一种油品深度加氢脱硫催化剂及其制备方法与流程

文档序号:15512552发布日期:2018-09-25 16:27阅读:270来源:国知局

本发明涉及石油化工催化领域,具体涉及一种油品深度加氢脱硫催化剂及其制备方法。



背景技术:

汽车尾气排放所造成的环境污染问题已成为我国国民经济和社会可持续发展亟需解决的重要问题。针对这个重大问题,世界各国制定了日益严格的环保法规及其排放标准,与此同时,也采取了如改进与更新汽车发动机的结构、设计与安装具有高效汽车尾气净化装置等不同的应对方法。而采取直接提升油品的质量与改进油品的生产加工技术是实现清洁燃料油品生产最根本的方法。与其它脱硫技术路线相比较而言(氧化脱硫、吸附脱硫及生物脱硫等),加氢脱硫技术是目前清洁柴油生产最有效的手段之一。目前,许多炼厂通过改变油品生产的操作工艺参数:如提高h2压力、提高反应温度、减小空速等参数来实现脱硫率的提高,但与此同时也会带来能耗高、液收产率低、设备投资高等许多负面效应。新型、高效催化剂的开发是加氢脱硫技术进步的核心。

在加氢脱硫催化剂中,载体起着重要的作用,性能优良的载体不仅能使催化剂中活性组份和助剂分散状态良好,还可以调变载体和活性组份间的相互作用,且其适宜的酸性和孔道结构有利于改善其产品的组成分布,提升加氢脱硫反应活性并改善最终产品的质量。但是,目前工业上广泛采用的以氧化铝为载体的hds催化剂因其孔道不均,扩散阻力较大,导致反应物难以接近催化剂活性中心;同时,氧化铝仅存在l酸中心,无法满足那些有位阻的烷基二苯并噻吩类硫化物如二苯并噻吩(dbt)的深度脱除,从而影响催化剂加氢脱硫效果。除了载体的酸性之外,载体的形貌、孔结构和孔大小对催化剂的催化性能也具有重要的影响。例如,据文献报道sba-15的形貌和孔道大小对反应物和产物分子的扩散性能影响较大,并且对活性组分的分散度也有一定的影响。

sba-15具有较高的比表面积、较厚的孔壁以及可以调控的孔径大小等优点,其作为典型的介孔分子筛是目前研究最广泛的介孔材料之一。但是sba-15的骨架结构完全由二氧化硅组成,只有其表面的硅羟基基团具有微弱的酸性,sba-15的酸性远远低于具有晶体骨架结构的微孔分子筛。另外sba-15的表面存在大量的si-oh基团,该基团极易受水分子的进攻而发生骨架si-o-si的水解反应,由此引起骨架结构的坍塌,因此介孔材料通常的水热稳定性通常较差,这严重限制了其在石油化工领域中作为催化剂或催化剂载体的实际应用。除了sba-15介孔材料的酸性和水热稳定性等特性之外,sba-15的颗粒形貌和孔道结构对催化剂的催化性能也具有较大的影响。sba-15的颗粒形貌和孔道结构主要影响活性组分的分散度和反应分子的扩散性能。除了sba-15载体的改性之外,sba-15与活性组分之间的相互作用也需要进一步的调控。载体与活性组分之间作用力的强弱对催化剂的反应活性具有重要的影响;载体与活性组分的作用力太弱容易导致活性组分在反应过程中脱落;相反载体与活性组分的作用力太强将导致活性金属氧化物很难被还原。因此,大量的研究者对sba-15介孔材料进行改性,从而提高sba-15的物理化学特性,主要包括sba-15的形貌调控、sba-15介微孔分子筛复合、sba-15硬模板法制备其他介孔材料等。因此,具备高活性的加氢脱硫催化剂的设计与开发对生产超清洁油品生成意义重大。



技术实现要素:

本发明针对上述技术问题,提供一种油品深度加氢脱硫催化剂及其制备方法,采用设计特定的多重乳液体系,制备空心球形sba-15载体材料,并通过铝修饰改善sba-15水热稳定性并提高其酸性位数量,然后采用等体积分布浸渍法将金属活性组分负载到载体上,所制备nimo/sba-15-sp催化剂对二苯并噻吩(dbt)加氢脱硫反应活性进行评价,显示出优异的dbt脱硫转化频率tof和速率常数。

本发明是通过以下技术方案实现的:

a、在硅酸钠溶液中加入含有吐温80的正己烷溶液,混合液形成w/o乳液,

b、在另一个水溶液中加入p123;然后向含有p123的水溶液加入正硅酸四乙酯形成w/o乳液;

c、将步骤b得到的w/o乳液加入到步骤a形成的w/o乳液中,均质11~20min,最后混合液形成了w/o/w多重乳液,置于水浴35℃,搅拌溶解60min;

d、搅拌溶解后在静止状态下陈化24h,转入晶化釜,在100℃下晶化24h;

e、过滤,洗涤,80℃下干燥12h,然后在550℃下高温煅烧除去表面活性剂;

f、将一定量的al(no3)3·9h2o加入到水中进行溶解;然后加入0.5g步骤e得到的sba-15固体粉末,在室温下搅拌反应12h;用去离子水过滤洗涤,在100℃干燥12h,然后在550℃下焙烧6h

g、按计算得到的mo的量,称取一定质量的钼酸铵,置于少量水中溶解。将钼酸铵水溶液加入到步骤f得到的al-sba-15载体中,并用玻璃棒搅拌均匀,置于100℃烘箱中,烘干处理4h,置于马弗炉中,焙烧4h,得到浸渍一次的产品;

h、称取一定质量的硝酸镍,溶解于适量的水中,然后将硝酸镍水溶液加入步骤g中一次浸渍的产品中,并用玻璃棒搅拌均匀,置于100℃烘箱中,烘干处理4h,置于马弗炉中,焙烧4h;

i、重复g和h步骤,得到催化剂样品经压片并破碎,制成40~60目颗粒待用。

上述步骤a所述的正己烷与吐温60的体积比为15-20:1,硅酸钠与含有吐温60的正己烷溶液的质量比为1-4:10;

上述步骤b所述的p123与水的质量比为1:8-18,teos的质量百分比为10-30%;

上述步骤c中加入的步骤b和步骤a形成的乳液质量比为2-3:1;

上述步骤f中al(no3)3·9h2o的加入量为0.1-0.3g;

其中,金属活性组分mo及活性助剂ni采用等体积分步浸渍法负载在载体上。制得的催化剂中mo以moo3计,质量分数为11m%;ni以nio计,质量分数为3.5m%。

本发明的有益效果:通过多重乳液法所制备的空心球形moni/al-sba-15催化剂,其中双重乳液以及其中硅源的选择是调控得到空心球状形貌的关键,在改变了其中乳液或者硅源的任一或多个条件情况下,均不能得到空心球形貌,该催化剂不仅具有适宜的mos2分散度和b、l酸性位数量,还具有优异的dbt反应分子扩散性能,从而表现出较高的dbthds活性,反应物分子dbt进入孔道与活性位接触之后,能够迅速从孔道内部扩散出来,提高其总体反应速率。同时,空心球形nimo/al-sba-15催化剂的hyd/dds比值为0.28,而nimo/γ-al2o3催化剂的hyd/dds比值达到0.72。这表明nimo/al-sba-15催化剂dbt加氢脱硫路径主要以dds直接加氢脱硫路径进行,而对于nimo/γ-al2o3催化剂,直接加氢脱硫路径(dds)和先加氢后脱硫路径(hyd)对dbt加氢脱硫都有作用,这种现象主要归因于mos2分散度和b、l酸性位数量不同,本申请的催化剂具有较高的b酸性位数量有助于直接加氢脱硫的进行,进而提高dbt的加氢脱硫性能。

附图说明

图1是实施例1制备得到的催化剂的sem图;

图2是实施例1制备得到的催化剂的tem图;

图3是dbt加氢脱硫活性评价装置示意图;

图4是不同催化剂的dbt加氢脱硫的反应网络图。

具体实施方式

以下结合说明书附图,对具体实施方式做进一步详细说明。

实施例1

一种油品深度加氢脱硫催化剂及其制备方法和dbt深度加氢脱硫方法:

a、在硅酸钠溶液中加入含有吐温80的正己烷溶液,混合液形成w/o乳液,正己烷与吐温60的体积比为17:1,硅酸钠与含有吐温60的正己烷溶液的质量比为3:10;

b、在另一个水溶液中加入p123;然后向含有p123的水溶液加入正硅酸四乙酯形成w/o乳液,p123与水的质量比为1:12,teos的质量百分比为20%;

c、将步骤b得到的w/o乳液加入到步骤a形成的w/o乳液中,均质11~20min,最后混合液形成了w/o/w多重乳液,置于水浴35℃,搅拌溶解60min,步骤b和步骤a形成的乳液质量比为2:1;

d、搅拌溶解后在静止状态下陈化24h,转入晶化釜,在100℃下晶化24h;

e、过滤,洗涤,80℃下干燥12h,然后在550℃下高温煅烧除去表面活性剂;

f、将0.2g的al(no3)3·9h2o加入到水中进行溶解;然后加入0.5g步骤e得到的sba-15固体粉末,在室温下搅拌反应12h;用去离子水过滤洗涤,在100℃干燥12h,然后在550℃下焙烧6h;

g、按计算得到的mo的量,称取一定质量的钼酸铵,置于少量水中溶解。将钼酸铵水溶液加入到步骤f得到的al-sba-15载体中,并用玻璃棒搅拌均匀,置于100℃烘箱中,烘干处理4h,置于马弗炉中,焙烧4h,得到浸渍一次的产品;

h、称取一定质量的硝酸镍,溶解于适量的水中,然后将硝酸镍水溶液加入步骤g中一次浸渍的产品中,并用玻璃棒搅拌均匀,置于100℃烘箱中,烘干处理4h,置于马弗炉中,焙烧4h;

i、重复g和h步骤,得到催化剂样品经压片并破碎,制成40~60目颗粒待用,其中,金属活性组分mo及活性助剂ni采用等体积分步浸渍法负载在载体上。制得的催化剂中mo以moo3计,质量分数为11m%;ni以nio计,质量分数为3.5m%,所得催化剂具体形貌如图1-2所示。

二苯并噻吩(dbt)加氢脱硫反应活性评价也是在jq-iii型高压固定床微型反应装置上进行的,如图3所示,催化剂hds活性评价以含硫模型化合物dbt的环己烷溶液为反应原料,评价过程如下:采用的催化剂装填量为0.5g,首先对催化剂进行预硫化处理,即催化剂在含有2%cs2的环己烷溶液的条件下进行预硫化处理4h。预硫化条件为:温度360℃,压力4.0mpa,h2/oil比(v/v)为200,whsv为4.0h-1。预硫化结束后,切换到反应原料dbt后继续进行反应。dbthds反应评价条件为:环己烷溶液中硫含量500ppm,反应温度为320℃,反应压力为4mpa,h2/oil比(v/v)为200,whsv范围在10~200h–1可调。待反应体系稳定后每个空速取样3次,并对样品进行离线分析。

dbt原料和加氢后产品的总硫含量通过泰州中环分析仪器有限公司生产的硫氮测定仪(rpp-2000sn)进行分析测定测定,加氢脱硫产物的分布是通过thermofinnigandsq气相色质谱联用仪分析,其色谱柱型号为hp-5ms弹性石英毛细柱(规格:60m×0.25mm×0.25m)。色谱测试的条件如下:载气:99.999%的氦气;进样口温度:300℃;柱温:50℃;升温程序为从柱温20℃/min升温至300℃并恒温10min;载气流速控制为1ml/min。质谱采用ei源,电压70ev;灯丝电流为100a;倍增器电压1.2kv;质量范围在35~400amu之间。

对比例1

依据现有技术手段制备球形sba-15

1.称取2gp123和0.4gctab加入到45ghcl(2mol/l)和15gh2o中,置于水浴40℃,搅拌溶解约4h;

2.向1中滴加5.8gteos,快速搅拌5min,在40℃静置24h;

3.然后转入100ml晶化釜,在100℃下晶化24h;

4.过滤,洗涤,80℃下干燥12h,然后在550℃下高温煅烧除去表面活性剂。

以al(no3)3·9h2o作为铝源修饰sba-15

1.将0.2的al(no3)3·9h2o加入到50ml水中进行溶解;

2.然后加入0.5gsba-15固体粉末,在室温下搅拌反应12h;

3.用去离子水过滤洗涤,在100℃干燥12h,然后在550℃下焙烧6h。

负载金属nimo

1.按计算得到的mo的量,称取一定质量的钼酸铵,置于少量水中溶解。将钼酸铵水溶液加入到al-sba-15载体中,并用玻璃棒搅拌均匀,置于100℃烘箱中,烘干处理4h,置于马弗炉中,焙烧4h,得到浸渍一次的产品;

2.称取一定质量的硝酸镍,溶解于适量的水中,然后将硝酸镍水溶液加入步骤g中一次浸渍的产品中,并用玻璃棒搅拌均匀,置于100℃烘箱中,烘干处理4h,置于马弗炉中,焙烧4h;

3.重复1和2步骤,得到催化剂样品经压片并破碎,制成40~60目颗粒待用,其中,金属活性组分mo及活性助剂ni采用等体积分步浸渍法负载在载体上。制得的催化剂中mo以moo3计,质量分数为11m%;ni以nio计,质量分数为3.5m%,采用与实施例1相同的条件进行dbt深度脱硫加氢。

对比例2

在对比例1的基础上,步骤a和步骤b中的硅源均为正硅酸四乙酯,其他条件不变,得到的产物形貌为短柱状。

对比例3

在对比例1的基础上,步骤a中正硅酸四乙酯,步骤b中的硅源为硅酸钠,其他条件不变,得到的产物形貌为长条状。

对比例4

在对比例1的基础上,以同等质量的γ-al2o3代替合成的空心球形sba-15,其他条件不变。

以上不同实施例催化剂的dbthds速率常数、tof、hyd/dds和其它动力学参数如表1所示,从表1可知,本申请的空心球形催化剂显示出优异的深度加氢脱硫活性,具有良好的应用前景,而形貌对速率常数和tof等活性参数具有决定性的影响。

表1:上述实施例的催化剂的dbt深度加氢脱硫活性参数

dbt加氢脱硫的反应网络中的步骤1-7是nimo/γ-al2o3催化剂催化dbt加氢脱硫的典型反应路径(如图4所示),因为nimo/al-sba-15催化剂具有更多的b、l酸性位,所以一些产物会进一步发生反应。据文献报道,较多的酸性位有助于催化剂的加氢裂解和异构化性能。在先加氢后脱硫反应路径中,第一个苯环的加氢(thdbt)是速率控制步骤,然后进一步的加氢速率较快,导致其中间产物(hhdbt和dhdbt)的产率较低。虽然在产物中没有检测到dhdbt产物,但是反应步骤12和13仍然可能存在于反应网络中,这由于dhdbt的进一步的反应速率较快。nimo/al-sba-15催化剂具有一定数量的b酸性位,产物chb和cheb可以进一步发生异构化反应生成cpmb。随着反应质量停留时间的增加bp产物的选择性几乎不变,表明步骤3的反应速率较慢。另外,由于b酸性位的存在,dch也会发生异构化反应生成cpmch。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1