燃烧室-涡轮机组和组合式齿轮传动压力处理机联合系统的制作方法

文档序号:5231625阅读:169来源:国知局
专利名称:燃烧室-涡轮机组和组合式齿轮传动压力处理机联合系统的制作方法
本申请是1991年5月10日提交的序列号为07/698,125申请的部分继续申请。
本发明涉及一种燃烧室-涡轮机组和多级组合式齿轮传动压力处理机的联合系统和联合方法,其用于将压缩空气供入处理装置和燃烧室-涡轮机组。
一处理装置的压缩机通常由一电机驱动,电机的电源来自中央输电系统或由一燃气涡轮机或其他发动机驱动的发电机,或直接由一燃气涡轮发电机驱动。设备和运行成本是最重要的,因此考虑到这一点应避免使用一电机,而用一燃气涡轮发动机来驱动压缩机。但是,燃气涡轮发动机的工作转速与压缩机工作转速可能不匹配。为了使速度匹配,需要提供一个齿轮传动系统,这就要增加成本和损失功率。
处理装置的压缩机通常为离心式压缩机,其具有一个与一些小齿轮啮合的大直径的大齿轮,小齿轮轴的端部装有压缩级叶轮。分别在它们各自外壳中的多个叶轮按需构成压缩机的若干压缩级。大齿轮和与它啮合的小齿轮都装在一个共用的外壳中。因此,这种压缩机称为组合式齿轮传动压缩机(integral-gear compressors)。小齿轮可有不同的直径,以便最好地适应由它们所传动的压缩叶轮要求的转速。在任意两级之间的压缩空气通过管道输往一中间冷却器,压缩空气在其中被冷却,因而可产生效率更高的压缩过程。这种压缩机并不昂贵,但重量重,体积大,并需向中间冷却器供应冷却剂。所有这些条件在处理装置(如一低温空气分离装置)中是易于接受的,因为这种装置要求在最低成本下提供连续流动的压缩空气。
一组合式齿轮传动压缩机最好由一燃气涡轮发动机通过其输出轴驱动,此输出轴与大齿轮连接或与一个处理机中的大齿轮啮合的小齿轮连接。这样可避免因一附加齿轮系统而造成成本和功率损失。然而,采用本发明还可以得到其它方面的改善。
一典型的固定式燃气涡轮发动机源自一种航空燃气涡轮发动机,航空燃气涡轮发动机要求重量轻,结构紧凑和迎风面积小。因此,为了满足这些要求,燃气涡轮发动机一般采用轴流式压缩级,而且没有中间冷却。从结构紧凑的轴流级之间抽取压缩空气,对它进行冷却,并将已冷却的空气重新注入,在结构方面比较麻烦,因此在轴流式压缩机内不可能进行中间冷却。在燃气涡轮发动机中的压缩机级被装在机壳内,该机壳内还装有其它部件。
由于在燃气涡轮发动机中的轴流压缩机尺寸较小,再加上没有使用中间冷却,所以它们的效率要低于使用中间冷却的处理装置压缩机。例如,在一具有四个压缩级、总压缩比为7.9的压缩机中,采用中间冷却后所需压缩功率比无中间冷却所需压缩功率可减少20%然而在一燃气涡轮发动机中,涡轮通常必须产生两组驱动其压缩机的动力,每一组动力通过涡轮的功率输出轴传递。因此在燃气涡轮发动机中,当将涡轮排出的部分热用于加热来自有中间冷却的空气压缩机而进入燃烧室的空气时,压缩效率提高20%,结果使输出功率增加40%。大幅度提高效率可通过向燃气涡轮发动机燃烧室供应经压缩的空气来达到,压缩空气来自一使用中间冷却的处理压缩机。处理压缩机的尺寸只需要根据它能向燃气涡轮机的燃烧室供应足够的空气来确定,因此可将它当作功率发生器使用。处理压缩机的尺寸亦可确定为能提供比足够燃气涡轮机燃烧室使用更多的空气,多余的空气可通过管道输入一处理装置中使用。一单个处理压缩机可用于供应一个以上的燃气涡轮燃烧室,并压缩一种以上的流体。上述应用情况可以进行多种组合。
没有组合式压缩机的燃气涡轮基本上是燃烧室加涡轮机,且它们可被称为燃烧室-涡轮机组。现有的燃气涡轮发动机的原型,只要除去压缩机叶片,便可以制成燃烧室-涡轮机组,因此节省了加工费用。
在处理装置中,排气流或中间气流常常是可利用的,它们可用于增加输出功率,致冷,降低燃料消耗或减少废气排放。可以将可利用的压缩空气流的压力提高到燃烧室-涡轮机组中的燃烧室压力。类似地,可以将含有少量氧或不含氧的可利用的压缩气流的压力提高,并将具使用在燃烧室-涡轮机组的燃烧室中,以替代通常一部分所供应的空气。一种可利用的含有一些燃料成分的气流,亦即燃料气流,可在燃烧室中燃烧,从而可减少原有的燃料需求总量。一种可利用的蒸汽流可引入到燃烧室,以提高功率或减少废气排放。可利用的气流在排出前或引入到燃气涡轮机组之前可膨胀或被压缩。
这些气流可最好在一台机器内处理,例如一组合式齿轮传动压缩机,该机配备有一些压缩级,用以压缩一种或多种气流,此外一些压缩级则使一种或多种压缩气流膨胀。在一种气流膨胀时回收的能量可直接转化为对别的气流进行压缩。这种具有压缩级和根据选择为膨胀级的组合式齿轮传动机械,在本文中被称为组合式齿轮传动压力处理机。因此,一种气流的压力处理将意味着是气流的压缩或是气流的膨胀,且一个压力处理级意味着为一个压缩级或一个膨胀级。组合式齿轮传动压力处理机可联合使用,以完成所需要的全部压缩和膨胀功能。
本发明的一个目的是提供一种系统和方法,它可更有效地向一处理装置或其它外部用户供应压缩空气或压缩气体。
本发明的一个特点是,一燃烧室-涡轮机组直接连接以驱动一组合式齿轮传动多级压力处理机的大齿轮,该压力处理机用以供应压缩空气到一处理装置和燃烧室-涡轮机组本身。
本发明的一个优点是,压缩和膨胀多种气流的组合式齿轮传动压力处理机具有良好的机械结构和较高的机械效率。
本发明提出了一种用于供应从系统中取出的压缩空气或其它气体的改进的方法和系统,一个系统的实施例包括一具有一输出轴的燃烧室一涡轮机组和一具有一大齿轮的组合式传动压力处理机,大齿轮在传动上与组合式齿轮传动压力处理的至少一个压缩级连接。此系统包括有从组合式齿轮传动压力处理级中之一级向燃烧室-涡轮机组输送部分压缩气流的导管。最普通的气体是压缩空气,压缩空气被用管道输往燃烧室-涡轮机组,以保证燃烧。系统包括有通过燃烧室-涡轮机组的轴驱动大齿轮的装置。在本发明的一个实施例中,此装置是一个装在轴上并与大齿轮啮合的小齿轮。在另一种实施例中,此装置是一个装在轴上并与另一个小齿轮啮合的小齿轮,此另一个小齿轮再与大齿轮啮合。
在又一个实施例中,该系统还包括有一个燃烧室-涡轮机组压力处理级,该处理级在传动关系上与一燃烧室-涡轮机组的涡轮机轴连接,并与一个组合式齿轮传动压力处理级联通。
在又一个实施例中,该系统还包括有一第二个组合式齿轮传动压力处理机,该处理机有一个大齿轮,该大齿轮在传动上与至少一个有一大气进口的组合式齿轮传动压力处理级连接。一第一个组合式齿轮传动压力处理级的入口,可根据选择或与第二个组合式齿轮传动压力处理级的出口连接,或与大气相通。燃烧室-涡轮机组轴,既可驱动第一组合式齿轮传动压力处理机的大齿轮,也可驱动第二组合式齿轮传动压力处理机的大齿轮。


图1表示实施本发明的一个系统的平面示意图;
图2表示沿图1中2-2线的一个垂直剖面图;
图3表示由图1的系统所使用的处理过程的温-熵图;
图4表示本发明另一个实施例的示意图;
图5表示本发明又一个实施例的示意图;
图6表示本发明一个实施例的示意图,该实施例适用于在处理装置中配备一个现有的由电动机-发电机组驱动的压缩机;
图7表示本发明一个实施例的示意图,其中,在该实施例中或使用电机驱动,或使用燃烧室-涡轮机组驱动,这一实施例适用于危险性低的初始装配;
图8表示本发明一个实施例的示意图,该实施例适用于多个燃烧室-涡轮机组的联合一起,它们分别驱动空气压缩机、再循环压缩机、制品压缩机以及发电机一电动机组;和图9表示本发明一个实施例的示意图,该实施例具有两个由一个燃烧室-涡轮机组驱动的组合式齿轮传动压缩机。
图1和图2表示按照本发明的一个系统的实施例,其包括有一个燃烧室-涡轮机组10,其与一个组合式齿轮传动气体压缩机12组合一起。燃烧室-涡轮机组包括一个燃烧室14,一第一级涡轮16,一再加热器18,一第二级涡轮20,废气收集器22,一输出轴24和再生式换热器26。进入燃烧室14的是一燃料流28,燃料流28既可以是液态的又可以是气态的。进入再加热器18的是一第二路燃料流30。一来自组合式齿轮传动压缩机的压缩空气流32进入到再生式换热器26中,在那里,压缩空气通过与来自收集器的废气流34的热交换进行预热。然后,经预热的压缩空气流36进入到燃烧室14中。
用燃烧室-涡轮机组轴驱动大齿轮的典型装置包括一个传动小齿轮,该传动小齿轮与此涡轮输出轴连接并与大齿轮啮合;或是一个与涡轮输出轴连接并与另一个小齿轮啮合的传动小齿轮,而此另一个小齿轮再与该大齿轮啮合。
燃烧室-涡轮输出轴24包括有一个联轴器37和一个用于驱动压缩机12的大齿轮40的装置。通常大齿轮是指主齿轮,其一般是齿轮系中最大和最强的。在组合式齿轮传动压缩机中的大齿轮转速通常大约为1200转/分(rpm),而一般一燃烧室-涡轮机组的轴的转速大约从3,600至12,000转/分(rpm)。因此在用燃烧室-涡轮机组驱动大齿轮时,需要一个减速机构。图1所示的本发明实施例表明,燃烧室-涡轮输出轴24驱动大齿轮40的装置是一个装在轴24上的小齿轮38,小齿轮38与大齿轮40相啮合。这一减速装置可节省2-3%的传输功率,在更复杂的传动装置中这部分功率通常要被损失掉。这里所使用的术语“小齿轮”,通常是指小于大齿轮的较小的齿轮。小齿轮38的尺寸确定成使大齿轮40以适当的速度旋转。大齿轮轴41与一个用于起动燃烧室-涡轮机组10的电机42连接。在燃烧室-涡轮机组10和压缩机12的正常工作期间,电机42可作为发电机工作,向处理装置的其它部分提供功率。
与大齿轮40啮合的还有一第二个小齿轮44,在它上面装有被外壳48包围的一第一个离心叶轮46和被外壳52包围的一第二个离心叶轮52。每一个在其外壳内的叶轮构成一个压缩级。压缩空气从第一级来,经途中的一中间冷却器54流向第二级。与大齿轮40啮合的还有第三个小齿轮56,在小齿轮56上装有一第三个离心叶轮58,它与其外壳60一起构成一第三个压缩级。
来自第二级的压缩空气,途中经过第二个中间冷却器62,流向第三级。在第一个小齿轮38上还装有一第四个离心叶轮64,它与其外壳66一起构成一第四个压缩级。来自第三级的压缩空气,途中经过一第三个中间冷却器68,流向第四级。压缩空气流32从第四级流向再生式换热器26进行预热。
取自第三个压缩级的压缩空气流70如图1所示流向处理装置。然而,处理装置空气和燃烧室空气也可以按需取自各级的任何组合。可用多于或少于三级来压缩处理用气流。可用多于或少于四级来压缩燃烧用空气流。
与大齿轮啮合的两个小齿轮通过将其定位在齿轮箱通常的分开线上最为容易安装,此分开线处于齿轮箱72的水平中心线74上。第三个小齿轮可安装在齿轮箱中另一条水平分开线76上,该水平分开线正好处在大齿轮40的顶端上方。
为了起动燃烧室一滑轮机组以及与其相联的压缩机,此系统必须通过另一个传动机构使之旋转到某一转速,通常为燃烧室-涡轮机组正常工作转速的20%。如图1所示,与大齿轮轴41连接的电动机42就是用于起动此燃烧室-涡轮机组10的。在稳定工作状态下,电动机42可用作一发电机。可变换的一种方式是起动机可通过一些齿轮与一小齿轮连接,此小齿轮则与大齿轮啮合(图中未示出这种结构形式)。
燃烧室-涡轮机组和组合式齿轮传动压缩机联合起来,可允许在压缩机齿轮箱范围内作各种必要的速度变换,这样就使得设备方面更经济和工作上更有效。压缩空气从经中间冷却的组合式压缩机向燃烧室-涡轮机组进入供以燃烧,可显著提高工作效率。
图3是在温-熵图上描述了图1所示系统采用的工作过程。图中表示了压缩过程,即第一级压缩为78,第二级压缩为80,第三级压缩为82和第四级压缩为84。图中还表示了随后的中间冷却过程,即用于第一级中间冷却过程为86,第二级冷却为88,第三级冷却为90。接着的是一再生式加热阶段92、一燃烧阶段94、一第一膨胀级96,一再加热阶段98,一第二膨胀级100,以及一回热阶段102。图上示出了与实际的非理想的压缩和膨胀过程相应的理想等熵过程(图中表示为垂直线)。
在图4所示的另一系统实施例中,一燃烧室-涡轮机组242的输出轴240是通过一联轴器244与一轴246相连,一小齿轮248安装在轴246的一侧上,小齿轮248与大齿轮250啮合并驱动此大齿轮。在轴246上还要装有一个叶轮252,该叶轮和其外壳一起构成了一个压缩级。小齿轮246的另一侧与一轴254连接,轴254上配装有两个叶轮256和258,它们组成了另外的两个压缩级。因此,这一实施例表示了一单列式设置的多个压缩级。图4所示实施例的其它部分与图1所示实施例中的那些部分相同。
在图5所示的又一种系统实施例中,一燃烧室-涡轮机组104与一组合式齿轮压缩机106,通过将燃烧室-涡轮输出轴108和一第一小齿轮110连接起来而联合成整体,第一小齿轮110与一第二小齿轮112啮合,小齿轮112则与压缩机的大齿轮114啮合。在第二个小齿轮112的轴上安装有一第一个离心叶轮116,其构成一第三压缩级。与大齿轮114啮合的还有一第三个小齿轮118,在小齿轮118的轴上安装有一第二个离心叶轮120,其构成了一第一压缩级。一第四个小齿轮122亦与大齿轮114啮合,在小齿轮122的轴上安装有一第三个离心叶轮124,其构成一第二压缩级。
如果需要的话,还可以安装另外的离心叶轮,以提供另外的压缩级。每个小齿轮可以通过选择它们的直径,来使之以不同的转速旋转。在图5所示的实施例中,小齿轮有4种不同的直径,因而以四种不同的速度旋转。
在各压缩级之间是中间冷却器,中间冷却器用水、空气或其它适用的介质来冷却。为了起动系统,可在燃烧室-涡轮机组104引出的一第二根轴上(图中未示出)连接一电机(图中未示出)。
如图6所示,由一电动机一发动机128驱动的原有的处理压缩机126,可以方便地与一附加的组合式齿轮传动压缩机130联合,此传动压缩机130是由一燃烧室-涡轮机组132驱动。在本实施例中,燃烧室-涡轮机组132有一根与附加的压缩机130相连的轴134和一根与原有压缩机126相连的轴136。这两根轴可以不同的速度旋转。在燃烧室-涡轮机组132工作期间,任何多于驱动两个压缩机所需的功率都可用于电动机-发电机128,以便生产可在别处使用的电功率。
如图6所示,从新压缩机130来的压缩空气流135可分为进入燃烧室132的空气流137和进入处理装置的气流138。气流138与来自原有压缩机126的压缩空气流140汇合。
图7所示的本发明的另一种实施例可用于避免燃烧室-涡轮机组因供往处理装置的压缩空气损失而有产生故障的危险。在这一实施例中即可以用一电机驱动,也可以用一燃气涡轮机驱动。一电机142通过一第一个联轴器144与一轴146相连,轴146与一第一大齿轮148组合成一体,此大齿轮148与一高压压缩机150组合在一起。一第一小齿轮152与第一大齿轮148啮合,在小齿轮152上配装有一第二压缩级154和一第三压缩级156。与第一大齿轮148啮合的还有一第二个小齿轮158,在小齿轮158上配装有一第四压缩级160和一第五压缩级162。在第二和第三压缩级之间设有一第二中间冷却器164,在第三和第四压缩级之间设有一第三中间冷却器166,在第四和第五压缩级之间设有一第四中间冷却器168。一来自第五压缩级162的压缩空气流170通过管道输往驱动高压压缩机150的燃烧室-涡轮机组172的燃烧室中。一来自第四压缩级的压缩气流174或一来自第二压缩级162的压缩空气流176通过管道输往处理装置。
驱动高压压缩机150的燃烧室-涡轮机组172具有一第一输出轴178,轴178通过一第二联轴器180与一第三小齿轮181连接,小齿轮181与大齿轮148啮合。燃烧室-涡轮机组172具有一第二输出轴182,轴182通过一第三联轴器184与一轴186相连,轴186与一第二大齿轮188组合在一起。一轴190从第二大齿轮188另一侧的中央伸出,该轴通过一第四联轴器192与一电动机一发电机194相联。
一第四小齿轮196与第二大齿轮188啮合,小齿轮196上安装有一第一压缩级198,其出口通往一第一中间冷却器200。第二大齿轮188和第一压缩级198组成一低压压缩机202,其出口通往第一中间冷却器200,从中间冷却器200出来的经冷却的压缩空气通过管道输入到在高压压缩机150上的第二压缩级154。空气经一进气管204吸入第一压缩级198,进气管204包括有一第一对法兰盘206,必要时可在法兰盘206处安装一挡板,以关闭第一压缩级198的吸气通道。进气管204的支路为管道208,管道208有一第二对法兰盘210,通常该处装有一挡板。在法兰盘206和210处可使用阀门。
为了使燃烧室-涡轮机组正常启动此系统至稳态运行,由电机194驱动低压压缩机202、高压压缩机150和燃烧室一涡轮机组172。在正常的稳态下,由燃烧室-涡轮机组驱动工作,电机142脱开,且燃烧室-涡轮机组172驱动高压压缩机150和低压压缩机202以及电动机一发电机194。所产生的电功率用于在别处的处理装置中。第一对法兰盘206开通,而第二对法兰盘210则加挡板关闭。
当燃烧室-涡轮机组172不工作而使用电机驱动时,电机142驱动高压压缩机150,压缩机150与设置的其余部分通过联轴器180脱开。第一对法兰盘206处加挡板关闭,而第二对法兰盘210开通,以允许尚未压缩的空气直接进入第一中间冷却器200,并流入高压压缩机150。在由电机驱动系统时,燃烧室-涡轮机组172不需要空气,而经压缩的空气从高压压缩机150中的第五压缩级162供往处理装置。由于低压压缩机202被绕过,故在高压压缩机150入口处的气流密度下降。然而,高压压缩机150的级数,应当满足处理装置所需的压缩空气的压力和流量的要求。
图8表示了一个系统的实施例,该系统包括有燃烧室-涡轮机组、压缩机和电机238,以将压缩空气供给到处理装置和通向现场外用户的供应导管。系统还可产生电功率,电功率可供现场使用。在该系统中,一第一燃烧室-涡轮机组212驱动一第一压缩机214,第一压缩机214将空气供入一导管216中。导管216将空气相应地供往第一燃烧室-涡轮机组212,供往现场的其它燃烧室-涡轮机组220,226,230,234,供往现场的处理装置218以及现场外的用户。一第二燃烧室-涡轮机组220驱动一再循环压缩机222,压缩机222将氮气压入一气体液化装置224中。一第三燃烧室-涡轮机组226驱动氮气制品压缩机228,以及一第四燃烧室-涡轮机组230驱动一氧气制品压缩机232。一第五燃烧室-涡轮机组234驱动一辅助空气压缩机236,以便按需将压缩空气供给空气供应导管216。任何一个或所有的燃烧室-涡轮机组可以与起动机-发电机连接起来,例如起动机-发电机238。系统中还可附加其它压缩机,以压缩另的流体。
图9表示本发明的一个实施例,其包括有一个驱动一第一组合式齿轮传动压力处理机242和一第二组合式齿轮传动压力处理机244的燃烧室-涡轮机组240。燃烧室-涡轮机组240具有一燃烧室246,燃烧室246向涡轮机248供应热燃气,涡轮机248驱动一输出轴250。输出轴250与一小齿轮252相连,小齿轮252与第一组合式齿轮传动压力处理机的大齿轮254以及与第二组合式齿轮传动压力处理机的大齿轮256啮合。每个大齿轮都与一个起动机-发电机258相连,可使用两个起动机-发电机258中的任何一个起动燃烧室-涡轮机组。在燃烧室-涡轮机组进入运转之后,起动机-发电机可用来发电以作他用。
每一个组合式齿轮传动压力处理机具有一定数量的压力处理级。其中一些级可以在流动上串联连接。连接可仅限于一单个压力处理机,或也可以从一个压力处理机延伸到另一个。在压缩级间和级后通常采用中间冷却器。一个压力处理级通常包括一个外壳和一个包含在外壳的叶轮,叶轮装在一个小齿轮上,而小齿轮与压力处理机的一大齿轮啮合。
在燃烧室-涡轮机组轴250上装有一燃烧室-涡轮机组的压力处理级260,压力处理级260用来压缩吸自大气的空气流262。一导管264将燃烧室-涡轮机组的压力处理级260的出口与组合式齿轮传动压力处理机中之一个的压力处理级266进口连在一起。空气流在一系列连续的压力处理级266、268和270中被加压,然后,其一部分压缩空气经导管输往处理装置,诸如低温空气分离装置或另外的燃烧室-涡轮机组。另一部分压缩空气通过导管输往一个或多个任选的附加压力处理级272,并接着供入燃烧室-涡轮机组与燃料一起燃烧。从最后一个压力处理级出口的压力应选为能与燃烧室的工作压力相匹配。
可以在一个或多个组合式齿轮传动压力处理机中,同时处理多种别的气流。图9表示出一个例子。诸如来自一空气分离装置的氮气制品的气流274,在两压缩级276和278中被压缩到一用户所要求的压力,而后被供入输送导管中,以输往使用场地。
具有在大气压力和燃烧室工作压力之间的某个压力的废气流280,在一压缩级282中被增压至燃烧室工作压力,并通过导管输入燃烧室-涡轮机组的燃烧室中。因此等于将一等量的空气流从大气压力压缩至废气流初始压力所需的能量被节省下来。这种方法特别适用于在处理装置是一空气分离装置的场合下,此空气分离装置工作在比一般的要高的低水银柱压力下,亦即称作一高压装置。在这一类装置中,低压水银柱控制为压力至70磅/寸2(psia),比一般的压力高17磅/寸2(psia)。废气流被增加至燃烧室压力,而燃烧室的压力范围可从大约100磅/寸2(psia)至大约300磅/寸2(psia),有代表性的为215磅/寸2(psia)。压力处理机由燃烧室-涡轮机组驱动。与空气相比氮气含量加浓的压力废气流,将带来降低燃烧室中氧浓度的附加的好处,从而减少氧化氮的生成,排出氧化氮会污染大气。
为了回收能量,一来自一处理装置的高压废蒸汽流286或一废蒸汽流,可进入装在燃烧室-涡轮机组输出轴250上的一压缩级288中膨胀,并接着或可选择地在组合式齿轮传动压力处理机中之一中的一压缩级289中进行膨胀。一来自一处理装置或来自一常用气供应总管的燃料气流290,可在一压力处理机的一压缩级292中压缩,并直接进入燃烧室-涡轮机组。还有一股可用的蒸汽流296可引入到燃烧室,用以增加功率和控制废气排放量。
对将压缩空气供往两个空气分离装置进行了功率成本比较进行分析。按照本发明第一个装置使用燃烧室-涡轮机组,以驱动一组合式齿轮传动压缩机,将压缩空气供往空气分离装置和燃烧室-涡轮机组。燃烧室-涡轮机组和压缩机示意地表示图1中,并按照图3所示的过程进行操作。组合式齿轮传动空气压缩机有四个压缩级。经每级压缩比为1.905共三级压缩之后的压缩空气被供往空气分离装置。再经压缩比为1.6的另一级压缩之后,压缩空气供入燃烧室-涡轮机组。
第二种装置按惯例使用一电机驱动一组合式齿轮传动空气压缩机,该压缩机将压缩空气供往空气分离装置。除以下所述外,此压缩机也表示在图1中。空气压缩机只有三级压缩,每级的压缩比为1.9。输往空气分离装置的压缩空气,其压力与在第一种装置中的相同,亦即压力为96.5磅/寸2(psia),没有设置第四压缩级、燃烧室-涡轮机以及其再生式换热器。
这两种装置的规模均为每天额定产量为160吨的氧气制品。在进口压力为14.6磅/寸2(psia)和进口温度为68°F时,所需的空气流量为796,000标准立方尺/时(sc.fh)。在每个中间冷却器中的压降为0.75磅/寸2(psia),在燃烧室、再生换热器和再加热器中的压降各为2.0磅/寸2(psia)。冷却水温可用到68°F,而在中间冷却器中的温度约为10°F。压缩机的级效率为85.5%,涡轮机的级效率为90%,机械损失为3%。再生式换热器的工作效率为90%。假定电耗费为每千瓦小时(per kw-hr)0.04美元,而用于燃烧室-涡轮机组的天然气燃料每1,000立方尺(cu.ft)为3美元。
装置按每年工作8,500小时计算,第一个装置每年的动力成本是290,000美元,而第二种装置为560,000美元。因此,按本发明的工作方式可节约动力成本48.7%。
尽管上面在一定程度上对本发明作了详细说明,但只是通过举例公开了本发明,在细节上和对设备的配置以及处理过程还可以作出许多改变或变化,而不背离本文权利要求中所述的本发明的精神和范围。
权利要求
1.一种用于供应部分取自此系统本身的压缩气流的系统,其包括有(a)-带有一输出轴的燃烧室-涡轮机组;(b)-第一个组合式齿轮传动压力处理机,该处理机具有(1)一个大齿轮;(2)至少一个用于压缩所述气流的组合式齿轮传动压力处理级,在传动关系上所述压力处理级与所述大齿轮连接,并有一个进口和一个出口;(c)从所述至少一个组合式齿轮传动压力处理级中之一级引出的导管,用于取出所述部分气流;(d)从所述至少一个组合式齿轮传动压力处理级中之一级的导管,通往燃烧室-涡轮机组,用于将所述气流的一部分通过导管输往所述燃烧室-涡轮机组;以及(e)通过所述燃烧室-涡轮机组的轴来驱动所述大齿轮的装置,所述装置包括一个传动小齿轮,此小齿轮与所述涡轮输出轴连接并与所述大齿轮啮合;或此装置包括一个传动小齿轮,此小齿轮与所述涡轮输出轴连接,并与另一个小齿轮啮合,此另一个小齿轮再与所述大齿轮啮合。
2.按照权利要求1所述的设备,其进一步包括,至少一个组合式齿轮传动压力处理级,用于使气流膨胀。
3.按照权利要求1所述的设备,其进一步包括,至少一个燃烧室-涡轮机组压力处理级,它在传动上与所述燃烧室-涡轮机组的-涡轮轴连接起来。
4.按照权利要求3所述的设备,其还包括,将所述至少一个燃烧室-涡轮机组的压力处理级中的至少一级,与所述至少一个组合式齿轮传动压力处理级中的至少一级连接起来的导管。
5.按照权利要求1所述的系统,其还包括(f)第二个组合式齿轮传动压力处理机,其具有(1)一个大齿轮;以及(2)至少一个组合式齿轮传动压力处理级,在传动上该处理级与所述大齿轮连接;且其中用于驱动所述第一个组合式齿轮传动压力处理机的大齿轮的所述装置包括一个小齿轮,此小齿轮既与所述第一个组合式齿轮传动压力处理机的大齿轮啮合,也与所述第二个组合式齿轮传动压力处理机的大齿轮啮合。
6.按照权利要求1所述的系统,其还包括(f)第二个组合式齿轮传动压力处理机,它具有(1)一个大齿轮,在传动上该大齿轮与所述燃烧室-涡轮机组输出轴连接;以及(2)至少一个组合式齿轮传动压力处理级,其有一个大气进口和一个出口,所述处理级在传动上与所述大齿轮连接;以及(g)用于有选择地将所述第一个组合式齿轮传动压力处理机的所述至少一个压力处理级中之一级的进口,或与大气或与所述第二个组合式齿轮传动压力处理机的压力处理级出口连通的装置。
7.按照权利要求6所述的系统,其还包括一个装置,该装置用于有选择地切断所述第二个组合式齿轮传动压力处理机和燃烧室-涡轮机组输出轴之间的传动连接。
8.一种将压缩空气供往一处理装置的方法,所述的方法包括(a)配备一个燃烧室-涡轮机组;(b)配备一个至少具有一个压力处理级的组合式齿轮传动压力处理机;(c)用所述燃烧室-涡轮机组驱动所述组合式齿轮传动压力处理机;(d)在所述组合式齿轮传动压力处理机中压缩空气流;(e)通过导管将至少一部分压缩空气流,从所述组合式齿轮传动压力处理机,输往所述燃烧室-涡轮机组和处理装置。
9.按照权利要求8所述的方法,其还包括(f)配备一个燃烧室-涡轮机组的压力处理级;以及(g)用所述燃烧室-涡轮机组来驱动所述燃烧室-涡轮机组压力处理级。
10.按照权利要求8所述的方法,其还包括,将所述燃烧室-涡轮机组压力处理级与所述至少一个组合式齿轮传动压力处理级连接的步骤。
11.按照权利要求8所述的方法,其还包括,在所述组合式齿轮传动压力处理机中,除大气之外,对至少另一种气流同时进行压力处理的步骤。
12.按照权利要求11所述的方法,其中,在所述组合式齿轮传动压力处理机中进行处理的所述其它气流中至少一种通过导管输入所述燃烧室-涡轮机组中,以便在其中进行处理。
13.按照权利要求11所述的方法,其中,使所述至少另一种气流的压力高于大气压力。
全文摘要
一种利用一燃烧室-涡轮机组将压缩空气供往一处理装置的方法和系统,该燃烧室-涡轮机组与一个大齿轮直接连接,该大齿轮与一些小齿轮啮合,小齿轮上装有气体压缩级和膨胀级。一级压缩空气流,将其供往燃烧室-涡轮机组供燃烧之用和供往处理装置。另一级膨胀或压缩其它气流,供往燃烧室-涡轮机组或外部用户。采用能量直接传输、中间冷却和压缩级后的再冷却,以提高系统的效率。
文档编号F02C7/143GK1099458SQ9410229
公开日1995年3月1日 申请日期1994年3月11日 优先权日1993年3月12日
发明者J·B·伍尔夫 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1