纤维态电解二氧化锰的生产工艺及相应的装置和专用电极的制作方法

文档序号:5274428阅读:778来源:国知局
专利名称:纤维态电解二氧化锰的生产工艺及相应的装置和专用电极的制作方法
技术领域
本发明是关于以低品位的锰矿石和工业盐酸为原料制造电池用的纤维态电解二氧化锰的方法及其专用的电解槽和专用电极装置以及该电极的制备。
具有电化学活性的电解二氧化锰被广泛的用在电池中作阴极活性材料。由于在以氯化锰电解液为体系的电解过程中,可以电解析出一种具有纤维结晶状的二氧化锰。这种二氧化锰表现出较好的电化学活性,特别在铵型锌锰电池中适合于强电流放电,表现出比普通电解二氧化锰有更突出的性能。加上可以充分利用氯碱工业的产物。由此,这种纤维态电解二氧化锰的生产成为人们多年来研究的方向,但是至今尚未工业化生产。
在美国专利US-3,535,217、US-3,708,408、和US-3,959,221中曾公开过一种纤维态电解二氧化锰的制备方法,其中的电解条件大致为“盐酸0.01~2.00M,二氯化锰0.2~6.0M电流密度0.3~8A/dm2,槽电压1.75~5.5V,电解液温度60~99℃。在此发明人还认为电解时最佳的实施条件是“盐酸0.01~1.0M,二氯化锰0.2~1.5M,电流密度0.5~3A/dm2,电解液温度85~98℃。按上述方法是可以制出纤维态电解二氧化锰。但是上述所给出的电解条件控制范围大,波动性,加上仅提到电解过程,而没有从原料到产品生产的全过程及一些必要的设备,因此可以说工业化大量生产还是难以实现。另外,上述专利中曾提到可采用钛镀铂或对氯气耐腐蚀的石墨电极。我们知道铂是一种贵金属,采用这种电极,其造价之高在工业生产中是无法实现。现有技术曾采用过石墨电极和钛电极。采用石墨电极,存在不耐氯腐蚀、寿命短,以及在敲剥二氧化锰产品时,常因受振击而容易断裂,以至无法重复利用使成本提高等问题。还由于石墨电极氯析出电位较低,容易付产出一点氯气,使电流效率降低。采用钛作阳极材料时,会由于Cl-的点蚀,而出现乳白色的二氧化钛生成,并出现钝化现象使槽压急剧上升,还伴随着电极上的二氧化锰产品出现龟裂,剥落或呈鳞状现象。
为此,本发明的目的就在于解决以工业盐酸与低品位的锰矿石为原料电解生产纤维态电解二氧化锰的方法在工业化实际生产中应用的问题。为了实现上述目标本发明将设计出合理而又切合实际的从原料至产品的整个生产工艺,并根据生产工艺的需要设计出相应的电解槽装置,与根据需要设计和制造专用的阳极。
本发明技术解决方案是由以下工艺与装置实现。其主要工艺有矿石预处理、溶矿净化、电解、产品后处理等。其装置主要有专用电解槽,专用阳极及该阳极的制备。
本发明技术解决方案的主要特征及依据为以下几点其一当使用的原料矿是氧化锰矿时,采用盐酸直接浸取氧化锰矿将会放出大量的氯气,造成大量污染的同时还会损耗大量的盐酸。因此,本发明对采用氧化锰矿时在浸取之前设置了将氧化锰矿还原焙烧成一氧化锰的工艺,随后再进行浸取。从而解决了使用氧化锰矿产生大量氯气的问题。如果原料矿不是氧化锰矿可省去还原焙烧工艺。
其二本发明在溶矿中使用的浸取液通过下列两种方式取得1、在初始浸取时,直接采用工业盐酸加水制成的溶液作浸取液浸取经还原焙烧后的矿粉熟料;
2、当有废电解液排出时,采用废电解液作为浸取液重新循环使用,但在使用前应向废电解液中补加适量的盐酸以保证浓度。
其三溶矿浸取后的电解液中含有除锰以外的许多重金属离子,在电解时它们会混入产品,造成产品质量降低,这里采取二步净化处理将其除去1、首先加入适量的硫酸和硫化钡,使大部分的金属生成硫化物沉淀除去,而Ba2+又生成硫酸钡除去。随后再加入适量的石灰乳中和。
2、对经上述净化处理后的溶液进行过滤,再测定重金属是否除净,如未除尽则应加入适量的SDD或者通入适量的硫化氢进行第二步净化处理。
其四、对于电解液温度、电解液锰浓度、电解液酸度、电流密度这些在电解过程中影响电流效率与电解析出二氧化锰产品质量的主要因素,本发明采取综合考虑,选择出适合工业化生产的最佳范围,具体如下1、对于电解液温度在较低温度时电解,固然会节省热能,可是槽电压会升高,从而增加电耗,并且产品质地疏松,敲实密度小,其电化学性能欠佳,不能适合电池业的使用要求。
另外,二氧化锰电析出的过电位是温度的函数,提高温度使电极电位降低,电能消耗有所减少,同时所得产品的敲实密度大,电化学性能好,又可提高电流效率。但过高的温度耗热能大,对大量生产不利,而且产品的质量并不都是一直随温度越高越好。所以,根据实践结果本发明采取将电解过程中的电解液温度严格地控制在90~96℃。
2、对于电解液锰浓度和电解液酸度由二氧化锰析出的电极电位ψ=ψ0+RT2Fln(H+)4(Mn2+)]]>可知电极电位与氢离子浓度4次方的对数值成线性关系。酸度增大势必增加电极极化,而使电流效率降低。但实验的结果却说明较高的酸度可使所析出的纤维态电解二氧化锰结晶的纤维方向性增强。因而提高放电性能。
至于二氧化锰浓度不能太高,因浓度偏高溶液的耗量大,且导电率有所降低,导致槽电压升高。但低于0.8M时,将会增大阳极的浓差极化,根据实践结果,本发明采用的二氧化锰浓度在0.8M~1.2M电解液酸度为中性(或微酸性)~0.6M。
3、对于电流密度随着电流密度增加,一方面使二氧化锰析出过电位提高,加剧析氯、析氧与其它付反应的进行,致使电流效率下降;另一方面用适当较大电流密度可提高所析出的二氧化锰产品的电化学性能。根据实践结果本发明采取将电流密度控制在1.4~2.5A/dm2,此时可得到较高的电流效率和优质的二氧化锰产品。
其五、阳极材料的选用由上所述可知现有技术都不能满足本发明工艺的需要,因此,这里采用以钛为基体的二氧化铅电极或以石墨为基体的二氧化铅电极作为本发明电解工艺中的专用阳极,并提出了该电极的制造方法。
其六、电解槽的选用考虑到电解槽应具有利于保温使能耗减少,节省导电铜排,减少电解车间占地,降低土建及建槽投资,以及可充分利用电解液,和有利于电解液的流速、浓度、酸度的控制等特点。因此本发明采用一种具有由二个或者二个以上的电解槽以串联的方式组合而成的多槽串联溢流式电解槽装置,而每个电解槽中都设置阴、阳电极。
其七、由于采用了本发明的工艺及多槽串联溢流式的电解槽装置这样在电解过程中将出现电解液浓度随着第一槽至最后一槽呈逐渐降低,而电解液酸度则随之呈逐渐升高的现象。因此,本发明采取根据实际情况分段控制各槽的电流密度,和控制第一槽进液与最后一槽出液的电解液的浓度与酸度等的措施,以保证各槽都有较高的电流效率和优质的产品。
以下将分述本发明各部分的具体技术解决方案。
一、矿石预处理该工序是将原料矿石与适量的煤混匀后进行干燥、破碎、筛选出2mm以下的矿粒和煤粒,进而经研磨成100目左右即可送往进行还原焙烧处理,非氧化锰矿无须还原焙烧处理。
还原焙烧是在还原温度为800~950℃及隔绝空气的情况下进行,使氧化锰还原成一氧化锰,随后将所得的矿粉熟料在隔绝空气的情况下冷却后密封包装供溶矿使用。
二、溶矿净化处理1、溶矿浸取是将上述经还原焙烧处理后所得到的粗细度约为100~120目的矿粉熟料在不断搅拌下投入含盐酸为5~10%的浸取溶液中,并使浸取过程的温度控制在70~90℃,可根据具体情况通蒸汽加热提高温度;当浸取溶液采用废电解液时,应先测定废电解液中酸的浓度与Mn2+的浓度,并根据测定的情况加入新的盐酸调节至上述浓度,同时根据测定的情况确定加入矿粉熟料的量,其余步骤同上。
2、净化处理一当浸取反应进行至浸取液的PH=2~3时,可加入适量的硫酸和硫化钡。当浸取反应全过程达4~6小时,再加入适量的石灰乳或者石灰石调节PH=5~6。当定性检验无Fe2+、Fe3+后即可将浸取液送去过滤得到粗电解液。
3、净化处理二用硫化氢〔或者硫化铵〕法检验上述所得粗电解液中重金属含量是否达电解要求。若达不到要求,则可进一步采取通入硫化氢或者加入SDD的方法进行第二次净化处理。最后再进行过滤就得到精制电解液,可送入电解槽中。
三、电解是通过电极向盛装在一种多槽串联溢流式电解槽中的二氯化锰电解液通入直流电,使阳极电解析出纤维态电解二氧化锰产品的工艺。
1、其电解液组成为二氯化锰0.8~1.2M,电解液酸碱度为中性〔或微酸性〕至0.6M〔用盐酸调节〕。
2、其电解条件槽电压2.0~3.0V,电流密度1.4~2.5A/dm2,电解液温度90~96℃。
3、电解槽装置采用一种由二个或者二个以上的电解槽串联排列组合而成的多槽串联溢流式的电解槽装置。每个电解槽内设有阴、阳电极。每个电解槽均为具有立体结构的容器,在每个电解槽的上部都分别设置了供电解液流入与溢出的入口与出口,入口与出口两者设置在相反的一侧。
4、电解液输入、输出方式电解液采取串联溢流方式输入、输出。也就是新电解液从串联的第一个电解槽上部的入口流入槽内,溢出的电解液由该电解槽的出口溢出流入下一个〔第二个〕电解槽上部的入口,进而由该电解槽〔第二个〕溢出的电解液又从该电解槽上部的出口溢出流入下一个〔第三个〕电解槽上部的入口而进入该电解槽。以此类推直至从最后一个电解槽的出口溢出的废电解液被送往溶矿净化处理工序作浸取液重新循环使用。另外,上述的上一个电解槽的出口就是下一个电解槽的入口。
5、电极阴极采用石墨电极棒。阳极采用钛基二氧化铅电极或石墨基二氧化铅电极。
所说的钛基二氧化铅电极由以下方法制备(1)取钛材料加工成所需规格,对其进行表面冲砂处理,冲砂深度达0.06mm左右。
(2)经冲砂处理后的钛基体用去污粉洗刷,随后再用10%的氢氧化钠溶液洗涤脱脂,再用蒸馏水冲洗干净后立即进行以下电沉积二氧化铅处理。
(3)二氧化铅层的电沉积a、电沉积液组成
硝酸铅200~350克/升硝酸0~20克/升硝酸铜2~3wt%氟化钠0.5~1克/升b、阴极采用石墨电极,阳极为上述处理过的钛基体。
c、电沉积温度55℃以上。
d、阳极电流密度1.0~10A/dm2。最好采取两段电沉积,前段电流密度最好为5.60A/dm2,后段电流密度最好为2.80A/dm2e、电沉积时间总约20小时。前段电沉积最好10分钟左右后段电沉积最好12小时左右。
(4)经电沉积处理后的电极经洗净后备用。
所说的石墨基二氧化铅电极由以下方法制备(1)将石墨加工成所需规格的石墨基体。并将石墨基体洗净后用10%的氢氧化钠溶液洗涤除油,再用蒸馏水洗净吹干。
(2)二氧化铅层的电沉积a、电沉积液组成电沉积液(A)是将氧化铅溶入3N的氢氧化钠溶液中至饱和的溶液。
电沉积液(B)为含硝酸铅150~200克/升,硝酸0~20克/升氟化钠0.5克/升的溶液。
b、电沉积条件使用电沉积液(A)时,温度为40℃,电流密度约1A/dm2,使用电沉积液(B)时,温度为85~90℃,电流密度为4~5A/dm2。
c、电沉积过程先将电极基体放入电沉积液(A)中电沉积处理至二氧化铅沉积层的厚度约为0.3mm,即可取出洗涤凉干。随后再送入电沉积液(B)中进行电沉积处理至第二次二氧化铅沉积层的厚度约为0.7mm,即可取出洗净凉干备用。
四、产品后处理通过破碎筛分、洗涤中和、烘干粉碎等处理工序,将电解所得块状纤维态电解二氧化锰产品制成高纯、优质、精细合格的成品。具体过程如下1、破碎筛分将块状的纤维态电解二氧化锰产品分批送破碎机破碎处理,破碎后再送入筛分机筛分出小于20目的产品可送去洗涤中和处理,大于20目的重新破碎处理。
2、洗涤中和将上述所得小于20目的二氧化锰产品用80℃的水洗涤,边洗涤边搅拌,洗涤1小时后,静置15分钟后排去洗涤水,同时测定洗涤水的PH值。上述洗涤可重复进行六次。当测得第四次洗涤水的PH<7时,可加入适量的碳酸氢钠调节,如PH>7时可不加碳酸氢钠。在进行第六次洗涤时可加入适量的氯化铵调节PH=7左右,排去洗涤水,过滤。
烘干粉碎将洗涤中和得到的二氧化锰产品送入90~100℃左右的烘房进行烘干处理4小时以上,并控制其含水份小于3%。烘干后再送入球磨机球磨粉碎处理至小于200目的二氧化锰含量达到或等于90%就可作为成品送去包装。
由于本发明采取了上述合理的工艺、专用电解槽装置及专用电极使以低品位的锰矿石和工业盐酸为原料生产电池用的纤维态电解二氧化锰的工业化大生产成为现实。所采用的多槽串联溢流的电解工艺,由于只需控制进、出口的电解液浓度,以及采用分段控制电流密度的方法,给操作控制带来了极大的方便,同时又使电流效率及产品质量都能控制在最佳范围。加上采用专用的电解槽和专用电极,克服了现有技术的不足,还降低了成本及消耗,提高了经济效益。生产出的纤维态电解二氧化锰产品其质量达到化工部HGI-710-69标准的一级品,以及达到我国电池用电解二氧化锰专业标准ZBG1300I-86的一级品标准。制出的纤维态电解二氧化锰产品经轻工部化学电源科学研究所制成R6p电池,经测试该电池全部性能超过GB7112-86《R20、R14、R6型锌-锰干电池》国标规定的指标。从实例7、8、9,可以知道所制成的电池,其放电性能说明本发明的产品优于现有技术制成的电解二氧化锰。
附图
是本发明电解工序中多槽串联溢流工艺〔即多个电解槽串联溢流〕示意图。图中的“
”表示流入的新电解液,“
”表示排出的废电解液,“→”表示前后各槽电解液溢流方向,“C”表示电解槽。
本发明实施例如下实例1取连城锰矿沉淀粉〔含TMn%30%〕10240kg与永定县东中煤矿无烟煤2560kg混均后,经干燥、破碎、碎磨至100目左右,分成32炉送入外燃式反射还原焙烧炉,在800~950℃的温度下焙烧得熟料8988kg。
实例2、取连城锰矿尾风管粉〔约含TMn%31%〕4984kg与永定县东中煤矿无烟煤1246kg混均后,经干燥、破碎、研磨至100目左右,分成18炉送入外燃式反射还原焙烧炉,在800~900℃的还原温度下焙烧得熟料3903kg。
实例3取电解液液〔Mn2+浓度为0.81M〕4000升,加入30%的工业盐酸310升,在不断搅拌下加入“实例1”的锰矿熟料300kg,通入蒸气加热至80~85℃,随后加入98%的硫酸10升。反应约2小时时加入硫化钡5kg,继续反应2小时后加入石灰10kg调节PH=5~6,再补入适量的水。再采用板框压滤机过滤后得4600升的电解粗液,向粗电解液中加入1.5kg的SDD进一步净化处理。最后采用电镀液过滤机过滤后,得到二氯化锰浓度为1.17M的精制电解液4450升。
实例4、取二氯化锰浓度为0.92M的废电解液4550升,加入30%的工业盐酸200升,在不断搅拌的情况下加入“实例2”的锰矿粉熟料335kg,通入蒸汽加热至75~85℃,随后加入98%的硫酸20升。反应2小时后加入硫化钡5kg。继续反应至3小时后加入石灰7kg调节PH=6左右,再补加适量的水。经板框压滤机压滤得到约4800升的粗电解液,再向粗电解液中加入0.2kg的SDD净化处理最后经电镀液过滤机过滤后得到二氯化锰浓度为1.2M的精制电解液约4600升。
实例5、采用四个容积为2.40M3的方形电解槽作为串联溢流电解槽装置。并采用石墨棒作阴极、钛基二氧化铅电极作阳极。电流密度分二段控制,即前段1.2号槽与后段3.4号槽电流密度不同。在电解过程不断的流入新电解液,和不断的排出废电解液。电解中各具体数据见“表1”和“表2”。
实例6、同实例5一样,但采用石墨基二氧化铅电极作阳极,电解中各具体数据见“表1”和“表2”。
实例7将上述实例5和实例6所得的纤维态电解二氧化锰〔简称“FEMD”〕混合后,从中取样制成R6C实体电池〔高容量纸板电池〕,同时也将现有的湘潭产电解二氧化锰〔简称“湘潭EMD〕做成同样的电池进行放电比较,“表3”是比较的情况,“表3”中的情况说明本发明的产品其放电性能优于现有产品。R6C实体电池的配方为FEMD〔或“湘潭EMD”〕AB=88∶12,外加16%的氯化铵、水分20%、电芯重量8.5克。放电温度为20±2℃。
实例8采用同实例7的方式进行对比放电试验,但这里是做成R20C实体电池,其电池配方基本同R6C实体电池,只是其中的电芯重量为58.5~59克,对比放电情况见“表4”,“表4”的情况同样说明本发明的产品优于现有产品。
实例9、采用同实例8的方式制成R20C实体电池进行对比放电试验,但不同的是在实体电池的配方中添加了2种天然放电锰粉,其配比为FEMD〔或湘潭EMD〕庙前天然锰粉∶建水天然锰粉∶AB=53∶1.75∶1.2(%),外加16%的氯化铵,水份为20%,电芯重量为58~58.5克。对比情况(放电)见“表5”。
权利要求
1.一种以低品位的锰矿石和工业盐酸为原料制造电池用的纤维态电解二氧化锰的方法,它包括矿石预处理、溶矿净化、电解及产品后处理,及采用石墨电极作阴极,本发明的特征在于1.1当采用氧化锰矿石作为原料矿时,在矿石预处理工艺中设置了还原焙烧处理,其还原焙烧处理是在隔绝空气和温度800~950℃的情况下进行;1.2、在溶矿净化浸取时,采用下述两种溶液作浸取液;1.2、1、初始浸取时,直接采用工业盐酸加入水溶液制成含盐酸为5~10%的溶液作浸取液;1.2、2、当有废电解液排出时,采用废电解液作浸取溶液重新循环使用,但应补加入适量的盐酸以使溶液中盐酸含量为5~10%。1.3、溶矿净化中采取下述两步净化处理1.3.1、净化处理一当浸取反应进行至浸取液的PH=2~3时,加入适量的硫酸和硫化钡,当浸取反应进行4~6小时,再加入适量的石灰或者石灰石或者石灰乳,调节PH=5~6,随后过滤成粗电解液,1.3.2、净化处理二对上述所得粗电解液用硫化氢或者硫化铵检验所含重金属是否达电解要求,如未达要求可采用加入适量的硫化氢或者加入适量的SDD进行第二次净化处理,随后再次过滤制成精制电解液。1.4、电解是以二氯化锰溶液为电解液,在一定的电解条件下,采用一种多槽串联溢流式电解,1.4.1、所说的二氯化锰电解液其二氯化锰的浓度为0.8~1.2M,其电解液的酸度为中性或者微酸性至0.6M范围[用盐酸调节]二氯化锰的浓度与电解液的酸度均由控制第一槽进液和最后一槽出液实现。1.4.2、所说的电解条件是,槽电压为2.0~3.0V,电解液温度为90~96℃,电流密度为1.4~2.5A/dm2,其中电流密度可采取针对前后电解槽采取分段控制各槽的电流密度,1.4.3、电解液的输入、输出是采取串联溢流式,即新电解液从串联的第一个电解槽上部的入口流入槽内,溢出的电解液由该电解槽的出口溢出流入下一个[第二个]电解槽上部的入口,进而由该电解槽[第二个]溢出的电解液又从该电解槽上部的出口溢出而流入下一个[第三个]电解槽上部的入口进入该电解槽内,以此类推直至从最后一个电解槽的出口溢出的就是废电解液。
2.根据权力要求1所述的方法,其特征在于电流密度分成二段控制,前段电流密度为1.850A/dm2或者1.830A/dm2,后段电流密度为1.513A/dm2或者1.420A/dm2。
3.根据权力要求1所述的方法,其特征在于进液的二氯化锰浓度为1.1M,出液的二氯化锰浓度为0.85M。
4.一种用于实施权利要求1所述方法所采用的电解槽装置,它包括石墨阴极,其特征在于采用了钛基二氧化铅阳极或石墨基二氧化铅阳极与下述的电解槽所说的电解槽是一种多槽串联溢流式电解槽,它是由二个或者二个以上的电解槽串联排列组合而成的电解槽装置,每个电解槽内都设有阴、阳电极,每个电解槽均为具有立体结构的容器,在每个电解槽的上部都分别设置了供电解液流入与溢出的入口和出口,就同一个电解槽而言入口与出口两者设置在相反的一侧,前一电解槽的出口也就是后一电解槽的入口。
5.一种用于制造权利要求4所述的钛基二氧化铅阳极的方法,其特征在于该方法由下列工艺组成(1)取钛材加工成所需规格,并对其进行表面冲砂处理至深度达0.006mm左右,(2)冲砂处理后用去污粉洗刷,再用10%的氢氧化钠溶液洗涤脱脂,再用蒸馏水冲洗干净即进行电沉积二氧化铅处理,(3)电沉积二氧化铅层电沉积液组成硝酸铅200~350克/升硝酸0~20克/升硝酸铜2~3wt%氟化钠0.5~1.0克/升电极石墨阴极,钛板作阳极。电沉积温度55℃以上,阳极电流密度1.0~10A/dm2,可采用两段电沉积,前段电沉积最佳电流密度为5.60A/dm2,后段电流密度为2.80A/dm2,电沉积时间约20小时,前段电沉积最佳时间为10分钟左右后段电沉积最佳时间为12小时左右,(4)完成上述步骤后可取出洗涤备用,
6.一种用于制造权利要求4所述的石墨基二氧化铅阳极的方法,其特征在于该方法由下列工艺组成(1)将石墨加工成所需规格的石墨基体。并将石墨基体洗净后用10%的氢氧化钠溶液洗涤除油,再用蒸馏水洗净冲干,(2)电沉积二氧化铅层电沉积液组成电沉积液〔A〕是将氧化铅溶入3N的氢氧化钠溶液中至饱和的溶液,电沉积液〔B〕是含硝酸铅150~200克/升,硝酸0~20克/升,氟化钠0.5克/升的溶液,电沉积条件使用电沉积液〔A〕时,温度为40℃,电流密度为约1A/dm2,使用电沉积液〔B〕时,温度为85~90℃,电流密度为5~5A/dm2,电沉积过程先将电极基体放入电沉积液〔A〕中电沉积处理至二氧化铅沉积层的厚度约为0.3mm,即可取出洗涤凉干,之后再送入电沉积液〔B〕中进行电沉积处理至第二次二氧化铅沉积层的厚度约为0.7mm,即可取出洗涤凉干备用。
7.根据权利要求4所述的电解槽,其特征在于采用四个电解槽串联排列组合的四槽串联溢流式电解槽装置。
全文摘要
本发明是关于采用一种多槽串联溢流式电解工艺及多槽串联溢流式电解槽装置和钛基二氧化铅阳极或石墨基二氧化铅阳极,并以低品位的锰矿和工业盐酸为原料生产电池用的纤维态电解二氧化锰。采用的电解液含二氧化锰浓度为0.8~1.2M,电流密度为1.4~2.5A/dm
文档编号C25B11/10GK1047708SQ8910375
公开日1990年12月12日 申请日期1988年5月29日 优先权日1988年5月29日
发明者张其昕, 连锦明, 赵崇涛, 郑振英, 陈震, 吴春洪 申请人:福建师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1