废气后处理系统和用于内燃机的废气后处理的方法与流程

文档序号:18202359发布日期:2019-07-17 06:15阅读:309来源:国知局
废气后处理系统和用于内燃机的废气后处理的方法与流程

本发明涉及根据独立权利要求的前序部分所述的用于内燃机的废气后处理系统以及用于内燃机的废气后处理的方法。



背景技术:

废气法规的持续严格化对车辆制造商提出了高的要求,这些要求通过相应的用于减少发动机未处理排放的措施和通过相应的废气后处理来解决。随着采用法规制定等级eu6,对于汽油发动机规定了针对颗粒数量的极限值,该极限值在许多情形中使得使用汽油颗粒过滤器成为必要。这样的碳黑颗粒特别在内燃机的冷起动后由于未完全燃烧结合过化学计量的过量空气系数(verbrennungsluftverhältnis)以及在冷起动期间的冷的气缸壁产生。冷起动阶段由此对于遵守法律规定的颗粒极限值是决定性的。在行驶运行中这样的汽油颗粒过滤器进一步被加载了碳黑。为了废气背压不太强地提升,汽油颗粒过滤器必须持续地或周期性地再生。废气背压的提升可导致内燃机的额外消耗、功率损失和影响运转平稳直至断火。为了执行在汽油颗粒过滤器中截留的碳黑与氧气的热氧化,在汽油发动机的废气装置中足够高的温度水平结合同时存在的氧气是必要的。因为现代的汽油发动机通常在没有氧气过量的情况下以化学计量的过量空气系数(λ=1)运行,所以为此需要额外的措施。对此作为措施例如考虑通过点火角调整(zündwinkelverstellung)引起的温度提高、汽油发动机的暂时的贫燃调整(mangerverstellung,有时称为稀燃调整)、二次空气吹入到废气装置中或这些措施的组合。优选地,迄今应用在推迟方向上的点火角调整结合汽油发动机的贫燃调整,因为该方法在没有额外的构件的情况下够用且在汽油发动机的大多数运行点中可提供足够的氧气量。

由于在汽油发动机中的良好效率,在底部位置中的颗粒过滤器的再生在一定的运行情况中是不可行的,从而在底部位置中的颗粒过滤器的再生需要特别的行驶循环。接近发动机定位颗粒过滤器是适宜的,因为由此在颗粒过滤器处存在较高的废气温度且使得加热到再生温度上变得容易。在带有以三元催化的方式起作用的覆层的三元催化器、所谓的四元催化器中的另一问题是这样的事实,即覆层可具有强的老化现象,从而为了气态的有害物质的转化可需要在接近发动机的位置中的额外的三元催化器。

由文件de102008036127a1已知一种用于内燃机的废气后处理的方法,在该内燃机的废气通道中布置有颗粒过滤器和三元催化器。在此,颗粒过滤器作为废气后处理的第一部件布置在内燃机的出口的下游。在颗粒过滤器下游布置有三元催化器。在此,经由三元催化器的λ调节来提高在废气中的氧气含量以用于再生颗粒过滤器。

文件de102010046747a1公开了用于汽油发动机的废气后处理系统以及用于废气后处理的方法。在此在三元催化器的下游布置有颗粒过滤器,其中为了再生在颗粒过滤器中截留的碳黑颗粒可提供二次空气系统,该二次空气系统在三元催化器下游并且在颗粒过滤器上游将新鲜空气吹入到废气装置中。



技术实现要素:

本发明的任务在于,在所有的行驶循环中确保达到颗粒过滤器的再生温度并且使得尽可能无排放地再生颗粒过滤器成为可能。此外应改善废气后处理系统的老化特性和克服由现有技术已知的缺点。

根据本发明,该任务通过用于带有废气装置的内燃机的废气后处理系统来实现,该废气装置与内燃机的出口连接。在此,废气装置包括废气通道,在该废气通道中在内燃机的废气通过废气通道的流动方向上作为减少排放的第一部件布置有接近发动机的三元催化器且在接近发动机的三元催化器下游布置有四元催化器或由颗粒过滤器和后接该颗粒过滤器的第二三元催化器形成的组合。废气后处理系统另外包括二次空气泵和废气燃烧器,其中在接近发动机的三元催化器的下游且在四元催化器或颗粒过滤器的上游设置至少一个导入部位,在该导入部位处可将废气燃烧器的热废气导入到废气装置中以用于使四元催化器或颗粒过滤器升温。接近发动机布置三元催化器就此而言能够理解为在带有自内燃机的出口的小于80cm、尤其小于50cm、特别优选地小于35cm的废气行进长度的情况下布置废气后处理部件。由此尤其在内燃机的冷起动之后加速地加热三元催化器是可行的。由于三元催化器的接近发动机的位置,较少的废热经由废气通道的壁失去,从而三元催化器在内燃机的冷起动之后相对早地达到其起燃温度(light-off-temperatur)。通过废气燃烧器可将高的能量引入到废气装置中,由此四元催化器可在再生需求后立即加热到其再生温度上。此外,废气燃烧器可在冷起动时用于加热四元催化器,以便四元催化器在冷起动后立即达到其起燃温度并且由此使得有害物质的高效的转化成为可能。内燃机优选地实施为根据汽油机原理借助于火花塞外部点火的(fremdgezündet,有时称为强制点火的)内燃机。

通过在从属权利要求中所提及的特征,可实现根据本发明的用于内燃机的废气后处理系统的有利的改善方案和改进方案。

在本发明的一种优选的实施方式中设置成,四元催化器或颗粒过滤器布置在机动车的底部位置中。因为尤其对于在底部位置中的颗粒过滤器或四元催化器而言在低负荷行驶循环中未达到用于氧化碳黑所必需的再生温度,所以在所述布置中特别有利的是,在四元催化器或颗粒过滤器的上游布置有废气燃烧器,以为了独立于内燃机的废气提供加热可能性。此外通过经由废气燃烧器进行的温度调节可实现有效的构件保护,因为由于在底部位置中通常更低的温度避免了在四元催化器或颗粒过滤器上的未控制的碳黑燃尽的危险。由此可有效降低四元催化器或颗粒过滤器的热损伤的危险。

在一种有利的实施方式中设置成,在四元催化器的下游布置有另一三元催化器。通过该三元催化器可消除在四元催化器上氧化碳黑时的二次排放或由于在λ调节中调节偏差引起的排放,由此进一步减少排放是可行的。

在一种优选的实施方式中有利地设置成,在导入部位和四元催化器或颗粒过滤器之间构造有带有至少30cm、优选至少50cm的长度的混合段。由此废气燃烧器和内燃机的废气在进入到颗粒过滤器或四元催化器中之前的更好的混匀是可行的,由此对于废气后处理的改善的λ调节以及在四元催化器或颗粒过滤器上更均匀的温度分布是可行的。由此可进一步降低排放。

根据本发明的一种优选的实施方式设置成,在废气通道中在接近发动机的三元催化器的上游布置有第一氧传感器(lambdasonde,有时称为λ探针)并且在四元催化器的上游不远处或在第二三元催化器的上游不远处布置有第二氧传感器。由此利用氧传感器对不仅实现内燃机的λ调节而且实现废气燃烧器的调节。在此从废气燃烧器出来直到第二氧传感器的短的气体行进时间是有利的,由此废气燃烧器的过量空气系数的特别快速的调节是可行的。在此第一氧传感器优选实施为宽带氧传感器,以为了使得关于在废气中的氧气含量的定量表述成为可能。第二氧传感器可实施为阶跃氧传感器(sprung-lambdasonde),以为了减少成本并且由此提供关于在废气中的氧气过量的定性表述。备选地,第二氧传感器也可实施为宽带传感器(breitbandsonde),以为了使得废气燃烧器的过量空气系数的定量调节成为可能。

备选地有利地设置成,在接近发动机的第一三元催化器的上游布置有第一氧传感器并且在四元催化器或第二三元催化器的下游布置有第二氧传感器。该变型方案具有如下优点:发生燃烧器气体和内燃机的废气的更好的气体混匀,并且评估内燃机的端管排放(endrohr-emissionen)是可行的。

这样的实施变型方案是特别优选的,即在其中在接近发动机的三元催化器的上游布置有第一氧传感器,在四元催化器的上游不远处布置有第二氧传感器并且在四元催化器或第二三元催化器的下游布置有第三氧传感器。该实施方式在废气后处理系统的轻微提高的成本和提高的复杂性的情况下联合了之前所提的两个实施方式的优点。

根据本发明的一种优选的实施方式设置成,在颗粒过滤器或四元催化器的上游布置有第一压力传感器并且在颗粒过滤器或四元催化器的下游布置有第二压力传感器。由此可利用压力传感器对实施跨越颗粒过滤器的压差测量,经由该压差测量可获得颗粒过滤器的加载状态。由此基于压差可启用颗粒过滤器的再生。此外可执行颗粒过滤器的车载诊断。备选地,再生可通过在内燃机的控制器中储存的颗粒过滤器或四元催化器的加载模型来控制。

在本发明的一种优选的设计方案中设置成,颗粒过滤器实施为不具有覆层、尤其不具有起三元催化作用的覆层或用于选择性催化还原氮氧化物的覆层,和/或不具有氧气存储器、尤其不具有带有氧气存储能力的涂层(washcoat)。由此可防止颗粒过滤器的性能的老化引起的改变,从而颗粒过滤器在其使用期上具有基本相同的特性。因为颗粒过滤器直接被加载有废气燃烧器的热废气(其在带有催化覆层的颗粒过滤器的情形中否则导致催化覆层的加剧的热老化),所以颗粒过滤器的未施加有覆层的实施方式是有利的。此外,通过放弃覆层可将颗粒过滤器实施为带有较少的腔室(zellen),由此减少颗粒过滤器的热质量并且有助于颗粒过滤器的加热。此外,额外地减小废气背压,由此可减少在废气装置中的流动损失并且由此可提高内燃机的效率。这可在框架条件在其它方面未改变的情形中为了更多的功率或减少的消耗而使用。额外地,能够以该方式减少颗粒过滤器的热质量并且减小废气背压并且相对于施加有覆层的颗粒过滤器提高灰烬存储能力。此外,由于更小的热质量使达到颗粒过滤器的再生温度变得容易。

在废气后处理系统的一种优选的设计方案中设置成,二次空气泵经由空气线路与废气燃烧器连接。由此可调节废气燃烧器的过量空气系数并且确保在废气燃烧器处相应清洁的且少排放的燃烧。此外,二次空气泵在四元催化器或颗粒过滤器的再生阶段(在所述再生阶段中至废气燃烧器的燃烧气体供应停用)中可提供为了氧化在四元催化器或颗粒过滤器中截留的碳黑所需要的氧气。备选地,二次空气泵还可经由第二空气线路在四元催化器或颗粒过滤器的上游直接与废气通道相连接。

根据本发明的一种优选的且有利的实施方式设置成,废气燃烧器能够以可变的过量空气系数运行。由此,废气燃烧器可在内燃机的冷起动阶段中平衡λ波动、尤其欠化学计量的λ运行并且由此在用于废气燃烧器的热燃烧器气体的导入部位下游提供化学计量的废气。

在此特别优选的是,在废气燃烧器的导入部位下游调节化学计量的废气。通过化学计量的废气,在位于导入部位下游的三元催化器或四元催化器处的特别高效的废气后处理是可行的。

根据本发明,推荐了用于利用根据本发明的废气后处理系统进行内燃机、尤其根据汽油机原理借助于火花塞外部点火的内燃机的废气后处理的方法,该方法包括以下步骤:

-通过导入废气燃烧器的热燃烧器气体将四元催化器或颗粒过滤器加热到再生温度上,其中在第二三元催化器的下游或在四元催化器的下游调节化学计量的废气,

-切断废气燃烧器并且在四元催化器或颗粒过滤器上游吹入二次空气,其中在四元催化器或颗粒过滤器中截留的碳黑通过过化学计量的废气氧化。

通过根据本发明的方法基本上独立于内燃机的负荷状态再生四元催化器或颗粒过滤器(尤其在布置在机动车的底部位置的情形中)是可行的。由此,当再生仅通过发动机内部的措施不可行时,四元催化器或颗粒过滤器即使在典型的弱负荷交通的情形中(如例如在城市交通中或短途运行中)也能够再生。此外,在再生四元催化器或颗粒过滤器期间还可有效减少内燃机的排放,因为废气净化通过接近发动机的第一三元催化器实现并且在二次空气吹入期间切断燃烧器,从而在再生颗粒过滤器或四元催化器时最小化二次排放。

在用于废气后处理的方法的一种优选的实施方式中设置成,断续地如此长时间地在加热阶段和再生阶段之间切换,即直到四元催化器或颗粒过滤器完全再生。加热阶段就此而言能够理解为这样的运行状态,即在其中废气燃烧器是起作用的并且废气通过废气燃烧器加热。再生阶段就此而言能够理解为这样的运行状态,即在其中废气燃烧器被断开并且二次空气在四元催化器或颗粒过滤器的上游吹入到废气通道中,以为了提供为了氧化在四元催化器或颗粒过滤器中截留的碳黑所需的氧气。因为当废气燃烧器切断时在再生阶段期间在四元催化器或颗粒过滤器中的温度下降,温度的下降导致了氧化反应的中断。因此断续地在加热阶段和再生阶段之间切换,以为了在再生过程期间将四元催化器保持在再生温度之上并且由此允许四元催化器或颗粒过滤器的完全再生。

在所述方法的一种优选的实施方式中设置成,内燃机不仅在加热阶段期间而且在再生阶段期间以化学计量的过量空气系数运行。由此在四元催化器或颗粒过滤器的再生期间通过接近发动机的三元催化器转化有害的废气成分是可行的,从而再生四元催化器或颗粒过滤器不导致端管排放的提升。

在本方法的另一改善方案中设置成,废气燃烧器在再生阶段(在该再生阶段中废气燃烧器切断)后如此长时间地以欠化学计量的过量空气系数、尤其以在0.9和0.97之间的过量空气系数运行,即直到四元催化器或颗粒过滤器的氧气存储器被排空。通过在再生阶段中的二次空气运行,四元催化器或颗粒过滤器的氧气存储器被填充。这可在废气燃烧器的重新起动时短时间地导致待还原的废气成分、尤其氮氧化物的排放突破(emissionsdurchbruch)。为了避免这样的突破通过四元催化器,可提出,在再次起动时短时间地以富燃的(fett)、欠化学计量的过量空气系数运行废气燃烧器,以为了使四元催化器上的氧气存储器变空并且确保化学计量的废气。在此能够确保:在清空氧气存储器期间不发生欠化学计量的废气突破通过废气装置的最后催化起作用的废气后处理部件。

在本申请中提及的本发明的不同的实施方式有利地可相互组合,只要在个别情况中没有不同地实施。

附图说明

接下来在实施例中根据所属的图纸阐述本发明。相同的构件或带有相同功能的构件在此在不同的图中以相同的参考符号标出。其中:

图1显示了带有根据本发明的废气后处理系统的内燃机的第一实施例;

图2显示了根据本发明的废气后处理系统的变型方案,在该变型方案中第二氧传感器布置在底部位置中的四元催化器的下游;

图3显示了根据本发明的废气后处理系统的另一变型方案,在该另一变型方案中第二氧传感器布置在底部位置中的四元催化器的上游并且第三氧传感器布置在底部位置中的四元催化器的下游;

图4显示了带有根据本发明的废气后处理系统的内燃机的第二实施例,其中废气后处理系统额外地在底部位置中的四元催化器的下游具有另一三元催化器;

图5显示了带有根据本发明的废气后处理系统的内燃机的第三实施例,其中废气后处理系统具有在底部位置中的未施加有覆层的颗粒过滤器和后接于未施加有覆层的颗粒过滤器的三元催化器;

图6显示了线图,在该线图中示出了在执行根据本发明的用于废气后处理的方法时在废气装置中的温度变化曲线和废气中过量空气系数(abgasluftverhältnis)。

参考符号列表

10内燃机

12出口

14燃烧室

16火花塞

18气缸盖

20废气装置

22废气通道

24废气涡轮增压器

26涡轮

28接近发动机的三元催化器

30四元催化器

32未施加有覆层的颗粒过滤器

34第二三元催化器

36废气燃烧器

38导入部位

40二次空气泵

42第一氧传感器

44第二氧传感器

46第三氧传感器

48混合段

50第一压力传感器

52第二压力传感器

54温度传感器

56信号线路

58空气线路

60控制器

<100>内燃机的化学计量的正常运行

<110>加热阶段

<120>第一再生阶段

<130>加热阶段

<140>第二再生阶段

e颗粒过滤器或四元催化器的再生的结束

s颗粒过滤器或四元催化器的再生的开始

tvp颗粒过滤器或四元催化器之前的温度

tr颗粒过滤器或四元催化器的再生温度

λ废气中过量空气系数

λe在最后起催化作用的废气后处理部件的下游的废气中过量空气系数

λvt在接近发动机的三元催化器的上游的废气中过量空气系数。

具体实施方式

图1显示了内燃机10的示意图,该内燃机的出口12与废气装置20连接。内燃机10实施为汽油发动机,其借助于火花塞16被外部点火并且具有多个燃烧室14。内燃机10优选地实施为借助于废气涡轮增压器24增压的内燃机10,其中废气涡轮增压器24的涡轮26布置在出口12的下游且布置在减少排放的第一废气后处理部件的上游、尤其在接近发动机的三元催化器28的上游。废气装置20包括废气通道22,在该废气通道中在废气通过废气通道22的流动方向上布置有接近发动机的三元催化器28且在接近发动机的三元催化器28的下游布置有四元催化器30。接近发动机的三元催化器28以自内燃机10的出口12的小于80cm的废气行进长度、尤其小于50cm的废气行进长度的间距布置。四元催化器30优选地布置在机动车的底部位置中且由此布置在远离发动机的位置中,也就是说以自内燃机10的出口12的大于100cm的废气行进长度的间距布置。在接近发动机的第一三元催化器28的下游且在四元催化器30的上游设置有用于废气燃烧器36的热废气的导入部位38,经由该导入部位可不依赖于内燃机10的运行情况加热布置在导入部位38下游的四元催化器30。导入部位38与四元催化器30间隔开,从而在导入部位38和四元催化器30的进口之间得到混合段48,在该混合段中热的燃烧器气体与内燃机10的废气混合。

在废气装置20中可额外地布置有另外的催化器、尤其另外的三元催化器34、nox存储式催化器或用于选择性催化还原氮氧化物的催化器。在第一三元催化器28上游在废气通道22中布置有第一氧传感器42,利用该第一氧传感器可获得在出口12的下游的且在第一废气后处理部件、即接近发动机的第一三元催化器28的上游的废气的氧气含量λ1。在导入部位38的下游且在四元催化器30上游在废气通道22中布置有第二氧传感器44,利用该第二氧传感器可获得在废气通道28中在四元催化器30上游不远处的氧气含量λ2。第一氧传感器42优选地实施为宽带氧传感器并且经由第一信号线路56与内燃机10的控制器60连接。第二氧传感器44优选地实施为阶跃传感器(sprungsonde,有时称为阶跃探针)并且经由第二信号线路56与控制器60连接。第一氧传感器42和第二氧传感器44在此构造成传感器组件,利用该传感器组件可调节内燃机10和废气燃烧器36的过量空气系数λ。额外地,可经由传感器组件进行第一三元催化器28的车载诊断。

二次空气泵40经由二次空气线路58与废气燃烧器36连接。在二次空气线路58中可布置有二次空气阀,利用该二次空气阀可建立和中断至废气燃烧器36的空气供应。此外在四元催化器30上游和下游设置有压力传感器50,52,利用所述压力传感器可执行跨越四元催化器30的压差测量以用于获得四元催化器30的加载状态。此外,可经由压力传感器50,52进行四元催化器30的车载诊断。二次空气泵40可额外地经由另外的二次空气线路与在废气通道22处的另一导入部位连接,从而二次空气可独立于废气燃烧器36导入到废气通道22中。另外,在废气装置20中还可布置有另外的传感器、尤其温度传感器54或nox传感器,以便控制内燃机10和/或废气燃烧器36的燃烧。

在图2中示出了来自图1的废气后处理系统的变型方案。在结构基本上相同的情形中,第二氧传感器44在该变型方案中布置在四元催化器30的下游,由此可获得在四元催化器30的下游的废气中过量空气系数。该变型方案的优点在于,实现燃烧器气体和内燃机10的废气的更好的气体混匀,并且端管λ值的评估是可行的。然而该变型方案的缺点在于,信号由于四元催化器30的氧气存储能力具有提高的惯性(trägheit,有时称为迟滞性),其中λ调节的每个调节偏差直接导致端管排放的提高。

图3显示了废气后处理系统的第三变型方案。在结构与关于图2和图3所示出的基本上相同的情形中,在该变型方案中在四元催化器30上游不远处设置有第二氧传感器44,并且在四元催化器30的下游设置有第三氧传感器46。该变型方案具有的优点是,前面所提的两个变型方案的优点能够彼此组合。然而不利的是,由于额外的氧传感器提高调节的复杂性和成本。

在图4中示出了带有废气后处理系统的内燃机10的另一实施例。在结构与关于图1到3所实施的基本上相同的情形中,在废气通道22中在四元催化器30的下游布置有另一三元催化器34。由此,因为存在带有氧气存储器的另一构件,可在废气燃烧器36的运行期间更容易地达到化学计量的端管废气的目标。由此λ突破通过四元催化器30可通过布置在四元催化器30的下游的三元催化器34的氧气存储能力平衡。这导致端管排放的进一步改善。

在图5中示出了根据本发明的内燃机10的另一实施例。在结构与关于图4所实施的基本上相同的情形中,替代四元催化器30在废气装置20中设置有未施加有覆层的颗粒过滤器32。该实施例具有如下优点:未施加有覆层的颗粒过滤器32可更容易且更成本适宜地制成。此外,未施加有覆层的颗粒过滤器32不老化,因为其不具有催化覆层。另外,在未施加有覆层的颗粒过滤器32的情形中废气背压相比于在四元催化器30的情形中更小。然而相对于在图1到3中示出的实施例不利的是,额外的构件须集成到废气装置20中,这导致更高的结构空间需求、更高的成本和更高的废气背压。

在图6中示出了在根据本发明的用于废气后处理的方法期间在四元催化器30或颗粒过滤器32之前的温度变化曲线。此外,图6示出了废气中过量空气系数λ:在接近发动机的三元催化器28上游的(λvt)和在废气后处理系统的最后起催化作用的构件30,34下游的(λe)。在此,内燃机10始终以化学计量的过量空气系数λ=1运行,从而在发动机内部的燃烧时出现的有害物质排放可通过接近发动机的三元催化器28转化。在第一方法步骤<100>中,内燃机10以化学计量的过量空气系数运行并且废气燃烧器36和二次空气泵40停用。如果通过内燃机10的控制器60要求再生四元催化器30或颗粒过滤器32,则在时间点s开始再生。再生的这样的开始可经由四元催化器30或颗粒过滤器32的加载模型或经由压差测量启动。在此,废气燃烧器36在方法步骤<110>中激活以用于加热颗粒过滤器32或四元催化器30,其中调节在四元催化器30下游的或在第二三元催化器34下游的化学计量的废气中过量空气系数λe(λe=1)。如果四元催化器30或颗粒过滤器32达到在再生温度tr之上的温度,则在方法步骤<120>中停用废气燃烧器36并且借助于二次空气泵40将空气在四元催化器30或颗粒过滤器32的上游吹入到废气通道22中。内燃机10在再生阶段中继续以化学计量的过量空气系数λ=1运行,从而在发动机内部的排放继续通过接近发动机的第一三元催化器28转化。二次空气吹入的目标是在四元催化器30或颗粒过滤器32上游的在1.05<λ<1.2的范围中的轻微的空气过量以用于再生贮存的碳黑。由此确保四元催化器30或颗粒过滤器32的有效再生。此外如此有效避免了,未控制的碳黑燃尽导致四元催化器30或颗粒过滤器32的损伤。因为四元催化器30或颗粒过滤器32通过二次空气吹入被再次冷却,所以在方法步骤<130>中再次激活废气燃烧器36并且重新加热四元催化器30或颗粒过滤器32。内燃机10的过量空气系数对于该阶段又是化学计量的。废气燃烧器36的过量空气系数是化学计量的或轻微富燃的,从而不发生四元催化器30或颗粒过滤器32的再生。在此能够有利的是,废气燃烧器36以稍微欠化学计量的、富燃的过量空气系数运行,直到四元催化器30的氧气存储器(osc)被清空,以为了避免待还原的废气组成部分、尤其氮氧化物的排放突破。该断续的运行如此长时间地维持,即直到四元催化器30或颗粒过滤器32再生。对此,重新的再生阶段<140>紧接着第二加热阶段<130>,在该重新的再生阶段中废气燃烧器36再次停用并且经由二次空气泵40将二次空气吹入到废气通道22中。再生的结束经由加载模型或经由两个压力传感器50,52进行的压差测量来控制。

总而言之可理解的是,通过根据本发明的废气后处理系统和所描述的根据本发明的方法在所有行驶循环中可确保达到四元催化器30或颗粒过滤器32的再生温度并且使得尽可能无排放地再生四元催化器30或颗粒过滤器32成为可能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1