用离子色谱测量煤中磷元素含量的方法与流程

文档序号:12891497阅读:803来源:国知局
用离子色谱测量煤中磷元素含量的方法与流程
本发明涉及一种用离子色谱测量煤中磷元素含量的方法。

背景技术:
通常煤中含有一定量的磷元素,含量一般在(0.001%~0.20%)范围内。磷在煤中的主要存在形式是磷灰石和氟磷灰石等无机磷和微量的有机磷。用煤炼焦炭时,煤中无机磷元素不易挥发,转入焦炭中;用焦炭炼铁时,磷元素转入生铁中,导致钢铁发生冷脆。因此煤中磷元素的含量影响钢铁的质量,所以必须准确测量。目前测量煤中磷元素含量的方法有多种。常用的方法是磷钼蓝比色法,主要过程是先将煤样灼烧灰化后,用浓硫酸和氢氟酸消解煤灰,脱除煤灰中二氧化硅和硅酸盐,使得磷元素转入溶液中;然后加入钼酸铵和抗坏血酸,在一定的酸度条件下生成磷钼蓝,最后用比色法测定。另外,电感耦合等离子体—原子发射光谱法(ICP-AES)可以用于煤中磷元素含量的测量。主要过程是煤样加酸后用微波消解成溶液,或者煤灰加酸后用微波消解成溶液,然后用ICP-AES测量溶液中磷元素含量从而测定煤中磷元素含量。第三种测量煤中磷元素含量的方法是采用X射线荧光光谱仪。主要过程是将煤灼烧灰化后,将煤灰加热至熔融,制成片状后,用X射线荧光光谱测量磷的含量。上述方法存在一定缺点:磷钼蓝比色法样品前处理过程繁琐,测量周期长;ICP—AES法和X射线荧光光谱法需要大型仪器设备,设备价格高。

技术实现要素:
本发明旨在提供一种用离子色谱测量煤中磷元素含量的方法,以解决现有技术存在的磷钼蓝比色法样品前处理过程繁琐,测量周期长;ICP—AES法和X射线荧光光谱法需要大型仪器设备,设备价格高的问题。本发明的技术方案是:一种用离子色谱测量煤中磷元素含量的方法,其特征在于,包括以下步骤:①煤样的微波氧燃烧处理;②煤渣的微波消解;③消解溶液的赶酸;④离子色谱的校准;⑤离子色谱法回收率的测定;⑥煤样磷元素含量的测定。所述的步骤①的具体方法包括以下步骤:a.称取适量粉状煤样,压成圆片,将圆片状煤样用镜头纸包裹后放在石英支架上;b.配制硝酸铵水溶液,用滴管吸取该溶液滴在包裹后的煤样上;c.将石英支架放入石英罐内,罐底加入少量去离子水,盖上密封盖;充入氧气,直至压力达到2.0-2.2MPa;d.将石英罐放入微波消解仪中固定,开启微波消解仪微波加热使硝酸铵受热分解放热,引燃镜头纸和煤样,在高压氧气条件下,煤样充分燃烧,生成水、二氧化碳和灰渣;煤样中的无机磷存在于灰渣中;e.微波氧燃烧结束后,将吸收溶液和灰渣转移到聚四氟乙烯罐中,并用少量mL去离子水冲洗石英支架和石英罐,洗液也转移到同一个聚四氟乙烯罐中。所述的步骤b中的硝酸铵水溶液的质量浓度为40-60%;所述的步骤d中,微波消解仪微波氧燃烧程序如下:加热功率900W,持续10min,最大压力不超过8MPa,最高温度不超过250℃;加热功率为0,持续20min后结束。所述的步骤②煤渣的微波消解方法的步骤如下:a.向盛有煤渣的聚四氟乙烯罐内加入0.2-0.6mL氢氟酸,盖上密封盖,放入微波消解仪中固定;b.设置微波消解程序:温度上升期:加热功率450W,持续10min;温度保持期:加热功率450W,持续5min;温度上升期:加热功率900W,持续10min;温度保持期:加热功率900W,持续30min;冷却期:加热功率为零,持续15min;微波消解结束后,灰渣被消解完毕,溶液澄清透明。所述的步骤③消解溶液的赶酸的具体方法:将聚四氟乙烯罐放在赶酸板上,加热赶酸,加热温度设置为150-200℃;溶液沸腾蒸发水分,当溶液仅剩1滴时,停止赶酸,加入去离子水稀释至100mL。所述的步骤④离子色谱的校准方法包括以下步骤:a.配置磷酸根质量浓度分别为0.102ppm、0.52ppm、1.03ppm、2.01ppm和5.06ppm的标准溶液;b.用离子色谱仪测量上述5个磷酸根质量浓度的标准溶液;进样体积为20μL;c.磷酸根以二氢磷酸根(H2PO4-)形式从色谱柱上洗脱,在离子色谱图上的保留时间为21.5min;d.用离子色谱分析软件对磷酸根色谱峰进行积分,得到色谱峰面积;e.将上述5个标准溶液的测量数据,以横坐标为色谱峰面积,纵坐标为磷酸根浓度作图,并进行线性拟合,得到校准公式如下:y=bx+a上式中:y——溶液磷酸根质量浓度,ppm;x——磷酸根色谱峰面积;a和b——常数。所述的步骤⑤离子色谱法回收率的测定方法包括:a.按照所述的步骤①、②和③,将煤中磷元素含量的标准物质消解成溶液;b.按照步骤④校准离子色谱仪;c.用离子色谱仪测量消解后的溶液;磷酸根以二氢磷酸根(H2PO4-)形式从色谱柱上洗脱,在离子色谱图上的保留时间为21.5min;d.用离子色谱分析软件对磷酸根色谱峰进行积分,得到色谱峰面积;e.将色谱峰面积代入步骤④得到的校准公式,计算出溶液的磷酸根质量浓度;f.根据溶液的磷酸根质量浓度、磷酸根的分子量、磷元素的原子量、溶液的总质量、煤标准物质的质量和空气干燥基水分,计算煤标准物质的干基磷元素含量,公式如下:上式中:c(P)ad——干基煤标准物质中磷元素含量的测量值,ppm,或ug/g;31——磷元素的原子量,g/mol;y——煤标准物质消解溶液中磷酸根含量的测量结果,ppm,或ug/g;m0——煤标准物质消解溶液的总质量,g;95——磷酸根的分子量,g/mol;m——煤标准物质的质量,g;Moi——煤标准物质的空气干燥基水分;g.按照上述步骤a-f连续测量7次,得到GBW11115的干基磷元素含量的平均值,则本测量方法磷元素的回收率为磷元素含量的测量值和认定值之比。所述的步骤⑥煤样磷元素含量的测定方法包括以下步骤:a.按照步骤①、②和③,将煤样消解成溶液;b.用离子色谱仪测量消解后的溶液,磷酸根以二氢磷酸根(H2PO4-)形式从色谱柱上洗脱,在离子色谱图上的保留时间为21.5min;c.用离子色谱分析软件对磷酸根色谱峰进行积分,得到色谱峰面积;d.将色谱峰面积代入步骤④得到的校准公式,计算出溶液的磷酸根质量浓度;e.根据溶液的磷酸根质量浓度、磷酸根的分子量、磷元素的原子量、溶液的总质量、煤样的质量和煤样空气干燥基水分,计算煤样的干基磷元素含量,公式如下:上式中:c(P)ad——干基煤样中磷元素含量的测量值,ppm,或ug/g;31——磷元素的原子量,g/mol;y——煤样消解溶液中磷酸根含量的测量结果,ppm,或ug/g;m0——煤样消解溶液的总质量,g;95——磷酸根的分子量,g/mol;m——煤样的质量,g;Moi——煤样的空气干燥基水分;f.根据干基煤样中磷元素含量的测量值和磷元素回收率,计算干基煤样中磷元素含量的修正值,公式如下:上式中:c(P)ad’——干基煤样中磷元素含量的修正值,ppm,或ug/g;c(P)ad——干基煤样中磷元素含量的测量值,ppm,或ug/g;R——磷元素的回收率。所述的步骤①和步骤②所述的微波消解仪,其微波加热最大功率不低于900W,能够编制程序控制微波输出功率和持续时间;所述的步骤①和步骤②中的石英罐,最大承受压力不低于8MPa;步骤①和步骤②中的密封盖,能够紧密封住石英罐或聚四氟乙烯罐,其顶部有进气口,可以充入气体,或排除罐内气体;所述的步骤③所述的赶酸板,底部是加热装置,加热装置上有支架,用于放置微波消解罐;最大加热温度不小于200℃。所述的步骤④中的磷酸钠,CAS号为497-19-8,分析纯;所述的步骤④中的离子色谱仪,配备阴离子交换柱,型号为MetrosepASupp5,离子交换材料为具有季铵基团的聚乙烯醇,柱长25cm,柱内径不大于0.4cm;进样定量环体积为20μL;淋洗液为浓度为3.2mmol/L的Na2CO3和浓度为1.0mmol/L的NaHCO3混合溶液,淋洗液的流动速率为0.7mmL/min。所述的步骤⑤中的煤中磷元素含量标准物质,为国家一级有证标准物质,使用时应在标准物质的量值的证书有效期内;标准物质的磷元素含量认定值为干基状态下数值,计量单位为ppm或mg/kg。本发明的优点是:样品处理过程简单,测量周期短,设备价格较低,测量精度高。附图说明图1是本发明的流程图;图2是磷酸根标准溶液的离子色谱图(磷酸根以H2PO4-形式存在);图3是煤样消解溶液的离子色谱图;图4是煤的消解溶液的离子色谱图(局部放大)。附图标记说明:1.F-;2.NO3-;3.H2PO4-;4.HFPO3-;5.SO42-。具体实施方式参见图1,本发明一种煤中磷元素含量测定的离子色谱方法,包括如下步骤:①煤样的微波氧燃烧处理:称取0.3g粉状煤样,用手动压片机压成直径小于13mm的圆片。将圆片状煤样用镜头纸包裹后放在石英支架上。配制质量浓度为50%的硝酸铵溶液,用滴管吸取2滴该溶液,滴在包裹后的煤样上。将石英支架放入石英罐内,罐底加入5mL去离子水,盖上密封盖;充入氧气,直至压力达到2MPa。将石英罐放入微波消解仪中固定。设置微波氧燃烧程序如下:加热功率900W,持续10min,最大压力不超过8MPa,最高温度不超过250℃;加热功率为0,持续20min后结束。微波加热能够导致硝酸铵受热分解放热,从而引燃镜头纸和煤样,在高压氧气条件下,煤样充分燃烧,生成水、二氧化碳和灰渣;煤样中的无机磷存在于灰渣中。微波氧燃烧结束后,将吸收溶液和灰渣转移到聚四氟乙烯罐中,并用10mL去离子水冲洗石英支架和石英罐,洗液也转移到同一个聚四氟乙烯罐中。②煤渣的微波消解:向盛有煤渣的聚四氟乙烯罐内加入(0.2~0.6)mL氢氟酸,盖上密封盖,放入微波消解仪中固定。设置微波消解程序如下:温度上升期,加热功率450W,持续10min;温度保持期,加热功率450W,持续5min;温度上升期,加热功率900W,持续10min;温度保持期,加热功率900W,持续30min;冷却期,加热功率为零,持续15min。微波消解结束后,灰渣被消解完毕,溶液澄清透明。③消解溶液的赶酸:将聚四氟乙烯罐放在赶酸板上,加热赶酸。加热温度设置为200℃。溶液沸腾,水蒸发导致溶液体积缩小;当溶液仅剩1滴时,停止赶酸,加入去离子水稀释至100mL。④离子色谱的校准:称取磷酸钠17.262g,加入纯水溶解稀释至100.000g,配制质量浓度为100ppm的磷酸根溶液。移取1.012g的浓度为100ppm的磷酸根溶液,加入纯水稀释至20.000g,配制质量浓度为5.06ppm的磷酸根溶液。移取1.005g的浓度为100ppm的磷酸根溶液,加入纯水稀释至50.000g,配制质量浓度为2.01ppm的磷酸根溶液。移取1.030的浓度为100ppm的磷酸根溶液,加入纯水稀释至100.000g,配制质量浓度为1.03ppm的磷酸根溶液。移取1.028g的浓度为5.06ppm的磷酸根溶液,加入纯水稀释至10.000g,配制质量浓度为0.52ppm的磷酸根溶液。移取0.990g的浓度为1.03ppm的磷酸根溶液,加入纯水溶解稀释至10.000g,配制质量浓度为0.102ppm的磷酸根溶液。用离子色谱仪测量上述磷酸根质量浓度分别为0.102ppm、0.52ppm、1.03ppm、2.01ppm和5.06ppm的标准溶液。进样体积为20μL。磷酸根以二氢磷酸根(H2PO4-)形式从色谱柱上洗脱,在离子色谱图上的保留时间为21.5min。用离子色谱分析软件对磷酸根色谱峰进行积分,得到色谱峰面积。将上述5个标准溶液的测量数据(横坐标为色谱峰面积,纵坐标为磷酸根浓度)作图,并进行线性拟合,得到校准公式如下:y=bx+a上式中:y——溶液磷酸根质量浓度,ppm;x——磷酸根色谱峰面积;a和b——常数。⑤离子色谱法回收率的测定:煤样进行前处理时,部分磷元素残留在容器壁上,导致磷元素未完全转移到溶液中;在微波消解及赶酸过程中,大部分磷元素转化成磷酸根,以二氢磷酸根(H2PO4-)形式从离子色谱柱上被洗脱,在离子色谱上保留时间为21.5min;少部分元素转化成氟磷酸根,以氟磷酸根(HFPO3-)形式从离子色谱柱上被洗脱,在离子色谱上保留时间为23.5min。因此,需要用磷含量已知的煤中磷元素含量标准物质确定本方法的回收率,用于修正磷元素含量测量结果。按照步骤①、②和③,将煤中磷元素含量的标准物质消解成溶液。按照步骤④校准离子色谱仪。用离子色谱仪测量消解后的溶液。进样体积为20μL。磷酸根以二氢磷酸根(H2PO4-)形式从色谱柱上洗脱,在离子色谱图上的保留时间为21.5min。用离子色谱分析软件对磷酸根色谱峰进行积分,得到色谱峰面积。将色谱峰面积代入步骤④得到的校准公式,计算出溶液的磷酸根质量浓度。根据溶液的磷酸根质量浓度、磷酸根的分子量、磷元素的原子量、溶液的总质量、煤标准物质的质量和空气干燥基水分,计算煤标准物质的干基磷元素含量。公式如下:上式中:c(P)ad——干基煤标准物质中磷元素含量的测量值,ppm,或ug/g;31——磷元素的原子量,g/mol;y——煤标准物质消解溶液中磷酸根含量的测量结果,ppm,或ug/g;m0——煤标准物质消解溶液的总质量,g;95——磷酸根的分子量,g/mol;m——煤标准物质的质量,g;Moi——煤标准物质的空气干燥基水分。按照上述方法连续测量7次,得到GBW11115的干基磷元素含量的平均值。则本测量方法磷元素的回收率为磷元素含量的测量值和认定值之比。⑥煤样磷元素含量的测定:按照步骤①、②和③,将煤样消解成溶液。用离子色谱仪测量消解后的溶液。进样体积为20μL。磷酸根以二氢磷酸根(H2PO4-)形式从色谱柱上洗脱,在离子色谱图上的保留时间为21.5min。用离子色谱分析软件对磷酸根色谱峰进行积分,得到色谱峰面积。将色谱峰面积代入步骤④得到的校准公式,计算出溶液的磷酸根质量浓度。根据溶液的磷酸根质量浓度、磷酸根的分子量、磷元素的原子量、溶液的总质量、煤样的质量和煤样空气干燥基水分,计算煤样的干基磷元素含量。公式如下:上式中:c(P)ad——干基煤样中磷元素含量的测量值,ppm,或ug/g;31——磷元素的原子量,g/mol;y——煤样消解溶液中磷酸根含量的测量结果,ppm,或ug/g;m0——煤样消解溶液的总质量,g;95——磷酸根的分子量,g/mol;m——煤样的质量,g;Moi——煤样的空气干燥基水分。根据干基煤样中磷元素含量的测量值和磷元素回收率,计算干基煤样中磷元素含量的修正值,公式如下:上式中:c(P)ad’——干基煤样中磷元素含量的修正值,ppm,或ug/g;c(P)ad——干基煤样中磷元素含量的测量值,ppm,或ug/g;R——磷元素的回收率。步骤①和步骤②所述的微波消解仪,微波加热最大功率不低于900W,能够编制程序控制微波输出功率和持续时间。步骤①和步骤②所述的石英罐,最大承受压力不低于8MPa。步骤①和步骤②所述的密封盖,能够紧密封住石英罐或聚四氟乙烯罐,其顶部有进气口,可以充入气体,或排除罐内气体。步骤③所述的赶酸板,底部是加热装置,加热装置上有支架,用于放置微波消解罐;最大加热温度不小于200℃。步骤④所述的磷酸钠,CAS号为497-19-8,分析纯。步骤④所述的离子色谱仪,配备阴离子交换柱,型号为MetrosepASupp5,离子交换材料为具有季铵基团的聚乙烯醇,柱长25cm,柱内径不大于0.4cm。进样定量环体积为20μL。淋洗液为浓度为3.2mmol/L的Na2CO3和浓度为1.0mmol/L的NaHCO3混合溶液,淋洗液的流动速率为0.7mmL/min。步骤⑤所述的煤中磷元素含量标准物质,为国家一级有证标准物质,使用时应在标准物质的量值的证书有效期内。标准物质的磷元素含量认定值为干基状态下数值,计量单位为ppm或mg/kg。下面是两个具体实施例:一、实施例1①煤样的消解:按照发明内容所述的步骤①、②和③,将煤样消解成溶液。②离子色谱的校准:按照发明内容所述的步骤④对离子色谱进行校准,得到磷酸根浓度校准公式如下:y=16.222x+0.1553上式中:y——溶液磷酸根质量浓度,ppm;x——磷酸根色谱峰面积。③离子色谱法回收率的测定:按照发明内容所述的步骤⑤对方法的磷元素回收率进行测定。连续测量编号为GBW111157的煤中磷元素含量的标准物质7次,得到GBW11115的干基磷元素含量的平均值,151ppm。根据标准物质证书可知,GBW11115的干基磷元素含量认定值为310ppm,则本测量方法磷元素的回收率为磷元素含量的测量值和认定值之比,即48.7%。④煤样磷元素含量的测定:按照发明内容所述的步骤⑥测量煤样的干基磷元素含量。根据干基煤样中磷元素含量的测量值和磷元素回收率,计算干基煤样中磷元素含量的修正值。连续测量该煤样7次,测量结果平均值为930ppm,标准偏差为100ppm。二、实施例2①煤样的消解:按照发明内容所述的步骤①、②和③,将煤样消解成溶液。②离子色谱的校准:按照发明内容所述的步骤④对离子色谱进行校准,得到磷酸根浓度校准公式如下:y=16.222x+0.1553上式中:y——溶液磷酸根质量浓度,ppm;x——磷酸根色谱峰面积。③离子色谱法回收率的测定:按照发明内容所述的步骤⑤对方法的磷元素回收率进行测定。连续测量编号为GBW11115的煤中磷元素含量的标准物质7次,得到GBW11115的干基磷元素含量的平均值,151ppm。根据标准物质证书可知,GBW11115的干基磷元素含量认定值为310ppm,则本测量方法磷元素的回收率为磷元素含量的测量值和认定值之比,即48.7%。④煤样磷元素含量的测定:按照发明内容所述的步骤⑥测量煤样的干基磷元素含量。根据干基煤样中磷元素含量的测量值和磷元素回收率,计算干基煤样中磷元素含量的修正值。连续测量该煤样6次,测量结果平均值为74ppm,标准偏差为11ppm。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1