薄膜金属和合金的低速率电化学蚀刻的制作方法

文档序号:5291115阅读:252来源:国知局
专利名称:薄膜金属和合金的低速率电化学蚀刻的制作方法
技术领域
本 发明涉及蚀刻,更具体地,涉及对诸如磁盘驱动器中使用的金属和合金的低速率电化学蚀刻。
背景技术
蚀刻是广为人知的,用于金属和合金处理,更具体地,用于电子器件制造。例如,蚀刻一般用于磁记录头的制造。蚀刻可以通过多种方法实现,包括化学(湿式)蚀刻、电化学(湿式)蚀刻和(干式)离子统(ion milling)。在化学(湿式)蚀刻中,衬底被浸入强酸或碱溶液中,并且暴露于溶液的衬底的表面被蚀刻掉。在电化学(湿式)蚀刻中,衬底也被浸入强酸或碱溶液,并且暴露于溶液的衬底的表面被蚀刻掉。然而,不同于化学(湿式)蚀刻,一旦衬底被浸入溶液中,净阳极电流即被施加至衬底以促进蚀刻处理,其中净阳极电流包括大的部分阳极电流分量和较小的部分阴极电流分量。在(干式)离子铣期间,通过使用亚微型离子要素(例如,氩离子)轰击衬底表面来促进蚀刻。通常,当离子轰击衬底表面时,布置在表面上的材料被蚀刻掉。离子铣通常在衬底处于真空腔中时执行,并且衬底被置于旋转台上以确保衬底的均匀蚀刻。依赖于衬底和衬底上的被蚀刻的材料,这些蚀刻方法中的任意方法可以使用保护层(例如,光刻胶层或者硬掩膜层)来保护衬垫的下层免受蚀刻处理
发明内容


通过示例的方式而非限制性地根据附图对本发明进行图解说明,附图中图IA到图IC是示出根据本发明的各实施例针对酸溶液中的包括金属或者合金材料的示例衬底的极化曲线及其各个电流分量的图形;图2是描绘根据本发明的实施例蚀刻速率作为电位的函数的图形;图3是图示根据本发明的实施例的蚀刻的示例方法的流程图;图4是图示根据本发明的实施例的确定电流范围的示例方法的流程图;图5是表示根据本发明的实施例基于电流条件针对示例合金的示例材料去除(厚度减少)作为时间的函数的图形;图6是表示根据本发明的实施例基于电流条件针对示例合金的示例蚀刻速率的图形;图7是根据本发明的实施例的示例种子材料蚀刻前和蚀刻后的图像;图8是根据本发明的实施例的示例种子层蚀刻前和蚀刻后的图像;以及图9是根据本发明的实施例的示例材料蚀刻前和蚀刻后的图像。
具体实施例方式在以下描述中,为提供对本发明的各个实施例的彻底理解而阐述了各个细节,例如具体层结构和属性的示例。然而对于本领域技术人员来说,不需要使用这些具体细节来实践本发明的各个实施例是显而易见的。在其它实例中,未详细描述已知的部件或者方法以避免不必要地混淆本发明的各个实施例。本发明的实施例包括使用净阴极电流或者电位进行低速率(湿式)蚀刻的系统和方法。具体地,一些实施例通过在衬底浸入电解质时向衬底施加小的净阴极电流来实现小于0. lnm/s的受控蚀刻速率。依赖于实施例,所使用的电解质可以包括与从衬底蚀刻掉的材料具有相同类型的阳离子。一些实施例在薄膜金属和合金的蚀刻以及磁头换能器晶片的制造中有用。各个实施例的使用允许(a)弱化学环境中的受控和低速率的蚀刻;(b)从衬底对最不贵重材料的选择性蚀刻;(C)避免传统化学或者电化学蚀刻中由于过度蚀刻或传统离子铣中由于过度铣对衬底的相邻层造成的损坏;(d)使用标准电镀工具进行蚀刻的蚀刻; 以及(e)部分蚀刻。例如,关于蚀刻最不贵重材料,本发明的一些实施例可用于蚀刻与更低Fe磁合金接触或与非磁性更贵重合金或者纯金属接触的高Fe、NiFe、C0Fe和CoNiFe磁合金。在另一示例中,标准电镀工具通过阴极电流控制和在衬底表面上的均匀对流传质分布可用于根据一些实施例执行蚀刻。根据一些实施例,标准电镀工具的使用允许该工具用于低速率蚀刻和镀覆。例如,标准电镀工具使用的用于磁合金镀覆的化学物质通常是(a)弱酸性的,其允许蚀刻速率低至次纳米/秒;并且(b)包含高离子浓度的被蚀刻材料(通常为Co+2、Ni+2、Fe+2),其允许最小化或者消除可能的污染。另外,对于一些实施例,单个镀覆单元中阴极电化学蚀刻与电化学沉积的结合可用于复杂纳米级结构的制造上,诸如高力矩(moment) VP3镶嵌柱。 为了描述一些实施例的功能,我们现在转向图1A-1C,其图示根据本发明的各实施例的处于酸溶液中的金属/合金材料(M)的极化曲线101及其电流分量(用极化曲线103和106表不)。图IA示出在存在包括金属/合金材料的二价离子(M+2)的水系酸性电解质的情况下,相同材料(M)的示例衬底的极化曲线101。极化曲线101是响应于施加的电位(E)的示例衬底(材料M)的净电流。如图所示,当E相对系统的开路或者平衡电位(Etl)阴性更强/更负(导致净阴极电流流过示例衬底)或者阳性更强/更正(导致净阳极电流流过示例衬底)时,电流将流过示例衬底(即,电流密度将减小或者增大),该系统包括处于水系酸性电解质中的示例衬底。如本文所述,当E比Etl更负时,示例衬底中产生净阴极电流(这里也称为阴极电流);并且当E比Etl更正时,示例衬底中产生净阳极电流(这里也称为阳极电流)。在平衡电位(Eci),将没有净电流流过示例衬底(即,i =0 )。极化曲线101代表示例衬底的电活性表面上发生的独立电化学处理各自的极化曲线103和106 (虚曲线)的净分布。顶部的极化曲线103对应于示例衬底置于酸性电解质时产生的M/M+2耦合体的极化曲线。如图所示,当E变得比开路或者M/M+2的平衡电位(E’ 0)更正或更负时,将发生M的氧化(M —M+2+2e_)或M+2的还原(M+2+2e_ — M)。底部的极化曲线106对应于示例衬底置于酸性电解质时导致的氢还原反应(2H++2f — H2)的极化曲线。
应当注意到并未观测到底部极化曲线106与电位(E)轴的交叉点,这归因于水系酸性电解质(诸如图IA中考虑的)中通常不存在H2的事实。图IB是图IA的极化曲线101的放大图,并且其图示出在Etl处流过示例衬底的部分阳极电流(ia)和部分阴极电流(i。)抵消的作用效果(即,ia0=-ie0>O在这种条件下,将以分别与iao和成比例的速率发生氧化反 应(M — M+2+2e_)和还原反应(2H++2e_ — H2)。因此,尽管在平衡电位(Etl)将没有净电流流过示例衬底(即,1=、+1。。=0),但是衬底上的电化学处理仍旧发生并导致在不存在外部驱动力(即,i=0)的情况下自示例衬底的M的电化学蚀刻。图IC例示图IA的极化曲线101的另一个放大图,并且其图示了以下情形所施加的E’ ^和Etl之间的阴极电位E2导致流过示例衬底的净阴极电流(i2)。具体地,通过对系统进行偏置使得系统的电位(E)比Etl阴性更强(例如,其中E=E2)的方式,产生大的部分阴极电流分量(例如,込2)和更小的部分阳极电流分量(例如,ia2),从而IicJ > IiaU所产生的净阴极电流流过示例衬底,并且在不存传质限制的情况下以E的函数的形式呈指数级增长。如图IC的图示,以分别与部分电流ia2和1。2成比例的速率驱动氧化反应(M — M+2+2e_)和还原反应(2H++2e_ —H2)。当电位在负方向增加时,阳极部分电流分量变得更小,并且最终在M/M+2的平衡电位(E’ 0)处消失,而阴极分量成为主导。在平衡电位E’ ^和Etl之间的区域中,发生M的慢氧化和H+的快还原,因而产生示例衬底的低速率电化学蚀刻。图2是描绘作为电位的函数的蚀刻速率曲线203的图形,其图示出一些实施例如何实现从包括M的给定衬底的M的低且受控的蚀刻速率。如图2所示,一些实施例通过控制示例衬底的电位使得电位落在平衡电位Etl和E’ 0之间的范围,从而实现M从示例衬底的低且受控的蚀刻速率。如本文提到的,当电位(E )变得比M的平衡电位(Eci)更正时,施加的净阳极电流被施加到给定的衬底,当电位(E )变得比M的平衡电位(Etl)更负时,施加的净阴极电流被施加到给定的衬底。因此,当净阴极电流被施加到示例衬底从而其电位在平衡电位Etl和E’ 0之间时,产生M自示例衬底的低速率蚀刻。如在图2中观测到的,当零电流被施加到示例衬底(即,示例衬底的电位在Etl)时,系统在不使用任何净电流的情况下实现M的最高蚀刻速率。当净阴极电流被施加到示例衬底从而衬底的电位最接近E’ 0时,可以使用净阴极电流实现M的最低蚀刻速率。如果净阴极电流被施加到衬底从而电位(E)等于M/M+的平衡电位(E’ J或比平衡电位(E’ 0)更负,则如果系统中还存在M+2,将可能发生M的电沉积。蚀刻速率曲线203图示M的蚀刻速率如何与氧化反应(M — M+2+2e_)的部分阳极电流密度成正比,以及在不存在传质限制的情况下M的蚀刻速率如何具有对电位(E)的指数依赖。图3是图示根据本发明的实施例进行蚀刻的示例方法的流程图。示例方法300开始于操作303,包括第一材料的金属或者合金的衬底被提供用于蚀刻,以及操作306,包括第一材料或者第二材料的电解质的蚀刻溶液被提供用于蚀刻处理。衬底例如可以包括Co、Ni或者Fe的纯金属或者合金(例如,NiFe、CoFe、CoNi、CoNiFe),或者NiFeX、CoFeX或CoNiFeX的合金,其中X可以表示Pt、Ru、Rh、Pd、Cr或者Cu。蚀刻溶液例如可包括具有由支持性电解质提供的高传导率的Fe (II)、Ni (II)或Co(II)的阳离子,并且还可以包含缓冲化合物和润湿剂。示例蚀刻溶液包括但是不限于NiFe、CoFe和CoNiFe镀槽化学物质。因此,在一个实施例中,为了蚀刻包括CoNiFe膜的衬底,可以利用包括CoNiFe镀覆溶液的蚀刻溶液。蚀刻处理开始于操作309,衬底被浸入蚀刻溶液而(净)阴极电流被施加到衬底,阴极电流使得蚀刻溶液导致衬底的第一材料被蚀刻并且发生还原反应。如上所述,在一些实施例中,阴极电流使得针对衬底的第一材料和电解质的第一材料或者第二材料,衬底和电解质的电位落入平衡电位Etl和E’ C1之间的范围。 例如,在衬底包括CoNiFe膜且蚀刻溶液包括CoNiFe镀覆溶液的情况下,包括CoNiFe膜和CoNiFe镀覆溶液的系统的电位将需要落入系统的平衡电位Etl和E’ 0之间的范围。依赖于实施例,操作309可包括准备衬底,以便在衬底被浸入蚀刻溶液之前施加 阴极电流或者在衬底被浸入蚀刻溶液之后施加阴极电流。在一些实施例中,阴极电流通过恒电流法(例如,使用恒定的电流控制)或者恒电位法(例如,使用恒定的电位控制)被施加到衬底。另外,在一些实施例中,造成以及控制衬底的低速率蚀刻包括维持蚀刻溶液的温度、pH、电解质浓度和混合速率处于或接近规定值。因此,本发明的实施例可以利用可维持恒定电解质温度、提供均匀电解质混合到被蚀刻的衬底的表面上以及在衬底和阳极之间提供恒定且可控DC电流流动的工具。如此处提到的,在本发明的一些实施例中,可以使用标准的电镀工具(例如,用于镀覆NiFe、CoFe和CoNiFe的工具)。方法300和其它实施例可用于包括蚀刻镀覆或者溅射结构的衬底,并且可用于制造诸如磁记录头的盘驱动部件。根据一些实施例,方法300还包括使用蚀刻处理从衬底去除氧化物以及使用镀覆处理在衬底上电沉积第一材料或者第二材料。例如,在使用根据一个实施例的蚀刻处理从包括材料M的衬底去除氧化物之后,可以增大用于从衬底蚀刻氧化物的(净)阴极电流使其超过M/iT2的平衡电位(即,E’J,从而发生衬底上M的电沉积。应当注意的是,对于一些实施例,仅仅当更贵重或者非电活跃结构邻近被蚀刻的材料时才执行蚀刻处理。在一些实施例中,当进行衬底的蚀刻时,衬底上的恒定的电活跃区域被保持。图4是示出根据本发明的实施例确定电流范围的示例方法的流程图。示例方法400确定的电流范围用于校正和促进根据本发明的实施例的电化学蚀刻处理。方法400开始于操作401,其中包括第一材料的金属或合金的衬底被提供用于蚀刻,以及操作404,其中包括第一材料或者第二材料的电解质的蚀刻溶液被提供用于蚀刻处理。随后,在操作407,在衬底浸入蚀刻溶液时阴极电流的集合被连续地施加到衬底。在一些实施例中,集合中的每个阴极电流具有针对电化学蚀刻处理估算的不同的阴极电流值。在各实施例中,阴极电流的集合在其中蚀刻速率最大的“零电流”(即,系统的平衡电位E0)到其中蚀刻速率变为零并且可能开始电沉积(即,系统的平衡电位E’ 0)的净阴极电流值的范围内。当每个阴极电流被施加到衬底而衬底在蚀刻溶液中时,在操作410,观测衬底的第一材料用于蚀刻。依赖于实施例,可以通过多种方式观测蚀刻,这些方式包括但不限于轮廓测定法、X射线荧光(XRF)或者检测衬底的饱和磁化强度的变化。基于在操作410期间针对施加的来自集合的每个阴极电流观测的内容,在操作413,可以确定当衬底被浸入蚀刻溶液时导致第一材料从衬底被蚀刻的阴极电流的范围。图5是表示根据本发明实施例基于电流条件针对示例合金的示例材料去除(厚度减少)与时间的函数关系图。图5图示根据本发明实施例经受范围从25到75mA的净阴极电流的电镀的2. 3T CoNiFe膜。电镀的2. 3T CoNiFe膜具有约0. 5um的初始厚度,并且以全膜沉积到产生(seeded with) 500A溅射的Ta/Ru的6" AlTiC衬底上。如图5的图示,图中的每一个数据点 对应于当衬底经受指定的净阴极电流时衬底上的CoNiFe膜的厚度减少与时间的函数。在此情况下,蚀刻电解质是pH为2. 80、温度为18°C的同样的2. 3T CoNiFe镀覆溶液,并且包含来自硫酸盐、硼酸、氯化铵、表面活性剂、晶粒细化有机剂的钴、镍和铁二价离子。图5中的蚀刻速率对应于线性回归拟合曲线的斜率。图6是表示根据本发明实施例基于电流条件的合金的蚀刻速率的图形。图6显示针对此处描述的镀覆的2. 3T CoNiFe膜以及针对具有85%Fe含量并沉积在500A Ta/Ru底层上初始厚度为飞OOA的溅射的NiFe膜,蚀刻速率与净施加的阴极电流的函数关系。这些溅射的膜在指定的净阴极电流条件下被蚀刻,所述净阴极电流是在以上针对图5描述的2. 3TCoNiFe镀覆中施加的。图7是根据本发明的实施例的示例种子材料蚀刻前和蚀刻后的图像。图7例示在60秒期间使用50mA的净阴极电流去除残留CoFe种子至磁写入柱703的基部的情况。蚀刻硬件包括镀覆单元和用作蚀刻介质的2. 3T CoNiFe镀覆电解质,所述镀覆单元具有往复式桨,其提供对衬底的均匀混合。图8是根据本发明实施例的示例种子层蚀刻前和蚀刻后的图像。图8图示沉积在写入柱铝间隔材料上的NiFe (85%的Fe)种子层的电化学蚀刻。在图8中,50mA的净阴极电流在180秒内施加到S3种子层被局部暴露的图案化的6"衬底上。类似于图7,蚀刻硬件包括镀覆单元和用作蚀刻介质的2. 3T CoNiFe镀覆电解质,所述镀覆单元具有往复式桨,其提供对衬底的均匀混合。如本文提到的,在一些实施例中,通过蚀刻处理去除氧化物可以跟随材料的电沉积处理。图9是根据本发明的这种实施例的示例材料蚀刻前和蚀刻后的图像。在图9中,在镀覆之前,电化学蚀刻处理用于去除氧化物以改进镀覆的NiFe和溅射的种子层之间的粘接。图9呈现镀覆在包括IOOnm的NiFe (20%Fe)种子层上的NiFe材料的透射电子显微镜(TEM)图像,其中NiFe材料具有20-30%的Fe的公称成分。顶部图像903示出在镀覆之前不使用根据实施例的净阴极电流的情形,底部图像906对应于在镀覆之前在60秒期间施加根据实施例的净阴极电流(具体地,IOOmA)以有效地消除天然种子层氧化物的情形。
权利要求
1.一种电化学蚀刻的方法,所述方法包括 提供包括第一材料的金属或者合金的衬底; 提供包括第二材料的电解质的蚀刻溶液;以及 将所述衬底浸入所述蚀刻溶液,同时向所述衬底施加阴极电流,其中所述阴极电流被施加从而所述蚀刻溶液导致所述衬底的所述第一材料被蚀刻并且所述蚀刻溶液导致还原反应发生。
2.根据权利要求I所述的方法,其中,所述阴极电流包括导致所述衬底的第一材料被蚀刻的阳极电流分量和导致所述还原反应发生的阴极电流分量。
3.根据权利要求I所述的方法,其中,向所述衬底施加阴极电流包括向所述衬底施加第一电位,其中所述第一电位比包括所述第一材料和所述蚀刻溶液的耦合体的开路电位更负。
4.根据权利要求3所述的方法,其中,所述第一电位比所述第一材料的第二电位负的更少,其中,所述第二电位是包括所述第一材料和所述第一材料的离子的耦合体的第二开路电位。
5.根据权利要求I所述的方法,其中,向所述衬底施加阴极电流包括增加通过所述衬底的电流密度,从通过衬底的零净电流增加到通过衬底的第一净电流,其中所述第一净电流比所述零净电流更阴性。
6.根据权利要求5所述的方法,其中,通过所述衬底的电流密度增加,从而所述第一净电流相对通过衬底的具有零阳极分量的净电流具有更大的阳极分量或者相等的阳极分量,并且所述第一净电流相对零净电流具有更小的阳极分量。
7.根据权利要求I所述的方法,还包括调整所述阴极电流以调整所述衬底的第一材料的蚀刻速率。
8.根据权利要求7所述的方法,其中,控制所述阴极电流从而所述衬底的第一材料以提供纳米级或者埃级蚀刻精度的蚀刻速率被蚀刻。
9.根据权利要求I所述的方法,其中,所述阴极电流通过恒电流法或恒电位法被控制。
10.根据权利要求I所述的方法,还包括维持所述蚀刻溶液的温度、pH、电解质浓度和混合速率处于或者接近指定值。
11.根据权利要求I所述的方法,其中,所述第二材料包含与第一材料中发现的元素相同或者类似的元素。
12.根据权利要求I所述的方法,其中,所述方法用于被蚀刻镀覆或溅射的结构。
13.根据权利要求I所述的方法,其中,所述方法用于制造磁记录头。
14.根据权利要求I所述的方法,其中,所述方法用于从衬底去除氧化物。
15.根据权利要求14所述的方法,其中,在使用所述方法去除氧化物之后,所述阴极电流被增加,从而在所述衬底浸入蚀刻溶液中时,所述第一材料或者第二材料被电沉积在所述衬底上。
16.—种校正电化学蚀刻的方法,所述方法包括 提供包括第一材料的金属或者合金的衬底; 提供包括所述第一材料或者第二材料的电解质的蚀刻溶液; 将衬底浸入蚀刻溶液时连续地向衬底施加阴极电流的集合,其中集合中的每个阴极电流具有不同的阴极电流值; 当阴极电流的集合中的每个阴极电流被连续地施加到所述衬底且衬底在所述蚀刻溶液中时观测所述衬底的所述第一材料的蚀刻;以及 基于观测操作确定阴极电流的范围,当阴极电流被连续地施加到所述衬底且所述衬底处在所述蚀刻溶液中时所述阴极电流的范围导致所述衬底的所述第一材料被蚀刻。
17.根据权利要求16所述的方法,其中,所述集合的每个阴极电流具有比所述衬底的零净电流更阴性的净电流。
18.根据权利要求16所述的方法,其中,施加、观测和确定操作包括针对所述集合中的 每个存在的阴极电流执行以下操作 将所述衬底浸入所述蚀刻溶液同时向所述衬底施加来自所述集合的所述存在的阴极电流, 观测由于衬底被浸入蚀刻溶液并且存在的阴极电流被施加而引起的所述衬底的第一材料的蚀刻,由此产生观测值;以及 基于所述观测,确定存在的阴极电流是否应包括在阴极电流的范围内,所述阴极电流的范围在施加到衬底且所述衬底处于所述蚀刻溶液中时会导致所述衬底的第一材料被蚀刻。
19.根据权利要求16所述的方法,其中,观测所述衬底的第一材料的蚀刻包括使用轮廓测定法、X射线荧光(XRF)或者检测衬底的饱和磁化强度的变化来量化第一材料从衬底的损耗。
20.根据权利要求16所述的方法,还包括使用所述阴极电流的范围产生针对所述衬底和所述蚀刻溶液的校正曲线,其中所述校正曲线产生从而可用于选择用于权利要求I的方法的适当阴极电流。
全文摘要
本发明公开薄膜金属和合金的低速率电化学蚀刻。本发明的实施例包括使用净阴极电流或电位进行低速率(湿式)蚀刻的系统和方法。特别地,一些实施例通过在衬底被浸入水系电解质时向衬底施加小的净阴极电流实现小于0.1nm/s的受控蚀刻速率。依赖于实施例,采用的水系电解质可以包括与从衬底蚀刻掉的材料相同类型的阳离子。一些实施例在薄膜金属和合金的蚀刻以及磁头换能器晶片的制造中是有用的。
文档编号C25F3/02GK102965719SQ20121031574
公开日2013年3月13日 申请日期2012年8月30日 优先权日2011年8月30日
发明者J·A·梅迪娜, T·Y·W·江, M·江 申请人:西部数据(弗里蒙特)公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1