纳米碳分子高性能润滑油的制作方法

文档序号:11703072阅读:214来源:国知局
本发明涉及润滑油加工
技术领域
,具体涉及了纳米碳分子高性能润滑油。
背景技术
:润滑油是用在各种类型汽车、机械设备上以减少摩擦,保护机械及加工件的液体或半固体润滑剂,主要起润滑、辅助冷却、防锈、清洁、密封和缓冲等作用。润滑油一般由基础油和添加剂两部分组成。基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础油性能方面的不足,赋予某些新的性能,是润滑油的重要组成部分。近年来,由于纳米固体润滑材料具有独特的物理、化学及机械等优异性,故业者遂将其开发成为各种纳米固态润滑添加剂。纳米固体润滑材料主要是非活性的纳米级固体颗粒,具有高的热稳定性、机械稳定性以及化学稳定性,在高温、重负荷、高速等使用条件下不易发生氧化、分解与失效,具有优良的抗磨减摩性能和较高的高温使用寿命,而且纳米颗粒因粒度小而易于进入摩擦表面,形成易剪切的表面膜,有效避免摩擦副表面的直接接触,从而保护相对运动表面不受损伤,降低摩擦与磨损。不仅如此,石墨、二硫化钼和二硫化钨等纳米材料还具有环境友好的特性,将其作为油品添加剂不仅具有较好的抗磨和减摩性能,有效解决有机化合物添加剂的环保和易耗损和润滑油高温使用寿命短等问题,表现出了广阔的应用前景。然而这些纳米固体润滑材料却同时具有分散稳定性差、耐热性不足、易造成附着等缺点,任意给所应用的机械设备造成诸多不良影响,使其大规模、高效率地应用受到了不小的限制。技术实现要素:为解决上述技术问题,本发明提供纳米碳分子高性能润滑油,通过采用特定原料进行组合,配合相应的生产工艺,得到的润滑油产品,其具有优异的分散稳定性、耐热性,且不易造成附着,能够满足行业的要求,具有良好的应用前景。本发明的目的可以通过以下技术方案实现:纳米碳分子高性能润滑油,由下列重量份数的原料制成:矿物油80-90份、机油50-60份、三羟甲基丙烷油酸酯25-35份、加氢松香甘油酯20-30份、纳米聚四氟乙烯10-15份、丙烯酸树脂10-12份、对羟基苯甲酸丙酯8-10份、鲸蜡醇8-10份、纳米碳7-9份、烷氧基磷酸盐7-9份、乙酰柠檬酸三丁酯6-8份、羟基苯并三唑5-7份、高碱值硫化烷基酚钙3-5份、4-溴-5-氮杂吲哚-2-甲酸甲酯2-4份、二异丁烯1-3份、表面修饰剂3-5份。进一步地,所述表面修饰剂选自十八烷基三乙氧基硅烷、氨丙基三甲氧基硅烷、氯丙基三乙氧基硅烷中的任意一种。进一步地,所述纳米碳的粒度为5-25nm。所述纳米碳分子高性能润滑油的制备方法,包括以下步骤:(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至220-250℃,搅拌35-45分钟,冷却至室温,加入丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、乙酰柠檬酸三丁酯,超声分散50-70分钟,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐、高碱值硫化烷基酚钙,先加热至80-90℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、表面修饰剂,继续加热至150-160℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至75-85℃,以220-240转/分的速度搅拌15-18分钟,然后降温至45-55℃,加入4-溴-5-氮杂吲哚-2-甲酸甲酯,继续搅拌35-45分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品。进一步地,所述步骤(1)中的超声功率为500w。进一步地,所述步骤(3)中,剪切机转速为5000rpm,剪切时间为20分钟。本发明与现有技术相比,其有益效果为:(1)本发明的纳米碳分子高性能润滑油以矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯为主要成分,通过加入纳米聚四氟乙烯、丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、烷氧基磷酸盐、乙酰柠檬酸三丁酯、羟基苯并三唑、高碱值硫化烷基酚钙、4-溴-5-氮杂吲哚-2-甲酸甲酯、二异丁烯、表面修饰剂,辅以升温搅拌、超声分散、加热保温、脱泡、机械剪切等工艺制备而成。使得该润滑油具有优异的分散稳定性、耐热性,且不易造成附着,能够满足行业的要求,具有较好的应用前景。(2)本发明的纳米碳分子高性能润滑油所用原料价格低廉、制备工艺简单,适于大规模工业化运用,实用性强。具体实施方式下面结合具体实施例对发明的技术方案进行详细说明。实施例1按照重量分数准确称取矿物油80份、机油50份、三羟甲基丙烷油酸酯25份、加氢松香甘油酯20份、纳米聚四氟乙烯10份、丙烯酸树脂10份、对羟基苯甲酸丙酯8份、鲸蜡醇8份、纳米碳7份、烷氧基磷酸盐7份、乙酰柠檬酸三丁酯6份、羟基苯并三唑5份、高碱值硫化烷基酚钙3份、4-溴-5-氮杂吲哚-2-甲酸甲酯2份、二异丁烯1份、十八烷基三乙氧基硅烷3份。所述纳米碳的粒度为5nm。(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至220℃,搅拌35分钟,冷却至室温,加入丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、乙酰柠檬酸三丁酯,超声分散50分钟,超声功率为500w,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐、高碱值硫化烷基酚钙,先加热至80℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、十八烷基三乙氧基硅烷,继续加热至150℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至75℃,以220转/分的速度搅拌15分钟,然后降温至45℃,加入4-溴-5-氮杂吲哚-2-甲酸甲酯,继续搅拌35分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品,其中剪切机转速为5000rpm,剪切时间为20分钟。制得的润滑油产品的性能测试结果如表1所示。实施例2按照重量分数准确称取矿物油85份、机油55份、三羟甲基丙烷油酸酯30份、加氢松香甘油酯25份、纳米聚四氟乙烯12份、丙烯酸树脂11份、对羟基苯甲酸丙酯9份、鲸蜡醇9份、纳米碳8份、烷氧基磷酸盐8份、乙酰柠檬酸三丁酯7份、羟基苯并三唑6份、高碱值硫化烷基酚钙4份、4-溴-5-氮杂吲哚-2-甲酸甲酯3份、二异丁烯2份、氨丙基三甲氧基硅烷4份。所述纳米碳的粒度为15nm。(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至235℃,搅拌40分钟,冷却至室温,加入丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、乙酰柠檬酸三丁酯,超声分散60分钟,超声功率为500w,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐、高碱值硫化烷基酚钙,先加热至85℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、氨丙基三甲氧基硅烷,继续加热至155℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至80℃,以230转/分的速度搅拌17分钟,然后降温至50℃,加入4-溴-5-氮杂吲哚-2-甲酸甲酯,继续搅拌40分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品,其中剪切机转速为5000rpm,剪切时间为20分钟。制得的润滑油产品的性能测试结果如表1所示。实施例3按照重量分数准确称取矿物油90份、机油60份、三羟甲基丙烷油酸酯35份、加氢松香甘油酯30份、纳米聚四氟乙烯15份、丙烯酸树脂12份、对羟基苯甲酸丙酯10份、鲸蜡醇10份、纳米碳9份、烷氧基磷酸盐9份、乙酰柠檬酸三丁酯8份、羟基苯并三唑7份、高碱值硫化烷基酚钙5份、4-溴-5-氮杂吲哚-2-甲酸甲酯4份、二异丁烯3份、氯丙基三乙氧基硅烷5份。所述纳米碳的粒度为25nm。(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至250℃,搅拌45分钟,冷却至室温,加入丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、乙酰柠檬酸三丁酯,超声分散70分钟,超声功率为500w,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐、高碱值硫化烷基酚钙,先加热至90℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、氯丙基三乙氧基硅烷,继续加热至160℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至85℃,以240转/分的速度搅拌18分钟,然后降温至55℃,加入4-溴-5-氮杂吲哚-2-甲酸甲酯,继续搅拌45分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品,其中剪切机转速为5000rpm,剪切时间为20分钟。制得的润滑油产品的性能测试结果如表1所示。实施例4按照重量分数准确称取矿物油80份、机油60份、三羟甲基丙烷油酸酯25份、加氢松香甘油酯30份、纳米聚四氟乙烯15份、丙烯酸树脂10份、对羟基苯甲酸丙酯10份、鲸蜡醇8份、纳米碳9份、烷氧基磷酸盐7份、乙酰柠檬酸三丁酯8份、羟基苯并三唑5份、高碱值硫化烷基酚钙5份、4-溴-5-氮杂吲哚-2-甲酸甲酯2份、二异丁烯3份、十八烷基三乙氧基硅烷3份。所述纳米碳的粒度为25nm。(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至220℃,搅拌45分钟,冷却至室温,加入丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、乙酰柠檬酸三丁酯,超声分散50分钟,超声功率为500w,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐、高碱值硫化烷基酚钙,先加热至90℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、十八烷基三乙氧基硅烷,继续加热至150℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至85℃,以220转/分的速度搅拌18分钟,然后降温至45℃,加入4-溴-5-氮杂吲哚-2-甲酸甲酯,继续搅拌45分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品,其中剪切机转速为5000rpm,剪切时间为20分钟。制得的润滑油产品的性能测试结果如表1所示。对比例1按照重量分数准确称取矿物油85份、机油55份、三羟甲基丙烷油酸酯30份、加氢松香甘油酯25份、纳米聚四氟乙烯12份、丙烯酸树脂11份、对羟基苯甲酸丙酯9份、纳米碳8份、烷氧基磷酸盐8份、乙酰柠檬酸三丁酯7份、羟基苯并三唑6份、高碱值硫化烷基酚钙4份、二异丁烯2份、氨丙基三甲氧基硅烷4份。所述纳米碳的粒度为15nm。(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至235℃,搅拌40分钟,冷却至室温,加入丙烯酸树脂、对羟基苯甲酸丙酯、纳米碳、乙酰柠檬酸三丁酯,超声分散60分钟,超声功率为500w,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐、高碱值硫化烷基酚钙,先加热至85℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、氨丙基三甲氧基硅烷,继续加热至155℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至80℃,以230转/分的速度搅拌17分钟,然后降温至50℃,继续搅拌40分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品,其中剪切机转速为5000rpm,剪切时间为20分钟。制得的润滑油产品的性能测试结果如表1所示。对比例2按照重量分数准确称取矿物油80份、机油60份、三羟甲基丙烷油酸酯25份、加氢松香甘油酯30份、纳米聚四氟乙烯15份、丙烯酸树脂10份、鲸蜡醇8份、纳米碳9份、烷氧基磷酸盐7份、乙酰柠檬酸三丁酯8份、羟基苯并三唑5份、4-溴-5-氮杂吲哚-2-甲酸甲酯2份、二异丁烯3份、十八烷基三乙氧基硅烷3份。所述纳米碳的粒度为25nm。(1)将矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯、纳米聚四氟乙烯混合搅拌均匀,转移至反应釜中,升温至220℃,搅拌45分钟,冷却至室温,加入丙烯酸树脂、鲸蜡醇、纳米碳、乙酰柠檬酸三丁酯,超声分散50分钟,超声功率为500w,得到混合分散液;(2)向混合分散液中加入烷氧基磷酸盐,先加热至90℃保温混合15分钟,再加入羟基苯并三唑、二异丁烯、十八烷基三乙氧基硅烷,继续加热至150℃保温混合20分钟,得中间混合液;(3)将步骤(2)的中间混合液冷却至85℃,以220转/分的速度搅拌18分钟,然后降温至45℃,加入4-溴-5-氮杂吲哚-2-甲酸甲酯,继续搅拌45分钟,冷却至室温后进行脱泡处理,再经高速剪切机进行机械剪切得到终产品,其中剪切机转速为5000rpm,剪切时间为20分钟。制得的润滑油产品的性能测试结果如表1所示。将实施例1-4和对比例1-2的制得的纳米碳分子高性能润滑油分别进行分散性试验、热分解试验、附着性试验这几项性能测试。表1分散性热分解温度(℃)30d附着率(%)实施例1透明3643.3实施例2透明3882.8实施例3透明3723.5实施例4透明3832.9对比例1有沉积2178.4对比例2有沉积2267.0本发明的纳米碳分子高性能润滑油以矿物油、机油、三羟甲基丙烷油酸酯、加氢松香甘油酯为主要成分,通过加入纳米聚四氟乙烯、丙烯酸树脂、对羟基苯甲酸丙酯、鲸蜡醇、纳米碳、烷氧基磷酸盐、乙酰柠檬酸三丁酯、羟基苯并三唑、高碱值硫化烷基酚钙、4-溴-5-氮杂吲哚-2-甲酸甲酯、二异丁烯、表面修饰剂,辅以升温搅拌、超声分散、加热保温、脱泡、机械剪切等工艺制备而成。使得该润滑油具有优异的分散稳定性、耐热性,且不易造成附着,能够满足行业的要求,具有较好的应用前景。并且其所用原料价格低廉、制备工艺简单,适于大规模工业化运用,实用性强。以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的
技术领域
,均同理包括在本发明的专利保护范围内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1