钢材的表面质量的检查方法

文档序号:6076973阅读:608来源:国知局
专利名称:钢材的表面质量的检查方法
技术领域
本发明涉及一种钢材的表面质量的检查方法。
背景技术
热压是对装入加热炉并加热到约900℃的钢板利用水冷金属模进行油压,从而在进行淬火的同时,冲压加工成高强度钢材构成的各种部件的技术。特别是最近,该热压扩大应用到包括薄钢板的各种钢材中。由此可以制造高强度的热压部件。
进行热压的钢材在冲压之前加热到900℃左右的高温。因此,在热压部件的表面上不可避免地随着该加热产生氧化皮。
如果对这种表面上存在着氧化皮的热压部件,在热压后直接进行点焊,那么与点焊机的电极接触的氧化皮生成部产生的焦耳热会过大。因此,点焊机的电极和热压部件容易焊着,由于该焊着,点焊机的电极从点焊机脱落。特别地,在设置有多个保持点焊机的焊接机器人的机器人自动焊接工序中,成为点焊机的电极脱落的原因,会有使生产线频繁停止的危险。
并且,热压部件通常在点焊之后进行涂装。也会如下产生涂装不良的危险在该涂装进行之后,随着氧化皮从基材剥落,形成于氧化皮生成部上的涂层剥落。
因此,历来在进行点焊之前,通过对热压部件进行例如喷砂处理等的去锈皮处理,除去热压部件表面上存在的氧化皮。

发明内容
由于热压部件不具有例如钢板这样的平坦形状,而是立体形状,因此喷砂处理时的喷射冲击力根据热压部件的部位不同不可避免地产生偏差。因此,利用喷砂处理的氧化皮的去除程度随着热压部件的部位不同而改变。由此,即使进行喷砂处理,在热压部件的表面上还可能部分残留着氧化皮。因此,在进行了喷砂处理以后,还有必要检查是否从热压部件整个表面完全去除了氧化皮。
但是,一直以来,没有一种检查装置,能够简便且定量地评价进行过喷砂处理的热压部件的表面质量。
例如,首先,考虑一种检查装置,能够在利用放大镜进行放大的同时,目视评价热压部件表面的氧化皮产生状况。但是,在该检查装置中,根据进行检查的操作者的不同,其评价不可避免产生偏差,同时该评价也不能定量。因此,即使利用该检查装置,也有漏掉表面氧化皮超过标准水平而过量生成的不良产品的危险。
其次,还考虑一种装置,从经过热压的热压部件中抽出一部分进行切断,用显微镜等测量该切断面上产生的氧化皮的厚度。利用该检查装置,的确可以进行定量的评价。但是该检查装置也具有以下问题切断热压部件需要相当长的工时(作业时间),切断的热压部件不能进入下级工序,并且由于不能直接测量进入下级工序的热压部件的表面上实际产生的氧化皮的厚度,因此还是有漏掉不良产品的危险。
本发明的目的在于提供一种钢材表面质量的检查方法。本发明的目的是提供一种钢材表面质量的检查方法,能够简便、定量、高效率且不破坏热压部件地预测和判断例如热轧钢板或者冷轧钢板经热压而成的热压部件的表面的氧化皮的产生状况、以及该热压部件进行点焊或涂装时的点焊性和涂装性。
作为热压部件的基材的铁的电阻值比铁表面产生的氧化皮的电阻值高得多,因此例如热压部件等的钢材表面上存在氧化皮时,该钢材表面的电阻值会明显提高。
因此,可以利用氧化皮的电阻值与铁的电阻值的不同,预测和判断钢材表面的氧化皮的产生状态以及钢材的点焊性和涂装性。
本发明是一种钢材表面质量的检查方法,其特征在于,在以一定的加压力压于钢材的2个测量端子间通电,测量测量端子间电压;对该钢材进行例如点焊、涂装等后处理,判断后处理的结果是否良好;根据后处理结果被判断为良好的钢材的测量端子间电压,求出能够得到良好的后处理结果的测量端子间电压值或测量端子间阻值的范围;并根据这样求得的该范围,预测对测量过测量端子间电压的钢材进行的后处理的结果。
在本发明中,优选钢材是对热轧钢板或冷轧钢板进行热压而得到的热压部件,后处理是例如点焊接等焊接。
在这些本发明中,优选使压于钢材的2个测量端子所负荷的加压力为8.7~208N/mm2范围内的值,使测量测量端子间电压时所通的电流的电流值在30A以下。
在这本发明中,优选测量端子间阻值在预先确定的电阻的临界值以下时判断为焊接性良好,而超过该电阻的临界值时判断为焊接性不良。此时,在加压力为P(N/mm2)时,优选将电阻的临界值设定为58P-0.55(mΩ)以上、480P-0.66(mΩ)以下的范围内的值。
本发明,例如历经下述(a)和(b)工序进行实施。(a)优选在以预定范围的加压力将电极压在进行过去氧化皮处理的热压部件上的状态下,向该热压部件通电。测量此时的电阻值,其后进行点焊和涂装。通过反复进行上述操作,在实际操作之前预先确定点焊性或涂装性没有问题的电阻值的适当范围。
(b)实际操作时,进行点焊之前测量热压部件的电阻值。并且,根据该电阻的测量值是否在通过工序(a)预先确定的电阻值的适当范围内,来预测和判断该热压部件表面的氧化皮产生状态以及钢材的点焊性和涂装性。
在特开平11-47935号公报的权利要求4中公开了通过使焊接用部件的表面的电阻在15×10-4Ω以下,而使焊接热集中在焊接部位,提高焊接效率的发明。但是,在该公报中并没有提出根据热压部件表面的氧化皮的电阻来预测和判断热压部件表面的氧化皮产生状态以及钢材的点焊性和涂装性。
另外,在特开2000-273609号公报中公开了将2片镀铝钢板重叠,用一对电极夹持,施加12.6kgf/mm2的加压力时的电极间接触电阻值为0.05~12mΩ,以及测量该接触电阻以用于评价焊接性。但是,该发明实际上是测量铝镀层的表面粗糙度的技术。铝镀层本身具有导电性,另外该铝镀层上设置的各种被膜最终也是均匀层。因此,即使利用该发明测量电极间的接触电阻,也不能根据该测量结果直接评价焊接性。
另外,焊接前的接触电阻值几乎不对接合强度产生影响,这是本领域技术人员公知的事实。


图1是表示用于实施本发明的方法的阻值测量装置的概略构成的说明图。
图2是表示利用阻值测量装置进行电阻测量时的状况的说明图。
图3是本发明的方法中被测量的电阻值的说明图。
图4是表示仅从钢材一侧进行测量的电阻测量装置的概略结构的说明图。
图5是表示焊着电流值(kA)与氧化皮的电阻值Rscale(mΩ)的关系的一例的图表。
图6是表示电阻值(mΩ)和加压力(N/mm2)的关系的一例的图表。
具体实施例方式
以下参照附图对用于本发明的钢材表面质量的检查方法的最佳实施方式进行详细说明。另外,在以下说明中,以钢材作为热压部件为例进行说明。另外,在图2中,与图1所示各部件相同的部件(装置)标以与图1相同的标号。
在图1中,在具有利用空气缸的加压机构1的装置中装有2个测量端子2、3。
该加压机构1只要是可以负荷一定加压力的机构就可以,并不限定为特定机构。作为加压机构1,例如有利用空气缸的加压机构、利用伺服电动机的加压机构,以及利用弹簧的加压机构等。作为该加压机构1,最简便的是利用使相对设置的一对电极间绝缘的点焊机。
测量端子2、3由可以通电的金属材料构成即可。作为这种金属材料例如有导电度高且强度高的铜合金。
测量端子2、3前端的形状也不需要特别限定。例如,可以是平面状,或者是具有15R以上、更优选40R以上的半径的曲面状。
如图2所示,利用测量端子2、3夹住热压部件4的两面进行加压时,可以同时测量热压部件4的表面和背面的电阻,因此这是优选的。
该加压机构1与未图示的空气供给源连接。通过按压未图示的开关,将空气从空气供给源供给到空气缸中,由此,包括测量端子2的部分下降。由此,如图2所示,试样即热压部件4被下降的测量端子2和固定设置的测量端子3以夹持状态支撑。另外,在上下测量端子2、3分离的情况下,测量端子2、3之间绝缘。
测量端子2、3与电流产生装置5连接。该电流产生装置5的种类并不需要特别限定,优选的是能够产生30A左右以下的恒定直流电流的装置,更优选能够产生0.5A至5A的恒定直流电流的装置。产生的电流值过高时,由于焦耳发热量的增加,会招致热压部件4的温度上升,可能会对电阻的测量值产生影响,同时也提高了触电事故的可能性。
恒定电流从该电流产生装置5经由测量端子2、3通至热压部件4。
利用电流计6测量通至热压部件4的电流值。电流计6只要是可以测量电流产生装置5所产生的电流值的装置即可。另外,在不使电流产生装置5具有电流测量功能时不需要电流计6。
利用2个测量端子2、3以一定加压力加压支撑热压部件4,同时从电流产生装置5向测量端子2、3间通以微量电流。
加压力并不特别限定,但优选是从8.7N/mm2(测量端子的前端直径为6mm时,25kgf)至208N/mm2(测量端子的前端直径为6mm时,600kgf)之间的恒定加压力。
加压力不到8.7N/mm2(25kgf)时,热压部件4和测量端子2、3的接触状态容易改变,测量误差变大。
另一方面,加压力超过208N/mm2(600kgf)时,热压部件4的表面压痕的深度变大,试样的商品性降低,同时随着测量次数的增加,测量端子2、3的变形量过大,测量值的偏差变大。
加压力较为优选34.7N/mm2以上、173N/mm2以下(100kgf以上、500kgf以下)。
电压测量装置7与测量端子2、3连接。一般地,热压部件4的电阻值在零点几mΩ~几百mΩ的范围内。因此,电压测量装置7只要是可以测量该范围内的电阻值的电压测量器或电压计即可。利用该电压测量装置7测量测量端子2、3间的测量端子间电压。
并且,利用电压测量装置7所测量的测量端子间电压和上述电流计6所测量的电流值,计算热压部件4的电阻值。
将这样得到的热压部件4的电阻值,与在操作前预先确定的例如由点焊性和涂装性与电阻值之间的关系而设定的电阻值的临界值进行比较,预测判断该热压部件4的表面质量(氧化皮的残存状况)、点焊性和涂装性优良与否。
具体来说,在得到的热压部件4的电阻值比临界值高的情况下,预测判断为热压部件4的表面上残存的氧化皮的量比基准值高,点焊性和涂装性不好。另一方面,在得到的热压部件4的电阻值比临界值低的情况下,可以预测判断为从热压部件4的表面充分地除去了氧化皮,点焊性和涂装性良好。
这样,能够定量地测量直接影响热压部件4的点焊性和涂装性优良与否的氧化皮的残存状况。
其次,通过利用图1所示该装置实施本发明的方法,更详细地说明预测评价热压部件4的点焊性的情况。另外,在实施本发明的方法时,在对热压部件4进行去氧化皮处理之后,或者不进行去氧化皮处理时,检查的操作内容都是相同的,因此,以下的说明以不对热压部件4进行去氧化皮处理为例。
本发明由以下列出的步骤(i)~(iv)构成。
(i)使能够以8.7N/mm2~208N/mm2的恒定加压力进行加压的2个测量端子2、3从热压部件4的两面压住,在测量端子2、3之间通有30A以下的恒电流。测量此时的测量端子间电压。
(ii)作为后处理,对该热压部件4进行点焊,判断点焊结果良好与否。
(iii)根据对点焊结果被判定为良好的热压部件4测得的测量端子间电压,求出点焊的结果为良好的测量端子间电压值或测量端子间阻值的范围,即求出点焊的结果从良好向不良变化的临界值。
(iv)根据点焊结果为良好的测量端子间电压值或测量端子间阻值的范围,即根据点焊结果从良好向不良变化的临界值,预测判断测量过测量端子间电压的热压部件4的点焊的结果。
对于该临界值的设定方法进行说明。在本发明的检查中,进行用于设定该临界值的事前试验和用于预测及判断质量的本试验。
优选该事前试验和本试验各自的测量端子2、3的前端的形状和加压力尽可能相同。
这是因为,由于测量端子2、3的前端的形状不同,测量端子2、3与热压部件4之间的接触面积发生变化,另外,由于加压力的不同,测量端子2、3与热压部件4之间的微观接触面积发生变化,因而测量端子2、3的前端形状和加压力都可能影响电阻值。
如图2所示,首先,使测量端子2、3的前端形状和加压力为一定。接着,利用测量端子2、3以夹持状态支撑热压部件4。接着,在测量端子2、3间通以来自电流产生装置5的恒电流。并且在电压稳定后读取测量端子间电压。
此处,作为Rtotal=测量端子间电压/电流,能够得到测量端子2、3间的总电阻值Rtotal。
如图3示意性所示,测量端予2、3间的总电阻值Rtotal可以作为从测量端子2、3到热压部件4的总电阻值的总和求出。如下式(1)所示。
Rtotal=R1+R2+R3+R4+R5……(1)在(1)式中,R1表示测量端子2的固有电阻,R2表示测量端子2侧的表面的氧化皮的接触电阻,R3表示作为试样的基材的固有电阻,R4表示测量端子3侧的表面的氧化皮的接触电阻,并且,R5表示测量端子3的固有电阻。
此处,计量事前用砂纸等将表面的氧化皮完全去除的热压部件4的电阻值,该电阻值用(2)式表示,是基材的固有电阻R3和测量端子2、3的固有电阻R1和R5之和。
R1+R3+R5……(2)并且,从(1)式中求出的从测量端子2、3到热压部件4的总电阻值中,减去(2)式中求出的基材的固有电阻R3与测量端子2、3的固有电阻R1、R5的和,如(3)式所示,求出氧化皮的电阻值Rscale。
Rscale=R2+R4……(3)
热压部件4表面的氧化皮的产生量越多,氧化皮的电阻值Rscale越高。因此,通过进行上述事前试验,求出表面状态不同的多个热压部件4的点焊性或涂装性的优良与否程度与氧化皮的电阻值Rscale的关系,将氧化皮的电阻值Rscale作为临界值,在操作前事先设定。
这样,在本试验中用于判断热压部件4的表面质量的事前试验结束。
其次,通过进行本试验,对要进行表面质量检查的热压部件4,进行与上述操作同样的操作,从而求出氧化皮的电阻值Rscale。
并且,通过将从本试验求出的氧化皮的电阻值Rscale与由事前试验确定的临界值Rscale相比较,判断热压部件4的表面质量优良与否。
即,当本试验求出的电阻值Rscale比事前试验确定的临界值Rscale高时,由于热压部件4的表面残存的氧化皮超过基准值,因此预测判断为点焊性和涂装性不良。
另一方面,与此相反,当本试验求出的电阻值Rscale比事前试验确定的临界值Rscale低时,热压部件4表面的氧化皮被充分除去,预测判定为点焊性和涂装性良好。
由此,根据本发明,能够定量地测量对点焊性或涂装性产生不良影响的氧化皮的残存状况,判断热压部件4的点焊性或涂装性的优良与否。
一般地,测量端子2、3的电阻、特别是由钢构成的基材的电阻与氧化皮的电阻相比特别小。另外,在临界值和测量值中都包括测量端子2、3的电阻R1、R5以及热压部件4的电阻R3。
因此,虽然与表示利用氧化皮的电阻值Rscale的值的检查方法的后述实施例不同,但也可以利用从测量端子2、3到热压部件4的总电阻值Rtotal,代替氧化皮的电阻值Rscale来设定临界值。
一般地,热压部件4的表面的电阻越低,越难与电极焊着,因此从焊接的观点来看优选。但是,为了降低电阻,有必要使喷砂长时间冲击热压部件4的表面。由此产生生产性降低或由于强烈喷砂而产生的部件变形等问题。因此,要过度降低热压部件4表面的电阻的临界值是不现实的。
因此,优选将热压部件4表面的电阻的临界值设置为使焊着电流为10kA至14kA的范围内的预定值。
如图5的图表所示,在加压力为87N/mm2(250kgf)时,电阻的临界值是5mΩ至25mΩ之间的预定值。
另外,氧化皮的电阻值Rscale不是绝对的值。如图6的图表所示,氧化皮的电阻值Rscale(mΩ)是随着加压力P的大小而产生变化的值。作为加压力P(N/mm2)的函数,可以通过式Rscale=AP-B取近似值(其中A、B为常数)。
因此,测量的加压力P不同时,电阻(mΩ)的临界值可以如下进行设定根据与加压力为87N/mm2(250kgf)时的5mΩ至25mΩ间相当的加压力,即根据进行评价的加压力P(N/mm2)的值,设定为由58P-0.55(mΩ)≤Rscale≤480P-0.66(mΩ)所示的范围内的预定值。另外,如上所述,由于Rscale≈Rtotal,因此可以利用Rtotal代替Rscale。
并且,通过测量端子2、3的电流值恒定时,不是必须要将电阻值作为指标,也可以将电压稳定后的测量端子间电压作为指标。使电流为I(A),将此时的电压V(V)的临界值设定为58IP-0.55以上、480IP-0.66以下的范围内的预定值即可。
图4表示本发明的方法的其他实施方式。
即,已说明的实施方式是测量端子2、3对作为试样的热压部件4以从两面进行夹持的状态进行支撑。但是,也可以如图4所示,构成为使2个测量端子2、3以预定距离分开设置,对热压部件4的表面或背面的任一面进行加压。由此,可以只测量热压部件4的表面或者背面的任一面的电阻。
在该实施方式中,测量操作的具体内容与上述实施方式实质上相同,因此省略其说明。另外,在图4中,与图1所示各部件相同的部件(装置)也标以与图1相同的标号。
接着,参照实施例,对本发明涉及的方法进行更具体的说明。
实施例1利用固定式点焊机作为图1所示加压装置1来实施本发明的方法。另外,通过取下连接测量端子2、3与变压器(未图示)的铜缆线,使测量端子2、3处于绝缘状态。并且,如图1所示,测量端子2、3上连接有电流产生装置5的铜线和电压测量装置7的铜线。
设定条件测量端子Cr-Cu电极 圆顶半径(dome radius)型基端直径16mm 前端直径6mm(前端40R)加压力87N/mm2(250kgf)电流直流电流2A作为钢板表面质量评价标准的“临界值”如下通过反复进行操作(a)~(d)进行的设定作为试样,使用以板厚1.2mm的冷轧钢板为基材的热压部件4,(a)使测量端子2、3之间不夹有任何部件而短路,求出测量端子2、3的阻值,(b)由完全去除氧化皮的热压部件4求出基材的电阻,(c)通过改变喷砂条件,制成表面状态改变了的试验片,测量电阻值,(d)研究表面状态改变了的试验片的焊接性,至12000A而不焊着时,判断为焊接性“OK”,不到12000A即焊着时,判断为焊接性“NG”。在本例中将此时的临界值设定为15mΩ。
其次,利用测量端子2、3夹住需要检查的热压部件4的焊接预定位置附近,通以电流,算出电阻值。
从算出电阻值中减去测量端子2、3以及基材的电阻值,由此求出氧化皮的电阻值。
并且,将氧化皮的电阻值和临界值进行比较,当氧化皮的电阻值在临界值(15mΩ)以下时判断为点焊性没有问题,当氧化皮的电阻值超过该临界值时判断为点焊性有问题。
为了进行确认,通过检查作业,将判断过表面质量的热压部件4的点焊性的研究结果表示于表1。检查结果为被判断为“NG”的热压部件4容易产生点焊所导致的焊着。
因此,可以确认,本发明的方法可以正确地检查点焊性。
表1

实施例2本实施例与上述实施例1的不同点在于,使用板厚为1.4mm的热轧钢板经过热压而成的热压部件作为试样。本实施例除此之外与实施例1同样。
结果如表2所示。
表2

检查结果被判断为“NG”的热压部件4容易产生点焊所导致的焊着。因此,可以确认,本发明的方法可以正确地检查点焊性。
根据本发明,能够对例如热轧钢板或者冷轧钢板经热压而成的热压部件等的钢材表面的锈皮的形成状态,以及对该钢材进行点焊或涂装时的点焊性或涂装性,简便、定量、高效率且不破坏钢材地进行预测和判断。
特别是在最近这样热压普及的情况下,本发明是实用性很高的发明,是能够给本领域的技术进步带来重大贡献的高价值发明。
权利要求
1.一种钢材表面质量的检查方法,其特征在于,在以一定的加压力压于钢材的2个测量端子间通电,测量测量端子间电压;对该钢材进行后处理,判断该后处理的结果是否良好;根据该后处理结果被判断为良好的钢材的测量端子间电压,求出能够得到良好的后处理结果的测量端子间电压值或测量端子间阻值的范围;并根据该范围,预测对测量过所述测量端子间电压的钢材进行的后处理的结果。
2.如权利要求1所述的钢材表面质量的检查方法,其特征在于,所述钢材是对热轧钢板或冷轧钢板进行热压而得到的热压部件,所述后处理是焊接。
3.如权利要求2所述的钢材表面质量的检查方法,其特征在于,使所述加压力为8.7~208N/mm2范围内的值,使所述电流值在30A以下。
4.如权利要求1~3中任一项所述的钢材表面质量的检查方法,其特征在于,所述测量端子间阻值,在预先确定的电阻的临界值以下时判断为焊接性良好,超过该电阻的临界值时判断为焊接性不良。
5.如权利要求4所述的钢材表面质量的检查方法,其特征在于,在所述加压力为P(N/mm2)时,所述电阻的临界值为58P-0.55(mΩ)以上、480P-0.66(mΩ)以下的范围内的值。
全文摘要
本发明提供一种能够简便且确实地检查钢材的焊接性、例如热压钢材的氧化皮的状态的方法。(i)将能够以8.7N/mm
文档编号G01N27/04GK1723389SQ200480001809
公开日2006年1月18日 申请日期2004年9月28日 优先权日2003年9月29日
发明者富士本博纪, 福井清之, 铃木干治 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1