一种柴油加氢脱硫脱氮工艺的制作方法

文档序号:12743422阅读:223来源:国知局

本发明涉及柴油加氢脱硫脱氮工艺,具体涉及一种采用特定催化剂进行的加氢脱硫脱氮工艺。



背景技术:

进入二十一世纪,燃料油的需求和使用大幅度增长,而其中的含硫化合物所带来的环境污染问题,更引起人们的关注。燃料油中的硫化物经发动机燃烧产生的硫氧化物(SOx)排放到空气中,产生酸雨和硫酸烟雾型污染等,造成大气污染。

硫是自然界存在于汽油中的一种有害物质,北京已于2008年1月1日起率先执行相当于欧Ⅳ标准的京Ⅳ清洁柴油标准(硫含量≤50mg/g),2016年5月5日,发改委、财政部、环保部等七部门发布关于印发《加快成品油质量升级工作方案》通知,方案明确扩大车用汽、柴油国五标准执行范围。从原定京津冀、长三角、珠三角区域重点城市扩大到整个东部地区11个省市(北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东和海南)。2015年10月31日前,东部地区保供企业具备生产国五标准车用汽油(含乙醇汽油调和组分油)、车用柴油的能力。2016年1月1日起,东部地区全面供应符合国五标准的车用汽油(含E10乙醇汽油)、车用柴油(含B5生物柴油)。欧洲已经于2009年实行了总硫含量不大于10ppm的欧V柴油标准。所以,生产超低硫含量柴油已经成为国内炼油企业所必需面对的现实问题。

目前,生产超低硫含量柴油的方法主要包括加氢精制、氧化脱硫、选择性吸附、生物脱硫等。但加氢脱硫(HDS)技术是公认的最有效、最经济的脱硫方法。研究发现,柴油中最难脱除的有机硫化物是4和(或)4,6位烷基取代的二苯并噻吩类化合物,这类硫化物由于在催化剂活性位上吸附时存在烷基的空间位阻,阻碍了反应物分子在吸附活性位上的可接近性,从而使其加氢脱硫活性低;理论研究还发现,Ni、Co、Mo和W硫化物的加氢活性相是层状堆垛的MoS2和WS2纳米粒子,MoS2纳米粒子的适度堆垛有助于反应物分子在吸附活性位上的可接近性和高活性的Ⅱ类活性相的形成。

目前国外柴油加氢脱硫技术普遍使用双元或多元催化剂,属于中压深度和超深度一段或两段脱硫过程,该过程除了脱硫之外,还能降低氮和多环芳烃,提高十六烷值。其可加工的原料比较广泛,能加工直馏馏份油,也能加工裂化馏份油。产品硫含量为:采用深度加氢脱硫,低于500μg/g;采用一段超深度加氢脱硫,低于30μg/g。如果采用两段技术还可以降低多环芳烃和提高十六烷值。

日本凯金公司开发了STARS加氢催化剂技术,在此基础上工业化了两种催化剂,即KF-757柴油超深度脱硫催化剂和具有极高脱硫、脱氮、脱芳及加氢活性的KF-848精制催化剂,不仅适用于加氢精制装置,而且适用于加氢裂化的原料预精制、FCC原料加氢预处理等。对于高压柴油加氢装置,其柴油硫含量可以脱除到50ppm或者更低,对降低精制柴油密度及深度脱芳都有极好的效果。

丹麦托普索公司新开发的催化剂有TK-554(深度脱硫)、TK-574(超深度脱硫)、TK-573(深度脱硫)、TK-907(芳烃饱和及提高十六烷值)和TK-908(芳烃饱和及提高十六烷值)等。其中TK-574高活性钴钼催化剂是超深度脱硫催化剂,比TK-544深度脱硫催化剂相对体积活性提高了30%~40%,在生产硫含量500μg/g的柴油装置上采用TK-544催化剂,可使产品硫含量降至350μg/g。

美国联合催化剂公司新开发了AS-AT脱硫脱氮脱芳烃三功能催化剂,用于柴油深度脱硫脱芳装置的第二反应器(第一反应器脱硫脱至50μg/g以下),可使总芳烃脱至10%以下,硫脱至10μg/g以下。典型操作条件为:反应温度316℃,压力6.18MPa,液时空速小于2h-1,氢油比712。

当前国内外普遍采用的劣质柴油改质手段是加氢精制和加氢改质。加氢精制可明显改善产品的颜色和安定性,但受反应热力学的限制十六烷值提高幅度有限,因此通过加氢精制远不能满足企业对产品十六烷值的要求。针对炼油厂提高劣质柴油十六烷值、脱硫脱氮脱芳烃的需求,美国标准公司推出了MHUG加氢改质技术及DN3110加氢精制催化剂、Z5723裂化改质催化剂,并于2000年得到第一次工业应用。标准公司的DN3110加氢精制催化剂、Z5723裂化改质催化剂是采用CENTINEL技术和actiCAT?预硫化技术生产的一种以氧化铝为担体的镍/钼预硫化催化剂,CENTINEL技术关键是在活性金属分散方面比一般的催化剂更好,更容易的将金属氧化物转化为金属硫化物。而actiCAT?部分预硫化技术,是在催化剂生产中加载硫,在开工时利用催化剂自身携带的硫来实现催化剂的硫化,不需要催化剂的干燥,不需要额外注入硫化剂,且活化时间较短,这样将会使得装置快速、方便安全地开车。

因此如何提供一种柴油加氢脱硫工艺,能有效将柴油中的硫含量控制在5ppm以下,以满足国五标准,同时能有效脱除柴油中的氮化物,是本领域面临的一个难题。



技术实现要素:

本发明的目的在于提出一种柴油加氢脱硫脱氮工艺,该工艺可以将柴油中的总硫含量降低到10ppm以下,以满足柴油国五标准。同时,该工艺采用的催化剂的还使得柴油中氮化物的脱除比较显著。

为达此目的,本发明采用以下技术方案:

一种柴油加氢脱硫脱氮工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。

所述载体为MSU-G、SBA-15和HMS的复合物或混合物。

所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。

所述固定床反应器的反应条件为:反应温度为320-360℃,反应压力6-8MPa,氢油体积比300-600,体积空速1.0-2.5h-1

本发明的目的之一就在于,提供一种3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能,所述协同效应表现在脱硫精制方面,而特殊的催化性能则是表现在对催化剂的使用寿命及催化活性的提高上。

在催化剂领域,根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2nm的称为微孔;孔径大于50nm的称为大孔;孔径在2到50nm之间的称为介孔(或称中孔)。介孔材料是一种孔径介于微孔与大孔之间的具有巨大比表面积和三维孔道结构的新型材料,它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。

但在目前的应用中,所述介孔材料在用于催化领域时,都是单独使用,比如MCM系列,如MCM-22、MCM-36、MCM-41、MCM-48、MCM-49、MCM56,比如MSU系列,如MSU-1、MSU-2、MSU-4、MSU-X、MSU-G、MSU-S、MSU-J等,以及SBA系列,如SBA-1、SBA-2、SBA-3、SBA-6、SBA-7、SBA-8、SBA-11、SBA-15、SBA-16等,以及其他的介孔系列等。

少数研究文献研究了两种载体的复合,比如Y/SBA-15、Y/SAPO-5等,多数是以介孔-微孔复合分子筛和微孔-微孔复合分子筛为主。采用3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能的研究,目前尚未见报导。

本发明的催化剂载体是MSU-G、SBA-15和HMS的复合物或混合物。所述复合物或混合物中,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。

本发明采用的MSU-G、SBA-15和HMS介孔分子筛均是催化领域已有的分子筛,其已经在催化领域获得广泛研究和应用。

MSU-G是一种具有泡囊结构状粒子形态和层状骨架结构的介孔分子筛,其具有高度的骨架交联和相对较厚的骨架壁而具有超强的热稳定性和水热稳定性,其骨架孔与垂直于层和平行于层的孔相互交联,扩散路程因其囊泡壳厚而很短。MSU-G分子筛的囊泡状粒子形态方便试剂进入层状骨架的催化中心,其催化活性很高。

SBA-15属于介孔分子筛的一种,具有二维六方通孔结构,具有P3mm空间群。在XRD衍射图谱中,主峰在约1°附近,为(10)晶面峰。次强峰依次为(11)峰以及(20)峰。其他峰较弱,不易观察到。此外,SBA-15骨架上的二氧化硅一般为无定形态,在广角XRD衍射中观察不到明显衍射峰。SBA-15具有较大的孔径(最大可达30nm),较厚的孔壁(壁厚可达6.4nm),因而具有较好的水热稳定性。

六方介孔硅HMS具有长程有序而短程相对无序的六方介孔孔道,其孔壁比HCM41S型介孔材料更厚,因而水热稳定性更好,同时短程相对无序的组织结构及孔径调变范围更大,使HMS材料具有更高的分子传输效率和吸附性能,适宜于作为大分子催化反应的活性中心。

本发明从各个介孔材料中,进行复合配对,经过广泛的筛选,筛选出MSU-G、SBA-15和HMS的复合或混合。发明人发现,在众多的复合物/混合物中,只有MSU-G、SBA-15和HMS三者的复合或混合,才能实现加氢精制效果的协同提升,并能够使得催化活性长期不降低,使用寿命能够大大增加。换言之,只有本发明的MSU-G、SBA-15和HMS三者的特定复合或混合,才同时解决了协同和使用寿命两个技术问题。其他配合,要么不具备协同作用,要么使用寿命较短。

所述复合物,可以采用MSU-G、SBA-15和HMS三者的简单混合,也可以采用两两复合后的混合,比如MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合。所述复合可以采用已知的静电匹配法、离子交换法、两步晶化法等进行制备。这些介孔分子筛和其复合物的制备方法是催化剂领域的已知方法,本发明不再就其进行赘述。

本发明的目的之二在于提供催化剂活性组分的配合,所述配合能够形成协同作用,提高催化效果。本发明中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,发明人发现,不同的混合比例达到的效果完全不同。发明人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现柴油中含硫量控制在10ppm以下且脱氮能力显著。也就是说,本发明的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。

优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。

所述活性组分的总含量为载体重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。

所述催化剂的制备方法可以采取常规的浸渍法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本发明不再赘述。

优选的,所述固定床反应器的反应条件为:反应温度为340-350℃,反应压力6.5-7.5MPa,氢油体积比400-600,体积空速1.5-2.0h-1

优选的,所述工艺流程包括,柴油与氢气混合后,经可选的换热器换热,再经加热炉加热后进入固定床反应器进行加氢脱硫脱氮,反应产物经气液分离塔分离。可选的,气相返回与柴油和氢气混合,液相可进行进一步的精制,例如胺洗、汽提和分馏等。

优选的,所述固定床反应器包括1-5个催化剂床层,进一步优选2-3个催化剂床层。

本发明的加氢脱硫脱氮工艺通过选取特定的催化剂,所述催化剂通过特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,以及选取特定比例的氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC作为活性成分,使得该催化剂产生协同效应,对柴油的加氢脱硫能控制在总硫含量低于5ppm,同时对柴油中的总氮含量控制在10ppm之内。

具体实施方式

本发明通过下述实施例对本发明的加氢脱硫脱氮工艺进行说明。

实施例1

通过浸渍法制备得到催化剂,载体为MSU-G、SBA-15和HMS的混合物,混合比例是1:1.1:0.5。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.4:0.3:0.8。

将所述催化剂装填入固定床反应器,所述反应器的反应管由内径50mm的不锈钢制成,催化剂床层设置为3层,催化剂床层温度用UGU808型温控表测量,原材料柴油由北京卫星制造厂制造的双柱塞微量泵连续输送,氢气由高压气瓶供给并用北京七星华创D07-11A/ZM气体质量流量计控制流速,催化剂装填量为2kg。反应后的产物经水浴室温冷却后进行气液分离。

所用原料为直馏柴油,其总硫含量788μg/g,碱性氮含量为499.8μg/g。

控制反应条件为:温度350℃,反应压力7.0MPa,氢油体积比500,体积空速2h-1

测试最终的产品,总硫含量降低到4ppm,总碱性氮含量降低到8ppm。

实施例2

通过浸渍法制备得到催化剂,,载体为MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合,其中MSU-G、SBA-15和HMS的比例与实施例1相同。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.6:0.45):1.2。

其余条件与实施例1相同。

测试最终的产品,总硫含量降低到4ppm,总碱性氮含量降低到7ppm。

对比例1

将实施例1的载体替换为MSU-G,其余条件不变。

测试最终的产品,总硫含量降低到34ppm,总碱性氮含量降低到45ppm。

对比例2

将实施例1的载体替换为SBA-15,其余条件不变。

测试最终的产品,总硫含量降低到38ppm,总碱性氮含量降低到48ppm。

对比例3

将实施例1的载体替换为HMS,其余条件不变。

测试最终的产品,总硫含量降低到36ppm,总碱性氮含量降低到41ppm。

对比例4

将实施例1中的载体替换为MSU-G/SBA-15复合物,其余条件不变。

测试最终的产品,总硫含量降低到29ppm,总碱性氮含量降低到44ppm。

对比例5

将实施例1中的载体替换为SBA-15/HMS复合物,其余条件不变。

测试最终的产品,总硫含量降低到27ppm,总碱性氮含量降低到39ppm。

对比例6

将实施例1中的载体替换为MSU-G/HMS复合物,其余条件不变。

测试最终的产品,总硫含量降低到32ppm,总碱性氮含量降低到51ppm。

实施例1与对比例1-6表明,本发明采用的采用特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,当替换为单一载体或两两复合载体时,均达不到本发明的技术效果,因此本发明的特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体与催化剂其他组分之间具备协同效应,所述加氢脱硫脱氮工艺产生了预料不到的技术效果。

对比例7

省略实施例1中的MO2N,其余条件不变。

测试最终的产品,总硫含量降低到40ppm,总碱性氮含量降低到53ppm。

对比例8

省略实施例1中的WC,其余条件不变。

测试最终的产品,总硫含量降低到34ppm,总碱性氮含量降低到38ppm。

上述实施例及对比例7-8说明,本发明的加氢脱硫工艺的催化剂几种活性组分之间存在特定的联系,省略或替换其中一种或几种,都不能达到本申请的特定效果,证明其产生了协同效应。

申请人声明,本发明通过上述实施例来说明本发明的工艺,但本发明并不局限于上述工艺,即不意味着本发明必须依赖上述详细催化剂才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1