基于光辐照合成纳米氧化锌六方空心管光催化剂的方法与流程

文档序号:16065718发布日期:2018-11-24 12:38阅读:627来源:国知局
基于光辐照合成纳米氧化锌六方空心管光催化剂的方法与流程

本发明属于纳米功能材料制备领域,具体涉及一种光辐照合成纳米氧化锌六方空心管光催化剂的方法。

背景技术

一般的化学反应往往会产生大量的反应废物,如废酸、废碱以及有毒有害的化合物等,这些都会对环境和人类带来巨大的危害。因此,绿色化学一直被许多研究者关注,尤其是绿色合成方法更是受研究者的青睐。其中,光辐照合成方法具有许多优点,是目前备受关注的绿色合成方法之一。光辐照合成是以各种光源作为化学反应的促发剂,为反应提供所需的能量。与一般的化学反应相比,光辐照合成具有绿色无污染和反应条件相对温和等优点,是当前最具有潜力的合成方法之一。

随着经济的快速增长,能源需求不断增加,而目前国际上仍以煤、石油、天然气等为主要能源消耗,大量的废气,废水和固体废物被排放到环境中,造成各种生态灾害,环境与经济发展的矛盾日益突出,亟待解决。其中水污染问题尤为突出,影响人和动植物赖以生存的水资源,危害着人们的身体健康。在各种化学污染处理方法中,可见光催化由于其能量为太阳光,其具有清洁、能量储存丰富,吸引了广大研究者的兴趣,是高效降解环境中污染物的有效方法。光催化的作用是紫外光或可见光辐照在光催化剂的表面产生光诱导电子(e-)和空穴(h+)发生氧化还原反应,降解废水中的污染物。在光催化中,光降解污染物的效率取决于所使用光催化剂(半导体)的种类和光降解的条件。

目前,主要应用于光催化降解有机污染物的光催化剂有tio2、zno、cds、wo3和sno2等,其中tio2和zno光催化剂由于具有廉价易得,无毒无害,稳定性好等优点,被广泛应用于光催化降解有机污染物。zno作为一种带隙宽,激子束缚能高的半导体材料,同时兼具无毒、催化活性高和生物相容性好等优点,长期受到研究者们的关注。氧化锌晶体主要有常见的三种晶体结构,分别为立方岩盐结构、闪锌矿结构和纤锌矿结构。其中,纤锌矿结构是最为常见的,在300k下,理想的zno纤锌矿结构为每个锌原子被四个氧原子所包围,同时每个氧原子同时也被四个锌原子所包围。zno纤锌矿晶体同时具有三个快速生长方向,不同的晶面能对氧化锌材料的性质产生不同的影响。因此,采用各种不同的方法来控制zno材料的生长和形貌,一直是研究的重点之一。

刚果红(cr)是一种典型的联苯胺类偶氮染料,它在生产和使用过程中流失率大,易进入水体,对环境造成极大的污染危害。处理刚果红的方法有很多,常用的有氧化法、活性污泥法和厌氧消化法等。但是这些传统的方法在处理刚果红时,仍存在处理不彻底、重复性差和处理费用高等不足。近几年,光催化降解环境中有机染料成为研究的热点,其中zno作为一种无毒廉价的光催化剂备受关注。迄今为止,各种合成方法制备的zno,在可见光下对刚果红的降解效果,并不理想。因此,开发新的合成方法,制备更高活性的zno可见光光催化剂,对降解刚果红十分重要。



技术实现要素:

本发明的目的在于针对现有技术制备的zno光催化剂对刚果红的可见光降解效率低的问题,提供一种光辐照合成纳米氧化锌六方空心管光催化剂的方法。在不使用表面活性剂和高温的条件下,将zn(ch3coo)2·2h2o和naoh混合反应后,经紫外光辐照、干燥、煅烧,合成了zno纳米材料。同时通过控制紫外光强度和照射时间,得到纳米zno六方空心管光催化剂。该方法制得的zno由于其特殊的结构,在可见光下降解刚果红的效果比一般方法制备的zno高。因此,光辐照合成方法是具有应用前景的合成方法之一。

为实现上述目的,本发明采用如下技术方案:

一种基于光辐照合成纳米氧化锌六方空心管光催化剂的方法,包括以下步骤:

1)分别称取二水乙酸锌(zn(ch3coo)2·2h2o)和naoh,各自加入到25ml去离子水中,室温下搅拌30min,分别形成均匀的乙酸锌溶液和naoh溶液;

2)将步骤1)中得到的naoh溶液缓慢滴加到乙酸锌溶液中并搅拌;经紫外光下持续辐照1h,得到白色乳浊液;

3)停止辐照,将步骤2)所得的乳浊液在室温下静置老化;随后,将乳浊液进行减压抽滤,用去离子水和乙醇洗涤3~5次,收集滤饼,置于干燥箱中,80℃的烘干,制得zno前驱体;

4)将步骤3)所得的zno前驱体置于马弗炉中,400℃煅烧,制得纳米zno六方空心管光催化剂。

步骤1)中,zn(ch3coo)2·2h2o和naoh的摩尔比为1:1。

步骤1)与步骤2)中所述搅拌的转速均为600转/min。

步骤2)中使用紫外光照射采用氙灯作为光源,功率300w,并用滤光片过滤掉非紫外光部分,仅用波长范围320-380nm紫外光。

步骤3)中所述的老化时间为30min;烘干时间为12h。

步骤4)中所述的煅烧时间为1h,升温速率为5℃/min。

如上所述的合成方法制得的纳米氧化锌六方空心管光催化剂应用于可见光降解有机染料刚果红(cr)。

本发明的有益效果在于:

(1)本发明提供了一种光辐照合成纳米氧化锌六方空心管光催化剂,采用紫外光照射方法,将zn(ch3coo)2·2h2o和naoh溶液反应后得到的乳浊液,进行紫外光辐照,制备具纳米zno六方空心管光催化剂;该合成方法简单、原料易得、价格低廉,具有较高的实用价值;

(2)本发明采用光辐照合成方法,通过控制紫外光强和照射时间,可以制备具有六方空心管的zno光催化剂;该方法合成的zno由于其具有六方空心管结构,具有更多的光催化活性位点,能更好地与待降解物接触,从而更高效地对待降解物进行降解;

(3)本发明通过一定条件的控制,制备得到纳米氧化锌六方空心管光催化剂,其能更好地与待降解物刚果红接触,将其吸附在zno表面,从而在光照下更好对待降解物进行降解;通过可见光光催化降解实验,表明该方法制备的zno对刚果红染料,呈现较高的光催化降解料率,同时通过循环实验证明了该zno具有良好的稳定性和重复使用性。

附图说明

图1为本发明的纳米氧化锌六方空心管光催化剂的x射线粉末衍射(xrd)谱图,其中(a)纳米氧化锌六方空心管光催化剂,(b)为纤锌矿zno的xrd标准卡片(jcpds-36-1451);

图2为纳米氧化锌六方空心管光催化剂的x射线能谱仪eds分析;

图3为纳米氧化锌六方空心管光催化剂的场发射扫描电镜图(fesem);(a)(b)为煅烧前纳米氧化锌六方空心管光催化剂的扫描电镜图,(c)为煅烧后六方空心管zno的扫描电镜图;

图4为纳米氧化锌六方空心管光催化剂在可见光下降解刚果红的降解曲线图;

图5为纳米氧化锌六方空心管光催化剂在可见光下降解刚果红溶液紫外可见吸收光谱图;

图6为纳米氧化锌六方空心管光催化剂在可见光下降解刚果红的降解速率图;

图7为纳米氧化锌六方空心管光催化剂在可见光下降解刚果红的重复性降解曲线图。

具体实施方式

为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。

实施例1

一种基于光辐照合成纳米氧化锌六方空心管光催化剂的方法,包括以下步骤:

1)分别称取zn(ch3coo)2·2h2o(5mmol)和naoh(5mmol),各加入到25ml去离子水中,室温下搅拌30min(转速为600转/min),分别形成均匀的乙酸锌溶液和naoh溶液;

2)将步骤1)中所制得naoh溶液缓慢滴加到乙酸锌溶液中,并以600转/min速度搅拌,经紫外光(300w氙灯光源,波长320-380nm)下持续辐照1h,得到白色乳浊液;

3)停止辐照,将步骤2)所得的白色乳浊液在室温下静置老化30min;随后,将乳浊液减压抽滤,用去离子水和乙醇洗涤3~5次,收集滤饼,置于干燥箱中,80℃烘干12h,制得zno前驱体;

4)将步骤3)所得的zno前驱体置于马弗炉中,以5℃/min的速率升温,400℃煅烧1h,制得纳米氧化锌六方空心管光催化剂。

一、纳米氧化锌六方空心管光催化剂的表征

(1)为鉴别光辐照合成zno的特性,采用xrd和x射线能谱仪eds分析进行表征

图1为光辐照合成纳米氧化锌六方空心管光催化剂的xrd谱图,与标准的jcpds卡片中36-1451相符合,由xrd谱图可以看出六方空心管zno在31.8°、34.4°和36.3°处有明显的衍射峰,根据jcpds-36-1451标准卡片,它们分别对应于zno纤锌矿结构中的(100)、(002)和(101)晶面。六方空心管zno与标准谱图吻合,未出现其他的峰,表明所合成的产物为纯的zno。图2为纳米氧化锌六方空心管光催化剂的x射线能谱仪eds分析,由图可以看出,该物质中仅含有zn和o两种元素,这与xrd的结果是一致的,进一步证明了该合成方法合成的是zno。图3为光合成纳米氧化锌六方空心管光催化剂的场发射扫描电镜图。图3中可以看出制备出的zno十分均匀,为六方空心管结构,其中管长约900nm,底面长约600nm,壁厚约100nm,表面较为粗糙。

二、纳米氧化锌六方空心管可见光降解刚果红

称取10mg样品放入石英杯底部,量取50ml刚果红染料溶液(50μmol/l)与样品混合超声十分钟,让其充分分散在在刚果红溶液中。首先在黑暗中鼓气30分钟,让刚果红染料和样品达到吸脱附平衡。随后,置于模拟太阳能的可见光氙灯(300w,波长范围≥380nm)下进行降解。在降解的过程中始终保持鼓气状态,每隔30分钟取上层清液,总反应时间为150min,最后用紫外可见分光光度计,对不同降解时间下的摩尔吸光度进行检测。根据公式(1-1)和(1-2)对降解结果进行定量分析,其中η为待降解物的降解率,c和a分别为某一时刻待降解物的浓度和吸光度。c0和a0分别为待降解物溶液的初始浓度和初始吸光度,k为在t时刻内的降解速率。

(1-1)

(1-2)

在可见光下,先对50ml刚果红染料(50μmol/l)在没有添加光催化剂的情况下进行降解,通过紫外可见分光光度计进行测定。从图4可以看出,在可见光下,刚果红染料的几乎不降解。当加入纳米氧化锌六方空心管后,在黑暗中吸脱附过程,zno将一部分刚果红染料吸附在其表面,经过可见光照射后,zno产生电子空穴对,对吸附在其表面的刚果红染料进行降解。在150分钟时间内,降解了90%以上的刚果红染料。从图5可以看出,刚果红染料在498nm处,有个明显的吸收峰,在添加zno光催化剂后,经过150分钟的降解,基本观察不到其吸收峰,这说明刚果红染料大部分被降解了。

为了更加直观、定量表征纳米氧化锌六方空心管对刚果红染料的降解效果,对其降解曲线做降解速率图,并进行拟合。如图6所示,在150分钟内,zno降解50μmol/l的刚果红染料的降解速率为1.57×102μmol•l-1•min-1。这说明,该方法制备的zno具有更高的活性。为了进一步了解纳米氧化锌六方空心管的重复利用性,对其进行循环实验5次。每次实验后将样品离心收集,并用去离子洗涤多次,烘干后重复使用。实验结果如图7所示,经过5次循环使用后,样品依然具有较好的降解效率(88%)。这说明了该样品具有很好的重复使用价值,具有很好的应用前景。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1