系统 1112内的大气CO2。液体基质(例如,载体流体,诸如水)中的喷淋的二氧化碳捕集介质(例如,NaOH,胺等)提高了与气体(例如,环境空气、生产气体等)的接触界面并有效去除CO2。在一个实例中,二氧化钛(TiO2)因为总能量消耗比使用Ca(OH)2的总能量消耗低至少50%而被用作碳酸钠的苛化剂。通过使用TiO2作为示例性苛化剂,氢氧化钠回收和CO2捕集的总反应如下:

2NaOH+CO2→Na2CO3(aq)+H2O(捕集)(1)

(捕集的CO2的中间物和分离)(2)

(二氧化碳捕集介质的回收)(3)

大气中CO2的总量为约3000Gt,使用本文描述的系统能够使总质量减少 400Gt~2600Gt。由图11A和图11B所示的原尺寸系统1100产生的总空气流速为约3.8×105m3/s,这意味着系统1100的CO2去除能力为约4MtCO2/yr。因此,如果进一步增强系统1100的进气流速,则全世界总建造和部署速率将为约20 单元/年或更少。

增强CO2收集的另一个选择是通过提高CO2的收集效率。与提供二氧化碳捕集介质的二维幕墙的基于相对较小表面的系统相反,在先前描述的系统1100 中,CO2和NaOH溶液的接触是基于估计总和为约4×105m3的体积。预期基于体积(例如,包括本文描述的深度尺寸)的喷淋器阵列1200的CO2收集效率将高于50%。另一个重要的参数是影响CO2的停留时间和去除效率的气体流速。系统1100内的平均流速为4米/秒。然而,因为在自适应喷淋清洁系统1112的喷淋器阵列1200中有高得多的接触体积,所以相对高的速度(例如,在基于二维表面积的系统中使用的)不应影响系统1100中的处理效率。出于保守估计的目的,在本说明书中提供了50%的去除效率,尽管实际上效率可能更高。

本文描述的自适应喷淋清洁系统的另一个设计考虑是在操作期间的水损失。水损失和NaOH浓度的偶然变化受NaOH浓度、环境温度、相对湿度(RH) 以及CO2的去除效率所影响。虽然本文中将NaOH列为二氧化碳捕集介质,但本文描述的实施方式不限于NaOH,而是使用一种或多种捕集介质,包括但不限于NaOH,胺等。假定Tout=Tin,水损失RH2O/CO2(mol H2O/mol去除的CO2) 被计算成:

其中,MH2O:H2O的分子量;MCO2:CO2的分子量;Pv:水的蒸气压;Tin:环境温度;Tout:离开吸收器的温度;S:与NaOH溶液平衡时空气的饱和度(参见图3);并且ΔPCO2:在环境和出口之间的CO2分压差。在一个实例中,设计成(喷淋流体,诸如水)零损失或接近零的损失。

从等式(4)来看,如果S保持恒定(例如,固定的NaOH浓度),则Tin (环境温度)越高并且RH(相对湿度)越低,水损失将越高。北京的年度气候数据(作为实例)示出:五月(20℃且平均RH=49%)可能由于相对较高的温度和低的RH而在一年内具有最多水损失。根据等式(4)并且假定Tout=Tin=20℃、 NaOH的浓度=5M(S=80)并且ΔPCO2=250Pa(从500ppm到250ppm,50%去除),水损失为约12mol H2O/mol CO2。在一个实例中,自适应喷淋清洁系统1112 去除约5×105吨的CO2并且经历2×106吨的水损失,据估计,对于北京的条件,五月份的水损失被估算为额外的2千万美元成本(1美元/吨水)。可选地通过改变NaOH浓度来降低这个估算损失。例如,通过将NaOH浓度增加至9M(S 约50%),水损失降低至约为零,并且通过进一步提高NaOH浓度来获得负值 (水的吸收)。或者,通过水的添加或去除(调节),例如使用本文描述的包括控制器236的系统来控制水浓度。基于上述讨论,自动控制系统(例如,喷淋器控制系统230)实现并保持最佳操作条件,以在保持NaOH(或其它二氧化碳捕集介质)的成本低的同时使水损失最小化。

现在参考图13,具有低压降的高效率是静电除尘器(ESP)的有益的设计特征。ESP系统能够从通过它的气体中去除大量的颗粒,可选地,静电除尘器单独使用或与本文描述的适应性喷淋清洁系统(例如,气体清洁的另一级)组合使用。如图13所示,在一个实例中,静电除尘器系统1300以距系统1100的塔1104的轴约300m~304m的距离进行安装。静电除尘器系统1300包括单级或多(两)级静电系统中的一个或多个。在一个实例中,该系统包括在放电电极 1306之间交错的1300个收集板1304。由于系统1300的相对高的效率,收集板可选地为约4米长。在所示的实例(例如,在图13的右侧)中,线板单级系统 1301使用高供应电压(10000伏或更高)提供给悬置在收集板1304之间的放电电极1306。在另一个实例(例如,图13的左侧所示)中,示出了两级静电除尘器系统使用较低电压(10000伏或更小)提供给放电电极1308(例如,板) 和包括收集板1302的第二级(电极的下游)进行操作。PM2.5去除效率通过Deutsch-Anderson方程而被估计为大于90%。通过由位于靠近护罩1102的顶部 (例如,气体通道)的喷嘴供给的水膜,周期性地洗脱收集的PM2.5

在又一个实例中,在将废水排放到水体(例如,洋、海、湖泊等)期间,盛行风从水体吹向岸边。盛行风常常将臭气从废水带到住宅区域。

在另一个实例中,扇形清洁系统1400面向水体。在图14A和图14B中,示出了扇形清洁系统1400。可选地,清洁系统1400位于废水处理厂后面。扇形系统1400捕集被盛行风(如图14A和图14B中的箭头所示)运送到岸边的来自废水的臭味气体。系统1400的护罩1402的顶部可选地覆盖有光伏板1404。由PV板1404产生的热量提高气体的浮力(例如,它上升),从而增加通过系统1400的气流。

在系统1400内,例如在护罩1402内,安装一组涂有催化基质(本文所述) 的平行板1406(例如,玻璃或另一种半透明材料)。平行板1406可选地通过由 PV板1404供电的UV灯1408(或通过护罩所接收的阳光)而被照亮。紫外光使催化基质(例如,纳米材料、二氧化钛等)光氧化臭味气体(例如,亚硫酸氢盐、有机挥发性分子等)和用于二次PM2.5的前体气体。在另一个实例中,还可选地产生进一步有助于减轻臭味的有限量的臭氧。

各种注释&实施例

实施例1能够包括主题,例如能够包括一种配置成清洁污染气体的自适应喷淋清洁系统,所述系统包括:气体通道,所述气体通道包括气体入口和气体出口;气体移动器,所述气体移动器与所述气体通道连通,所述气体移动器被配置成使包括一种或多种污染物的污染气体移动;喷淋器组件,所述喷淋器组件位于所述气体入口和所述气体出口之间,所述喷淋器组件包括:至少一个喷淋器阵列,所述至少一个喷淋器阵列具有至少一个喷嘴,所述至少一个喷嘴被定向到所述气体通道中,并且所述喷淋器组件包括至少一种可变的喷淋构造特征;以及喷淋器组件控制系统,所述喷淋器组件控制系统与所述至少一个喷淋器阵列连接,所述喷淋器组件控制系统包括:一个或多个传感器,所述一个或多个传感器靠近所述气体入口或所述气体出口中的至少一个,所述一个或多个传感器被配置成测量污染物特征,以及控制器,所述控制器与所述一个或多个传感器和所述喷淋器组件联通,所述控制器被配置成根据测得的污染物特征来控制所述至少一种可变的喷淋构造特征。

实施例2能够包括实施例1的主题或能够可选地与实施例1的主题组合,以可选地包括,其中,所述气体移动器包括风扇。

实施例3能够包括实施例1或实施例2中的一个或任何组合的主题或能够可选地与实施例1或实施例2中的一个或任何组合的主题组合,以可选地包括,其中,所述气体移动器包括被动气体移动器。

实施例4能够包括实施例1~实施例3中的一个或任何组合的主题或能够可选地与实施例1~实施例3中的一个或任何组合的主题组合,以可选地包括,其中,所述一个或多个传感器包括与所述气体入口和所述气体出口中的每一个靠近的一个或多个传感器。

实施例5能够包括实施例1~实施例4中的一个或任何组合的主题或能够可选地与实施例1~实施例4中的一个或任何组合的主题组合,以可选地包括,其中,所述一个或多个传感器包括颗粒计数器。

实施例6能够包括实施例1~实施例5的主题或能够可选地与实施例1~实施例5的主题组合,以可选地包括,其中,所述一个或多个传感器包括化学品识别传感器。

实施例7能够包括实施例1~实施例6的主题或能够可选地与实施例1~实施例6的主题组合,以可选地包括,其中,所述一个或多个传感器包括流速传感器、速度传感器、温度计、湿度计、颗粒计数器、粒度仪、光度计、气体分析仪或透射计中的一个或多个。

实施例8能够包括实施例1~实施例7的主题或能够可选地与实施例1~实施例7的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括多个喷嘴。

实施例9能够包括实施例1~实施例8的主题或能够可选地与实施例1~实施例8的主题组合,以可选地包括,其中,所述多个喷嘴中的喷嘴的喷嘴密度从所述气体通道的周边附近朝向所述气体通道的中心增大。

实施例10能够包括实施例1~实施例9的主题或能够可选地与实施例1~实施例9的主题组合,以可选地包括,其中,所述一个或多个传感器被配置成测量污染物特征,所述污染物特征包括颗粒密度、颗粒尺寸、污染物特性、污染物浓度、污染物电荷、污染气体温度、污染气体流速、污染气体速度、污染气体湿度中的一种或多种。

实施例11能够包括实施例1~实施例10的主题或能够可选地与实施例1~实施例10的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括第一喷嘴阵列和第二喷嘴阵列,所述第一喷嘴阵列相对于所述气体通道以第一角度横向地定向,并且所述第二喷嘴阵列相对于所述气体通道以第二角度横向地定向,所述第二角度不同于所述第一角度。

实施例12能够包括实施例1~实施例11的主题或能够可选地与实施例1~实施例11的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括第一喷嘴阵列和第二喷嘴阵列,所述第一喷嘴阵列被设置在所述气体通道的周边附近,而第二喷嘴阵列被设置在所述气体通道的中心附近,并且所述第二喷嘴阵列包括比所述第一喷嘴阵列更多的喷嘴。

实施例13能够包括实施例1~实施例12的主题或能够可选地与实施例1~实施例12的主题组合,以可选地包括,其中,所述至少一个可变的喷淋构造包括至少所述第一喷嘴阵列和所述第二喷嘴阵列的喷嘴阵列选择,并且所述控制器被配置成根据测得的污染物特征来操作所述第一喷嘴阵列或所述第二喷嘴阵列中的一个或两个。

实施例14能够包括实施例1~实施例13的主题或能够可选地与实施例1~实施例13的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括第一喷嘴阵列和第二喷嘴阵列,相对于所述第二喷嘴阵列,所述第一喷嘴阵列靠近所述气体入口,相对于所述第一喷嘴阵列,所述第二喷嘴阵列靠近所述气体出口,并且其中,所述第一喷嘴阵列被配置成喷淋具有第一尺寸的第一液滴的流体,而所述第二喷嘴阵列被配置成喷淋具有第二尺寸的第二液滴的流体,所述第二尺寸不同于所述第一尺寸。

实施例15能够包括实施例1~实施例14的主题或能够可选地与实施例1~实施例14的主题组合,以可选地包括,其中,所述至少一种可变的喷淋构造特征由喷嘴密度、喷嘴方向、喷嘴阵列选择、液滴尺寸、液滴电荷、喷淋流体组成、喷淋流体温度和喷淋流体输出中的至少一种组成。

实施例16能够包括实施例1~实施例15的主题或能够可选地与实施例1~实施例15的主题组合,以可选地包括,其中,所述可变的喷淋构造特征至少包括所述可变的喷淋构造特征的第一值和第二值,并且所述控制器被配置成根据测得的污染物特征将所述喷淋器组件转变成所述可变的喷淋构造特征的所述第一值和所述第二值中的一个或两个值。

实施例17能够包括实施例1~实施例16的主题或能够可选地与实施例1~实施例16的主题组合,以可选地包括,其中,所述可变的喷淋构造特征包括所述可变的喷淋构造特征的多个值,并且所述控制器被配置成根据测得的污染物特征将所述喷淋器组件转变成所述可变的喷淋构造特征的所述多个值中的每一个值。

实施例18能够包括实施例1~实施例17的主题或能够可选地与实施例1~实施例17的主题组合,以可选地包括,其中,所述气体通道包括位于所述气体通道中的至少一种催化剂基质,所述催化剂基质被配置成分解所述污染气体中的一种或多种污染物。

实施例19能够包括实施例1~实施例18的主题或能够可选地与实施例1~实施例18的主题组合,以可选地包括,其中,所述催化剂基质由二氧化钛、光催化剂或纳米材料中的至少一种组成。

实施例20能够包括实施例1~实施例19的主题或能够可选地与实施例1~实施例19的主题组合,以可选地包括一种配置成清洁污染气体的自适应喷淋清洁系统,所述系统包括:塔,所述塔包括位于所述塔中的气体通道,所述气体通道包括气体入口和气体出口;护罩,所述护罩从所述塔的底部延伸出,所述气体通道延伸穿过所述护罩;喷淋器组件,所述喷淋器组件位于所述气体入口和所述气体出口之间,所述喷淋器组件包括:至少一个喷淋器阵列,所述至少一个喷淋器阵列具有至少一个喷嘴,所述至少一个喷嘴被定向到所述气体通道中,并且所述喷淋器组件包括至少一种可变的喷淋构造特征;以及喷淋器组件控制系统,所述喷淋器组件控制系统与所述至少一个喷淋器阵列连接,所述喷淋器组件控制系统包括:一个或多个传感器,所述一个或多个传感器靠近所述气体入口或所述气体出口中的至少一个,所述一个或多个传感器被配置成测量污染物特征,以及控制器,所述控制器与所述一个或多个传感器和所述喷淋器组件联通,所述控制器被配置成根据测得的污染物特征来控制所述至少一种可变的喷淋构造特征。

实施例21能够包括实施例1~实施例20的主题或能够可选地与实施例1~实施例20的主题组合,以可选地包括,其中,所述塔和所述护罩中的每一个被配置用于接收在建筑物内。

实施例22能够包括实施例1~实施例21的主题或能够可选地与实施例1~实施例21的主题组合,以可选地包括,其中,所述护罩具有约1千米的直径。

实施例23能够包括实施例1~实施例22的主题或能够可选地与实施例1~实施例22的主题组合,以可选地包括,其中,所述喷淋器组件位于所述护罩内。

实施例24能够包括实施例1~实施例23的主题或能够可选地与实施例1~实施例23的主题组合,以可选地包括,其中,所述喷淋器组件围绕所述气体通道在所述塔内的一部分和所述塔。

实施例25能够包括实施例1~实施例24的主题或能够可选地与实施例1~实施例24的主题组合,以可选地包括,其中,所述一个或多个传感器包括与所述气体入口和所述气体出口中的每一个靠近的一个或多个传感器。

实施例26能够包括实施例1~实施例25的主题或能够可选地与实施例1~实施例25的主题组合,以可选地包括,其中,所述一个或多个传感器包括流速传感器、速度传感器、温度计、湿度计、颗粒计数器、粒度仪、光度计、气体分析仪或透射计中的一个或多个。

实施例27能够包括实施例1~实施例26的主题或能够可选地与实施例1~实施例26的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括多个喷嘴。

实施例28能够包括实施例1~实施例27的主题或能够可选地与实施例1~实施例27的主题组合,以可选地包括,其中,所述多个喷嘴中的喷嘴的喷嘴密度从所述气体通道的周边附近朝向所述气体通道的中心增大。

实施例29能够包括实施例1~实施例28的主题或能够可选地与实施例1~实施例28的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括第一喷嘴阵列和第二喷嘴阵列,所述第一喷嘴阵列相对于所述气体通道以第一角度横向地定向,并且所述第二喷嘴阵列相对于所述气体通道以第二角度横向地定向,所述第二角度不同于所述第一角度。

实施例30能够包括实施例1~实施例29的主题或能够可选地与实施例1~实施例29的主题组合,以可选地包括,其中,所述至少一个喷淋器阵列包括第一喷嘴阵列和第二喷嘴阵列,并且所述至少一个可变的喷淋构造包括至少所述第一喷嘴阵列和所述第二喷嘴阵列的喷嘴阵列选择,并且所述控制器被配置成根据测得的污染物特征来操作所述第一喷嘴阵列或所述第二喷嘴阵列中的一个或两个。

实施例31能够包括实施例1~实施例30的主题或能够可选地与实施例1~实施例30的主题组合,以可选地包括,其中,所述至少一种可变的喷淋构造特征由喷嘴密度、喷嘴方向、喷嘴阵列选择、液滴尺寸、液滴电荷、喷淋流体组成、喷淋流体温度和喷淋流体输出中的至少一种组成。

实施例32能够包括实施例1~实施例31的主题或能够可选地与实施例1~实施例31的主题组合,以可选地包括,其中,所述可变的喷淋构造特征至少包括所述可变的喷淋构造特征的第一值和第二值,并且所述控制器被配置成根据测得的污染物特征将所述喷淋器组件转变成所述可变的喷淋构造特征的所述第一值和所述第二值中的一个或两个值。

实施例33能够包括实施例1~实施例32的主题或能够可选地与实施例1~实施例32的主题组合,以可选地包括,其中,所述可变的喷淋构造特征包括所述可变的喷淋构造特征的多个值,并且所述控制器被配置成根据测得的污染物特征将所述喷淋器组件转变成所述可变的喷淋构造特征的所述多个值中的每一个值。

实施例34能够包括实施例1~实施例33的主题或能够可选地与实施例1~实施例33的主题组合,以可选地包括,其中,所述气体通道包括位于所述气体通道中的至少一种催化剂基质,所述催化剂基质被配置成分解所述污染气体中的一种或多种污染物。

实施例35能够包括实施例1~实施例34的主题或能够可选地与实施例1~实施例34的主题组合,以可选地包括一种用于自适应清洁污染气体的方法,包括:使所述污染气体移动穿过气体通道,所述气体通道包括气体入口和气体出口;测量所述污染气体的至少一种污染物特征;以及用喷淋器组件从所述污染气体中去除至少一种污染物,所述喷淋器组件具有至少一个喷淋器阵列,所述至少一个喷淋器阵列具有至少一个喷嘴,去除所述至少一种污染物包括:根据所述至少一种污染物特征的测量来控制至少一种可变的喷淋构造特征,根据受控的可变的喷淋构造特征,用来自所述至少一个喷淋器阵列的喷淋流体喷淋所述污染气体的流;以及用所述喷淋流体处理所述至少一种污染物。

实施例36能够包括实施例1~实施例35的主题或能够可选地与实施例1~实施例35的主题组合,以可选地包括,其中,使所述污染气体的流移动穿过所述气体通道包括主动吹扫所述污染气体的流。

实施例37能够包括实施例1~实施例36的主题或能够可选地与实施例1~实施例36的主题组合,以可选地包括,其中,测量所述至少一种污染物特征包括靠近所述气体入口或所述气体出口中的一个或多个来测量所述至少一种污染物特征。

实施例38能够包括实施例1~实施例37的主题或能够可选地与实施例1~实施例37的主题组合,以可选地包括,其中,测量所述至少一种污染物特征包括靠近所述气体入口或所述气体出口中的每一个来测量所述至少一种污染物特征。

实施例39能够包括实施例1~实施例38的主题或能够可选地与实施例1~实施例38的主题组合,以可选地包括,其中,所述至少一种污染物特征的测量包括所述至少一种污染物特征的不间断测量,并且控制所述至少一种可变的喷淋构造特征包括根据所述不间断测量来反馈控制所述至少一种可变的喷淋构造特征。

实施例40能够包括实施例1~实施例39的主题或能够可选地与实施例1~实施例39的主题组合,以可选地包括,其中,所述至少一种污染物特征包括颗粒计数,控制至少一种可变的喷淋构造特征包括根据测得的颗粒计数来控制所述喷淋流体的液滴尺寸,并且用所述喷淋流体喷淋所述污染气体包括以与测得的颗粒计数对应的液滴尺寸喷淋所述污染气体。

实施例41能够包括实施例1~实施例40的主题或能够可选地与实施例1~实施例40的主题组合,以可选地包括,其中,控制所述液滴尺寸包括:通过第一颗粒计数的测量来选择第一液滴尺寸,并且通过第二颗粒计数的测量来选择第二液滴尺寸,其中,所述第二颗粒计数大于所述第一颗粒计数,并且所述第二液滴尺寸小于所述第一液滴尺寸。

实施例42能够包括实施例1~实施例41的主题或能够可选地与实施例1~实施例41的主题组合,以可选地包括,其中,所述至少一种污染物特征包括颗粒密度,控制至少一种可变的喷淋构造特征包括根据测得的颗粒密度来控制喷嘴密度,并且用所述喷淋流体喷淋所述污染气体包括以与所述喷嘴密度对应的多个喷嘴来喷淋所述污染气体。

实施例43能够包括实施例1~实施例42的主题或能够可选地与实施例1~实施例42的主题组合,以可选地包括,其中,控制所述喷嘴密度包括:通过第一颗粒密度的测量来选择第一喷嘴阵列,并且通过第二颗粒密度的测量来选择第二喷嘴阵列,其中,第二密度大于所述第一颗粒密度,并且所述第二喷嘴阵列包括比所述第一喷嘴阵列更多数量的喷嘴。

实施例44能够包括实施例1~实施例43的主题或能够可选地与实施例1~实施例43的主题组合,以可选地包括,其中,所述至少一种污染物特征包括污染物浓度,并且所述喷淋流体包括可变浓度的污染物处理添加剂,控制至少一种可变的喷淋构造特征包括根据测得的污染物浓度来控制在所述喷淋流体中的所述污染物处理添加剂的可变浓度,并且用所述喷淋流体喷淋所述污染气体包括:用包括与测得的污染物浓度对应的受控的可变浓度的所述污染物处理添加剂的喷淋流体喷淋所述污染气体。

实施例45能够包括实施例1~实施例44的主题或能够可选地与实施例1~实施例44的主题组合,以可选地包括,其中,控制所述可变浓度包括:通过第一污染物浓度的测量来选择第一可变浓度,并且通过第二污染物浓度的测得来选择第二可变浓度,其中,所述第二污染物浓度大于所述第一污染物浓度,并且所述污染物处理添加剂的所述第二可变浓度大于所述第一可变浓度。

这些非限制性实施例中的每一个能够独立存在,或者能够以各种排列或组合一个或多个其它实施例组合。

上述具体实施方式包括对附图的参照,附图也是具体实施方式的一部分。附图以图解的方式示出了能够实施本申请的具体实施方式。这些实施方式在本文中被称为“实施例”。这样的实施例能够包括除了所示出或描述的元件之外的元件。然而,本发明人还考虑了仅提供所示出或所描述的那些元件的实施例。此外,本发明人还考虑了使用所示出或所描述的那些元件(或其一个或多个方面)关于特定实施例(或其一个或多个方面)或者关于本文所示出或所描述的其它实施例(或其一个或多个方面)的任何组合或排列的实施例。

倘若本文件与通过引用而并入本文的任何文件之间的使用量不一致,则本文件中的使用量支配。

在本文件中,与专利文件通常使用的一样,术语“一个”(a)或“一个”(an) 用于包括一个或大于一个,但任何其它情况或在使用“至少一个”或“一个或多个”时应除外。在本文件中,除非另外指明,否则术语“或”用于指代无排他性的或者,使得“A或B”包括:“A但不是B”、“B但不是A”以及“A和B”。在本文件中,术语“包括”(including)和“其中”(in which)分别被用作术语“包含” (comprising)和“其中”(wherein)的简明英语对应词。同样,在下面的权利要求书中,术语“包含”和“包括”是开放性的,即,权利要求中的系统、装置、物品、组合物、配方或方法包括除了在这种术语之后列出的那些元件以外的元件,它们仍被视为落在该权利要求的范围之内。而且,在下面的权利要求书中,术语“第一”、“第二”和“第三”等仅仅用作标签,并非对其对象有数量要求。

本文描述的方法实施例能够至少部分是机器或计算机实现的。一些实施例能够包括用指令编码的计算机可读介质或机器可读介质,所述指令可操作以将电子装置配置成执行上面实施例所描述的方法。这种方法的实现能够包括代码,诸如微代码、汇编语言代码、更高级语言代码等。这种代码能够包括用于执行各种方法的计算机可读指令。代码能够形成计算机程序产品的部分。此外,在实施例中,例如在执行期间或在其它时间,代码能被有形地存储在一个或多个易失性、非暂时性或非易失性的有形计算机可读介质上。这些有形计算机可读介质的实例能够包括但不限于:硬盘、可移动磁盘、可移动光盘(例如,压缩盘和数字视频盘)、磁带盒、存储卡或棒、随机存取存储器(RAM)、只读存储器(ROM)等。

上述描述用于说明而非限制。例如,上述实施例(或其一个或多个方面) 可以彼此结合使用。例如,经回顾上述描述,本领域普通技术人员能够使用其它实施方式。为了符合37C.F.R.§1.72(b),提供了摘要以使读者能够快速确定本技术内容的性质。应理解,提交的摘要不是用于解释或限制权利要求的范围或含义。同样,在上面的具体实施方式中,可将各种特征归类到一起以使本公开合理化。这不应被理解成以下含义:未要求保护的公开特征对任何权利要求必不可少。相反,本申请的主题可以在于特定公开的实施方式的不到全部特征。因此,下面的权利要求书在此作为实施例或实施方式被并入具体实施方式中,各个权利要求独立作为单独的实施方式,并且预期这种实施方式能够以各种组合或排列的方式彼此组合。本申请的范围应参考所附的权利要求书以及这些权利要求所享有的等同物的全部范围来进行确定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1