由包含妥尔油和萜烯化合物的原料生产烃的方法和装置与流程

文档序号:17455881发布日期:2019-04-20 03:17阅读:284来源:国知局
由包含妥尔油和萜烯化合物的原料生产烃的方法和装置与流程

发明领域

本发明涉及生产烃的方法和装置。更具体来说,本发明涉及将生物来源的材料转化成各种可直接用作燃料或作为燃料共混组分的燃料等级组分。

发明背景

天然来源的原材料是各种燃料或燃料组分的潜在资源。例如,妥尔油,作为针叶树的硫酸盐法制浆的副产品,已广泛用作烃燃料组分的原材料。许多报告披露了得自可再生资源的各种油来生产烃。例如,WO2008/058664 A1、EP 1396531 A2、EP 1741767、和US 2009/0158637A1披露了在催化条件下含有脂肪酸和其酯的妥尔油的连续的氢脱氧化和氢异构化步骤来生产烃馏分的方法。烃馏分被报道适合作为柴油燃料或航空燃料。

发明概述

本发明的目的是对各种燃料等级的烃组分,提供以催化方法由包括妥尔油和萜烯类化合物的生物原料生产烃组分的简单和有效的方法和装置。本发明的目的通过独立权利要求中所述内容实现。

本发明的方法具有符合标准柴油、汽油、喷气和石脑油燃料的蒸馏曲线的烃产物流。一般而言,在从160至370℃范围的温度下蒸馏的烃作为符合柴油燃料质量标准EN 590的中间馏分获得。在40℃到210℃温度范围下蒸馏的烃可用作高质量汽油燃料。它们符合标准EN228。具有高于160℃到300℃的蒸馏温度的烃具有航空应用(通常称为喷气机)的潜力。喷气燃料符合标准ASTM D-1655。

本发明的另一目的是提供通过本发明的方法制备的烃组分作为燃料或作为燃料组合物中的添加剂的用途。

本发明的进一步目的是提供在选自Al2O3、沸石、沸石-Al2O3、和Al2O3-SiO2的载体上的NiW催化剂用于由包含妥尔油和萜烯类化合物的原料生产燃料或燃料组合物用添加剂的用途。

本发明的方法和装置的优点在于,来自生物资源的化学功能不同的各种类型原材料都可以包括在原料中并在单一方法和装置中以良好的收率转化成可用作燃料或燃料共混组分的烃组分。在一种具体实施方式中,原料包含作为来自针叶树的硫酸盐法制浆方法的副产品而获得的粗硫酸盐松节油和粗妥尔油。

本发明提供了简单、有效和经济的方法,其以改进方式可控地生产具有良好收率和质量的各种燃料组分。在一种具体实施方式中,本发明提供用于处理来自森林工业的副产品的有效和经济的方法。

附图简述

图1示意显示了本发明的装置的实施方式。

图2显示了本发明的装置的另一实施方式。

发明详述

本发明的目的是提供生产烃组分的方法,包括:

提供包含妥尔油和萜烯类化合物的原料;

对该原料和氢气进料在加氢操作催化剂的存在下进行加氢操作处理以生产包括正构烷烃的烃组分,和

使该包括正构烷烃的烃组分在脱蜡催化剂的存在下进行异构化以形成烃组分的混合物。

萜烯类化合物可以由任何合适的来源获得。在一种本发明的实施方案中,萜烯类化合物获得自植物、萜烯油、来自萜烯蒸馏的蒸馏塔底物和调味剂和/或香料工业。萜烯类化合物典型地由C10H16萜烯组成。

在一种实施方式中,萜烯类化合物作为森林工业的副产品获得。这种来源的萜烯类化合物典型地以被称为粗松节油的产品获得。粗松节油例如来自针叶木材的硫酸盐法制浆方法,也称作粗硫酸盐松节油(CST),其主要由得自沥青的挥发性不饱和C10H16萜烯异构体组成。由于硫酸盐工艺中使用的工艺化学品,硫作为杂质包含于粗松节油,总量典型地至多6重量%。

粗松节油还可以得自木材的机械制浆,如得自研磨和压力研磨,热机械制浆,或化学机械制浆。从这些方法中,松节油可以以气体形式得到,条件是该方法配有气体收集装置。松节油还可以从木材屑片或锯木厂以气体形式回收。

另外,各种粗松节油的混合物也可以用作原料中萜烯类的原材料。此外,萜烯进料可以由一种或多种萜烯化合物组成,所述萜烯化合物如α-蒎烯(α-pinene),其从萜烯混合物分离,例如从粗硫酸盐松节油分离。

再此外,来自木材加工工业的含硫的C5-C10烃料流或来自木材加工工业的侧料流也可以用作萜烯类化合物。

而且松节油蒸馏塔底物可以用作原料中的萜烯类化合物。

此外,从硫酸盐法制浆方法回收的粗妥尔油分离的松节油是萜烯类化合物的合适来源。

术语"妥尔油"或"粗妥尔油"是指木材纸浆制造的硫酸盐法的副产品。粗妥尔油通常含有饱和和不饱和含氧有机化合物,如松香、不可皂化物、甾醇、松香酸(主要是枞酸和其异构体)、脂肪酸(主要是亚油酸、油酸和亚麻酸)、脂肪醇、甾醇和其它烷基烃衍生物,以及以上讨论的无机杂质(碱金属(Na、K)化合物、硫、硅、磷、钙和铁化合物)。"妥尔油"还指得自妥尔油的脂肪酸和游离脂肪酸,和得自妥尔油或妥尔油游离脂肪酸的酯。

在一种本发明的实施方案中,原料基本上由粗妥尔油(下文也称作CTO)和粗硫酸盐松节油(下文也称作CST)组成。CTO主要由链长在C12和C18之间变化的脂肪酸和树脂酸、和稠合环体系如枞酸和谷甾醇组成。典型地,CTO还含有少量无机杂质,如残余金属,如Na、K、Ca、Fe、硫化合物和其它元素,如对催化剂活性有害的磷和硅。CTO还可以含有一定量的粗松节油。CTO的组成根据特定的木材种类而变化。CTO特别可用于加工成柴油范围的烃。

CST主要由得自沥青的萜烯的油混合物组成。萜烯是多种具有化学式C10H16的挥发性烃,典型地包括不饱和的单环烃和双环烃。主要的萜烯组分是α-蒎烯、β-蒎烯和Δ-3-蒈烯。主要组分典型地为α-蒎烯。CST还含有相对高含量的硫(至多6%)作为杂质。

CTO和/或CST可以在它们进行加氢操作处理前被提纯。提纯可以通过任何适当的方式完成,例如通过用洗涤液洗涤、过滤、蒸馏、脱胶、脱沥青等。此外,还可以采用上述提纯方法的组合。所有这些提纯方法都是本领域熟知的,并且不在这里进一步详细讨论。所述原材料的提纯可有助于完成本发明的方法,本发明的方法中CTO中的任何有害物质如金属离子、硫、磷和木质素残留物的含量得到降低。

所述原材料也可以以未提纯的形式使用。在一种实施方式中,该原料包含经提纯的CTO和未提纯的CST。CST典型地含有作为杂质的有机硫化合物,但没有金属离子。在本发明的方法中,CST中的有机硫化合物有益地用于活化该方法中使用的加氢操作催化剂。因此CST可以在本发明中以未提纯的形式使用。

在本发明的上下文中,术语"加氢操作处理"是指这样的处理,其中原料与氢气在发生若干化学反应的催化条件下接触。加氢操作处理中的主要反应包括:通过伴有水形成的氢化和脱羧/脱羰的CTO的脱氧;CST和CTO的加氢脱硫;CT5O的脂肪酸和树脂酸中存在的烯键、和CST的萜烯化合物的氢化;CST中存在的萜烯化合物、和CTO中稠合环体系的开环,和在某些情况下,裂解烃链的侧链。

加氢操作处理提供包括正构烷烃、芳族烃、非萜烯系烃、萜烯、无环、单环和多环烃的烃。在加氢操作步骤中,还形成包括硫化氢、甲烷和氨的轻的气态化合物。所述化合物可以容易地从过程中除去并根据需要彼此分离。

加氢操作处理通过采用加氢操作催化剂完成。在一种本发明的实施方案中,催化剂为加氢脱氧(HDO)催化剂。该催化剂可以为本领域已知的任何常规HDO/HDS催化剂。应注意,常规用于从有机化合物除去杂原子的任何催化剂都可以用于本发明的方法。杂原子典型地为硫、氧和氮。特别希望将HDO加氢脱氧催化剂用于除氧,但最初用于除硫和氮。在特别希望HDO催化剂用于除硫的情况下,催化剂可以描述为HDS催化剂。如上所述,CTO和CST的加氢脱硫和加氢脱氧反应在加氢操作处理中发生并通过HDO催化剂催化。

HDO催化剂可以选自在选自例如Al2O3和Al2O3-SiO2载体上的NiO/MoO3、CoO/MoO3和NiO/MoO3和CoO/MoO3的混合物。在本发明的具体实施方式中,使用Al2O3载体上的NiO/MoO3。

HDO催化剂能够通过将有机硫化合物转化成气态硫化氢有利地除去CST和CTO中存在的不期望的硫化合物,如二甲基硫醚、二甲基二硫醚和甲基硫醇。HDO催化剂的特性在于,必须存在硫以保持该催化剂的催化活性。由此,有利地,该催化剂的催化活性需要的过硫化氢(hydrogen disulphide)从在CST和CTO中内在地存在的硫化合物同时提供于加氢操作处理步骤中。气态硫化氢可以容易地从所述步骤中形成的烃组分的混合物除去。

可能需要供应附加的硫到过程中以维持HDO催化剂的催化活性,这取决于原料中CTO和CST的混合比。附加的硫可以以气体形式如硫化氢供应,或者它可以为在过程中产生硫化氢的任何材料,如有机硫化合物,例如二甲基二硫醚。在本发明的实施方案中,附加的硫通过使自通过本发明的方法产生的烃组分混合物回收的含H2S气体再循环来提供。附加的硫的量取决于CST中硫的量。通常,H2进料/H2S关系必须保持约0.0001以上。这意味着,硫含量在原料中在约100到约200ppm的范围。硫可以与原料一起或单独地进料到加氢操作处理步骤。

使原料中不饱和化合物的烯键氢化所需的氢气量由该原料的量确定。氢气的合适量可以由本领域普通技术人员确定。

由加氢操作处理获得的包括正构烷烃的烃进一步进行其中正构烷烃的直链碳骨架异构化为异构烷烃的异构化。异构烷烃典型地具有一个和两个支链。异构化为柴油燃料的冷流动性质提供了改进,但不会不利地影响其它性质,如十六烷值。在异构化的同时,HI或脱蜡催化剂除去杂原子,如氧、硫和氮。

正构烷烃的异构化在脱蜡催化剂的存在下完成。可以使用本领域已知的任何常规脱蜡催化剂。该催化剂下文称为异构化催化剂(下文称为HI催化剂)。在本发明的实施方案中,在选自Al2O3、沸石、沸石-Al2O3、和Al2O3-SiO2载体上的NiW用作HI催化剂。在具体实施方式中,使用在Al2O3载体上的NiW。如HDO催化剂那样,HI催化剂需要硫以维持其催化活性。

除了对正构烷烃的异构化能力外,脱蜡催化剂具有裂解性质。特别地,加氢操作处理步骤中形成的伞花烃转化成甲苯。甲苯对汽油燃料的辛烷值有提高的影响。此外,烃的异构化改进了柴油燃料的冷流动性质。因此,本发明中通过脱蜡催化剂进行的异构化对汽油、柴油和喷气燃料的质量有有益的影响。

在本发明的另一实施方式中,加氢操作处理中的加氢操作催化剂是脱蜡催化剂。可以使用本领域已知的任何常规的脱蜡催化剂。在实施方式中,该脱蜡催化剂为在选自Al2O3、沸石、沸石-Al2O3、和Al2O3-SiO2载体上的、优选在Al2O3载体上的NiW。该脱蜡催化剂能够进行与HDO催化剂相同的化学反应,即化合物烯键的氢化、从化合物除去杂原子、和打开双环的至少一个。此外,该催化剂使烃裂解和异构化。裂解/异构化通过工艺变量例如压力和/或温度和通过催化剂的性质来控制,例如控制其酸性。与此同时,硫化合物还原成硫化氢。因此,当脱蜡催化剂用于加氢操作步骤中时,可不需要进一步的异构化。

加氢操作处理和异构化可以在同一反应器或分开的反应器中完成。此外,分别用于加氢操作处理和异构化的HDO和HI催化剂在反应器中的一个层内混合和填充。优选地,两种催化剂填充在一个反应器中。

加氢操作处理和异构化步骤中的压力可以从约30到约200巴,优选约30到约100巴变化。特别地,当在加氢操作处理中使用HDO催化剂并且用于异构化的HDO催化剂和HI催化剂填充在分开的反应器中时,加氢操作处理在在30-100巴,优选30-70巴范围的压力进行。如果加氢操作处理和异构化中使用的HI催化剂填充在两个分开的反应器即第一反应器和第二反应器中,布置在第二反应器上游的第一反应器在范围在30-200巴,优选30-100巴,更优选30-70巴的压力下运行。第二反应器在30-200巴,优选70-100巴,更优选60-100巴的压力下运行。

当加氢操作催化剂和脱蜡催化剂填充在单一反应器中时,该反应器的压力可以在30-200巴,优选30-100巴,更优选30-70巴变化。

加氢操作处理和异构化在范围在约280℃到约500℃,优选在约330℃到约430℃范围的温度进行。特别地,当HDO催化剂用于加氢操作处理和用于异构化的HDO催化剂和HI催化剂填充在分开的反应器中时,加氢操作处理在310-380℃,优选350-370℃范围的温度进行。如果HI催化剂用于加氢操作处理并且用于异构化的催化剂和HI催化剂填充在分开的反应器,则加氢操作处理在280-500℃,优选330-430℃范围的温度进行。然后异构化在分开的反应器中在430-350℃范围的温度梯度下完成。

当加氢操作催化剂和脱蜡催化剂填充在单一反应器中分开的层时,加氢操作催化剂层的温度对于HDO催化剂来说可以在310-380℃,优选330-360℃变化,对于脱蜡催化剂来说可以在280-500℃,优选330-430℃变化。在后续的脱蜡催化剂层的异构化中可以在280-500℃,优选330-430℃范围的温度进行。

加氢操作步骤是高度放热反应,其中温度能够升高到对催化剂的稳定性和/或产物质量不利的水平。在一些情况中,可能有必要控制温度变化。由异构化步骤获得的产物料流(即燃料等级烃的混合物)的至少一部分的再循环为限制放热反应提供了有效的手段,由此,再循环的产物料流起到以受控的方式降低床温的介质的作用。此外,只有从异构化获得的一部分烃馏分可以被再循环。在本发明的实施方案中,产物料流的重馏分(所述馏分包含>C17,烃链长度取决于制备的产物)被再循环回原料。

由异构化步骤获得的烃混合物包括具有最高370℃沸点的燃料等级烃。为了能以最佳方式利用该获得的烃混合物,对该混合物进一步进行分离以将该混合物分成各种燃料等级的烃馏分。分离通过蒸馏方便地实现。特别地,得到了具有蒸馏曲线符合标准化的柴油、汽油、石脑油和喷气燃料的蒸馏曲线的产物料流。总的来说,获得在180℃到370℃范围的温度下蒸馏的烃作为符合柴油燃料质量标准EN590的中间馏分。在150℃到210℃范围的温度下蒸馏的烃可用作高质量汽油燃料。它们符合标准EN228。蒸馏温度在160℃和300℃之间的烃可用作航空应用,通常称作喷气燃料。喷气燃料符合标准ASTMD-1655。以本发明的方法获得的产物的组成取决于所使用的进料材料以及该方法的操作条件。

获得的产物可以直接用作燃料,或者它们可以用作燃料组分以及与其它燃料或燃料组分共混。当本发明的产物作为燃料组分共混时,最终共混物的性质符合期望的标准,特别地,符合EN590、EN228和ASTMD-1655。

在分离中,还获得了在40℃到210℃范围的温度和在约370℃的温度下蒸馏的烃馏分。这些馏分可分别用作高质量汽油燃料和石脑油燃料,或作为这些燃料的共混组分。所述烃馏分还可以用作标准燃料中的共混组分。

本发明的另一目的是提供用于生产烃组分的装置:该装置适于实现本发明的方法的实施方式。该装置包含

-一个或多个加氢操作反应器1,1',

-用于将包含妥尔油和萜烯类化合物的原料引入所述一个或多个加氢操作反应器的原料入口导管4,

-用于将氢气引入所述一个或多个加氢操作反应器的氢气入口导管6,

-从所述一个或多个加氢操作反应器回收烃组分的产物出口导管8,其中至少一个所述加氢操作反应器包含脱蜡催化剂的催化剂层3。

参考图1,将粗妥尔油经由原料入口导管4供应到加氢操作反应器1。用于将粗硫酸盐松节油供应到反应器的导管5与原料入口导管4组合以提供单一的单向原料流动。

如需要,提纯段15可以布置成与加氢操作反应器1连接以在将CTO供应至反应器1对其进行提纯,如图1中的虚线所示。提纯段可以包括用例如洗涤液对CTO进行提纯。提纯可以间歇或连续地完成。

将氢气经由导管6供应到反应器1。导管6在反应器1的初始段布置到反应器1。氢气还可以在接近催化剂层3,3'之一或两者的一个或多个位置进料到该反应器,如虚线60所示。

第一催化剂层3'和第二催化剂层3填充在反应器中。第一催化剂层3'布置在第二催化剂层3的上游。HDO催化剂填充在第一催化剂层3'中,HI催化剂填充在第二催化剂层3中。

原料的加氢操作处理和异构化在反应器1中完成。作为主要规则,催化加氢脱氧和加氢脱硫反应、烯键的饱和化和原料中萜烯和妥尔油化合物的开环在催化剂层3中进行。烃的异构化反应和裂解主要在催化剂层3'中进行。

包含合适的材料例如Al2O3、SiC或玻璃珠的保护床7可以布置在反应器1中。它们的任务是起保护床以对抗进料中的有害物质的作用。在图1中,保护床7布置在两个催化剂层之间,并且分别在催化剂层3和3'的上游和下游。当保护床作为第一层布置在反应器1中以接收经由催化剂层3'上游的入口导管4的原料时,它还起到进料的预热层的作用。它还促进了进料对催化剂的均匀分布。设置在两个催化剂层之间的中间保护床防止两个催化剂层彼此混合,并便于第一和第二催化剂层以不同的温度工作。

催化剂层3'和3的温度典型地分别为约340℃和380℃。反应器1在例如50巴的压力下工作。

两个催化剂层可以用合适的介质稀释。稀释材料可以为例如用于上述保护床中的材料,或另一种适合氢化的催化剂。催化剂的稀释有助于控制反应的放热平衡。在实施方式中,第一催化剂层3'包含稀释的HDO催化剂材料,第二催化剂层3包含未稀释的HI催化剂材料。

在本发明的实施方案中,催化剂层3和3'之一被省去,并且HDO催化剂和HI催化剂混合在一起并填充在反应器1的一个层中。

附加的硫可以经由硫进料导管9供应到反应器1。导管9可以连接到原料入口导管4和/或氢气入口导管60。

CTO和CST,即原料,被以期望的速度泵入反应器1。该两种原材料的进料速率WHSV(重量时空速度)与催化剂的量成正比:WHSV根据以下方程计算:

其中V进料[g/h]表示原料的泵送速度,和m催化剂[g]表示催化剂的量。

原料的WHSV典型地为约0.6。

H2进料/原料关系典型地在1200到1400Nl/l的范围。

来自反应器1的包含烃组分的混合物的产物料流经由产物出口导管8回收。至少部分产物料流可以通过虚线所示的产物再循环导管80循环回反应器1。在再循环中,产物可以合并到原料入口导管4成为单一进料流动并供应到反应器1。

经由产物出口导管8回收的产物料流的至少一部分进一步供应到分离器2,在分离器2中一种或多种烃馏分被分离。分离器是其中将烃馏分基于沸点差异而分离的合适的蒸馏装置。各种烃馏分经由燃料出口导管10从分离器回收。

供应到分离器的烃组分混合物还包含主要由具有高于约370℃沸点的C21-C100+烃(例如甾醇组分和聚合物)组成的重馏分。重馏分经由导管11从分离器排出并循环回加氢操作反应器1。导管11可以连接到产物再循环导管80,如图1所示。导管11还可以直接连接到原料入口4(未示出)。

加氢操作处理中形成的包含H2的轻质气态化合物可以经由导管12引导到氢气分离器13。氢气被回收并经由氢气循环导管14循环回氢气入口导管6。

图2显示了本发明的实施方案,其中加氢操作处理和包括裂解的异构化分别在两个分开的反应器中,即在第一反应器1'和第二反应器1中实现。HDO和HI催化剂填充在两个分开的催化剂层中。HDO催化剂的第一催化剂层3'填充在第一反应器1'中,HI催化剂的第二催化剂层3填充在第二反应器1中。第一反应器1'布置在第二反应器1的上游。在本发明的实施方案中,第一催化剂层3'包括稀释的HDO催化剂,而第二催化剂层3包括未稀释的HI催化剂。保护床7布置在第一和第二反应器1'和1中。

将粗妥尔油经由原料入口导管4供入第一反应器1'。用于将粗硫酸盐松节油供应到反应器的导管5与原料入口导管4组合以提供单一的单向原料流动。提纯段15可以以图1中类似的方式布置(未示出)。

原料到反应器1'的WHSV典型地在约0.6到约1.2的范围,例如约1。反应器1'典型地在约360℃的温度和在约50巴的压力下工作。H2进料/原料的关系典型地为<500Nl/l。

从第一反应器1'获得的产物经由管8'回收并供应到用于异构化和裂解的第二反应器1。包含烃组分的混合物的产物料流经由产物出口管8从第二反应器1回收。

H2进料经由氢气入口导管6两个反应器1'和1。导管6可以在反应器1,1'的初始端进入所述反应器,其中进料经由导管4和8'进入所述反应器。氢气还可以进料到虚线60所示的反应器中催化剂层之一或两者的位置。

原料到反应器1的WHSV典型地在约0.75到约0.8的范围。反应器1典型地在温度梯度410/380/360℃和约90巴的压力下工作。H2进料/原料关系典型地为约735Nl/l。

来自反应器1的包含烃组分的混合物的产物料流经由产物出口导管8回收。至少部分产物料流可以通过虚线所示的产物再循环导管80循环回加氢操作反应器1'。在再循环中,产物可以合并到原料入口导管4成为单一进料流动并供应到反应器1'。

附加的硫可以经由进料导管9供应到反应器1'和1。导管9可以连接到原料入口导管4和/或氢气入口导管60。

经由产物出口导管8回收的产物料流的至少部分可以以图1所示类似的方式进一步引导到分离器2(未示出)。

本申请中的导管可以为任何种类的适于该目的的管、管道、软管或连接设备。

本发明的另一目的是提供由本发明的方法制备的烃组分作为燃料或作为燃料组合物中的添加剂的用途。

本发明的进一步的目的是提供由本发明的方法制备的烃组分作为燃料或作为燃料组合物中的添加剂的用途。

本发明的再进一步的目的是提供在选自Al2O3、沸石、沸石-Al2O3、和Al2O3-SiO2载体上的NiW催化剂用于由包含妥尔油和萜烯类化合物的原料生产燃料或燃料组合物的添加剂的用途。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1