限制神经传导的消融装置和系统的制作方法

文档序号:6656102阅读:235来源:国知局
专利名称:限制神经传导的消融装置和系统的制作方法
技术领域
本发明涉及用于中断穿过神经的信号流动的微创外科(MIS)领域中所用的方法和装置。可以暂时(几小时、几天或几星期)或永久(几月或几年)使得这些神经不能传送信号。该新型装置本身包含单个穿刺系统,该单个穿刺系统包含能够产生神经破坏、抑制和消融的区域的有源和返回电极;用于精确传输RF能量的发生器,和适当地定位有源尖端并产生用于消融目标神经的能量所必需的方法。
背景技术
人的神经系统用于发送和接收信号。神经信号采取的路径传送诸如痛、热、冷和接触的感觉信息和导致运动(例如,肌肉收缩)的命令信号。
经常产生(或传送)外来的、不希望有的或异常的信号。例子包括(但不限于)导致极端背痛的背部中的次神经的压紧或导致牵涉性疼痛的神经的压缩(或另外的激活)。在患某些疾病时,神经的衬里还会受损,或者,自发产生信号,这可导致从发作到疼痛或者(在极端条件下)甚至死亡的各种疾病。异常信号激活可导致许多其它问题,包括(但不限于)颤搐、痉挛、发作、扭曲、抽筋、残废(除了疼痛以外)、其它不希望有的条件或其它疼痛的、异常的、不希望有的、在社会上或身体上有害的痛苦。
这种装置可用于处理各种类型的神经情形。诸如将缓解头痛、肌肉劳损和疼痛的对后颈肌肉的神经支配的功能应用。装置可用于治疗由外周神经的过度刺激导致的异常肌肉活动,用于缓解疼痛、痉挛和肌张力障碍。并且,可以处理由来自交感神经和副交感神经路径的过度活动的信号导致的诸如多汗、鼻液溢、流涎和面红的情形。
在其它情况下,神经信号的正常传导可导致不希望有的效果。例如,在美容应用中,皱眉肌的活动导致可导致眉毛(或前额)的永久扭曲的皱眉线;从而有早衰的外貌。通过中断皱眉肌活动神经,这种现象可被终止。其它的美容应用包括受颅神经支配的所有颈部和面部表情肌肉(包含,但不限于,眼轮匝肌、口轮匝肌、额肌、降眉间肌、颞肌、咬肌、大颧肌、降口角肌、降下唇肌、颏肌、颈阔肌和/或皱眉肌)。并且,颈阔肌、降眉间肌、背肌、背部疼痛和其它的疼痛/异常肌肉或神经活动会是可治疗的。
这种技术说明了用新的单一的穿刺技术中断穿过神经纤维的信号流动的改进方法;用于微创外科(MIS)的新兴领域中。中断这种流动是通过用电与神经形成电路完成的。产生的电路形成有与有源电极连接的能量源,该电极的返回通路也与能量源连接。
常规的电外科过程使用与能量源连接的单极或双极装置。单极电极系统包括小的表面区电极和返回电极。返回电极在尺寸上一般较大,并以电阻或电容的方式与体部耦合。由于必须使相同的量的电流流过各个电极以使电路完整;因此,在返回电极中产生的热在较大的表面区域上耗散,并且,在任何可能的情况下,返回电极位于高血液流动的区域中(诸如二头肌、臀部或其它肌肉的或高度血管化的区域),使得产生的热被迅速带走,由此防止组织的温度升高和作为结果发生的烧伤。这些系统的优点是能够准确地将单极探针放在需要的位置并以最佳的方式将能量聚焦到所需要的位置。系统的缺点在于,返回电极必须在整个过程中位置适当和接触良好。电阻性的返回电极一般涂敷有导电性膏或胶体。如果与病人的接触减少或如果胶体变干,那么会导致高电流密度区域,从而增加在接触点烧伤的概率。
双极电极系统使用两个分开的表面可在力的作用下机械地组合在一起的两表面装置(诸如镊子、钳子或其它抓取型器械)。各相对的表面与发电机的两个源连接中的一个连接。然后,希望的物体在两个表面之间被夹持和压缩。然后,当电能被施加时,它被集中(和聚焦),使得组织可在两个抓取表面之间被切割、脱水、灼烧、杀死、击晕、关闭、破坏或密封。假定器械已被适当地设计和使用,那么得到的电流流动将被限制在两个表面之间的目标组织内。常规的双极系统的缺点在于,目标组织必须在这两个表面之间被适当地定位和隔离。为减少外来电流流动,电极不能与其它组织接触,这常需要目视指导(诸如直接可视化、使用显示器、超声或其它直接可视化方法),使得在施加电能之前目标组织适当地包含于双极电极本身之内。
近年来,对改进RF或电能的源以及用于向特定的目标组织施加电能的装置进行了大量的努力。已开发了诸如快速性心律失常消融的各种应用,由此心脏内的附属(额外)路径以异常的模式传导电能。这种异常信号流动导致过量的、可能是致命的心律失常。RF消融(如其名称那样)在利用与EP(电生理学)导管类似的较长的导管的双极或单极配置中传输电能。通过使用诸如电作用的测量、超声引导和/或X射线可视化的各种引导技术操纵该导管(包含通常通过引入心脏中的动脉或静脉被引入的较长的导线和支撑结构系统),使其进入目标组织。然后施加电能并破坏目标组织。
已公开了相关系统、装置和EP产品的开发中的各种技术。例如,美国专利No.5397339(在1995年3月14日授权)说明了可用于刺激、消融、获得心际信号并可在心脏内扩展和放大自身的多极电极导管。诸如美国专利No.5454809(在1995年10月3日授权)和美国专利No.5749914(在1 998年5月12日授权)所述,其它应用包含通过使用在导管附近(或尖端)施加的RF能量破坏体内的内腔的内部的血小板形成的能力。在这些应用中,更先进的导管(虽然与(上述)EP导管类似)包含能够选择性地沿特定方向施加能量的电极的阵列。该装置允许消融和去除体内的内腔内的非对称淀积物/阻塞物。在该应用中,还可以以各种形式应用引导。美国专利No.5098431(在1992年3月24日授权)公开了用于从血管内去除阻塞物的另一基于导管的系统。Parins在美国专利No.5078717(在1992年1月7日授权)中公开了用于从血管的内壁选择性地去除狭窄病变部位的另一导管。Auth在美国专利No.5364393(在1994年11月15日授权)中说明了上述技术的修改,由此导线(穿过血管成形装置并且一般为110cm或更长的小得多的导线)具有产生跟随的路径并由此引导自身穿过阻塞物的供电尖端。
在类似的性质的应用中,公开了将更大的能量突发(例如,来自电震发生器)带入心室内的导管。如说明用于在电击消融疗法中进行传输的导管的Cunningham(参见在1990年1月30日授权的美国专利No.4896671)所述,这些导管用于同时破坏组织和结构。
该技术的一个应用包含通过中断到达导致眉头皱纹的肌肉的神经信号的传导消除眉间皱纹。如Guyuron,Michelow和Thomas在“Corrugator supercilli muscle resection through blepharoplastyincision.,Plastic Reconstructive Surgery 95 691-696(1995)”所述,常规的治疗包含外科前额提升、割除皱眉肌。并且,Ellis和Bakala在“Anatomy of the motor innervation of the corrugator supercillimuscleclinical significance and development of a new surgicaltechnique for frowning.,J Otolaryngology 27;222-227(1998)”中说明了使用皱眉肌运动神经的外科分割。由于神经随着时间再生并且需要重复或替换的过程,因此所述的这些技术侵害性强并且有时是暂时的。
最近,微创的治疗眉间皱纹的过程包含直接将肉毒毒素(Botox)注入肌肉中。这产生弛缓性麻痹,并且,在“The New England Journalof Medicine,3241186-1194(1991)”中最好地说明了这一点。虽然微创,但这种技术可谓暂时性的;因此,必须每隔几个月重做一次。
在Hernandez-Zendejas和Guerrero-Santos的文章“PercutaneousSelective Radio-Frequency Neuroablation in Plastic Surgery,Aesthetic Plastic Surgery,18:41 pp 41-48(1994)”中说明了通过较不复杂的两针双极系统使用RF能量的特定的努力。它们说明了使用两针型电极的双极系统。Utley和Goode在“Radio-frequency Ablation ofthe Nerve to the Corrugator Muscle for Elimination of GlabellarFurrowing,Archives of Facial Plastic Surgery,Jan-Mar,99,V1 P46-48”中说明了类似的系统。后来他们被授予美国专利No.6139545(在2000年10月31日授权),该专利全面说明了两针双极系统。由于能量和它们的极性配置的限制,因此这些系统不能产生永久结果(即,比几个月长的时间),象利用Botox那样将需要周期性的重复过程。
存在许多的在目标组织附近适当地定位有源电极并确定是否它邻接神经的方式。常规的方法包含在植入起搏器或其它刺激装置之前通过测试起搏器脉冲使用单极和双极能量进行刺激。称为“强度持续时间曲线”的阈值分析的方法已使用了许多年。该曲线包含一般为电压、电流、电荷或幅度的其它量度的纵轴(或Y轴),并具有脉冲持续时间(单位一般为毫秒)的横轴(或X轴)。这种曲线是随着脉冲宽度增加指数减小的快速下降的线。在Barold和Mugica(1982)的“TheThird Decade of Pacing”的第31ff页以及在J.D.Bronzino(1995)编辑的“The Biomedical Engineering Handbook,CRC Press,IEEE Press”中的第245页中说明了该曲线。
各种刺激装置已被提出并获得专利权。在美国专利No.6139545(2000年10月31日)中公开了使用两针系统的刺激/消融方法。该方法被相反地说明,这里,用刺激然后是消融处理不需要检测辅助组织的区域。在美国专利No.5782826(在1998年7月21日授权)中最好地说明了该方法。
本优选实施例的新的方法和装置也使用(连同其它的在目标神经附近定位电极的尖端的可能的方法)刺激,随后进行消融。在该过程中,通过单个穿刺MIS系统(后面说明)传输能量。该独特的技术和得到的装置是包含两个电极的单针。它将通过单个穿刺接近部位点并将与MIS外科技术一起使用。它还将具有保证放置的特征并具有实质增加的益处,这将在本文件的后面加以说明。

发明内容
本发明的主要方面在于,在微创过程中为用于在神经附近传输RF能量(用于终止信号流动)的双极电极提供单针型穿刺进入路线。从后面的所附的权利要求书、说明书和附图,本发明的其它方面将显而易见。
本发明的重要方面包括帮助定位的可见探针尖端照明;用于传输常常是但不限于麻醉剂的药物的中空内腔;通过激光向探针尖端传输离子化辐射,用于直接能量传输;协调离子化辐射和RF能量传输;独特的探针识别;在使用前进行检测以消除可能的污染或未被授权的重新使用;与探针内部识别匹配的过程功率设置;直接读取消融探针温度和阻抗;用用于控制的能量传输的多个频率预存储任意调制包络;被控制的计量的能量传输确定永久性;用于最佳功率传输的多频率操作;对最佳功率传输匹配的动态阻抗;使介电绝缘体与用于照明的光纤一体化,由此减小直径;辅助神经定位器探针;辅助探针上的深度标记;辅助探针轴隔离;双针尖的辅助探针;将消融探针电子引导到辅助探针;电子引导测量和显示与探针距离成比例的电流;与距离/传感电流成比例的电子引导可变频率音调;与距离/传感电流成比例的电子引导可变幅度音调;与距离/传感电流成比例的电子引导可变频率/消融尖端的闪烁速率;荧光示踪标记的照明;示踪标记的荧光发射的检测;荧光示踪标记的同时照明和发射检测;
通过可调激光器进行的荧光示踪标记的同时照明;用于荧光示踪肿瘤采样的集成中空活组织检查电极;用于向示踪的肿瘤传输药物的集成中空电极;用于用照明激活源向示踪肿瘤传输光药物(photo-medication)的集成中空电极;以及本发明的另一方面是用于减少或消除病人交叉感染的机会的探针使用基准。
本发明是允许医师只需要单针型穿刺以微创的方式终止穿过神经的信号流动的改进的装置(及其使用方法)。所述方法和装置考虑到缩短病人恢复时间;通过仅使用局部(或十分少的)麻醉,病人在过程中保持清醒;感染风险大大减少;重病特护(或住院)的风险的很少,并且相关成本大大减少。因此,与需要开放外科的许多过程相比,病人能很快回到正常生活。
由于不需要在远点上被固定到病人身上并且必须在随后的外科过中被保持的单独的返回电极,因此该单穿刺装置(以下称为“单程”)与常规的单极系统相比有所改进。并且,由于将能量特别聚焦在所希望的位置上(通过使用一个有源电极),并且,当消融区域需要被精确聚焦时该装置可最好地完成该任务,因此它比双极电极和更早的两针系统有所改进。
该装置(和操作它需要的方法)可用于终止、停止或抑制(暂时性、半永久性或者甚至永久性)神经信号传输到肌肉、器官和神经信号的接收体,该神经信号传输活动、感觉、疼痛信号或其它神经冲动。在优选实施例中,有源电极(或探针/针尖)可通过各种引导和/或感测装置被定位。这包括(但不限于)超声、常规的步调/传感(施加刺激信号并观察目标神经附近的电极的放置)、手动颤动、适当的解剖用定位、X射线、CT、MRI、PET或其它辐射或发射型成像装置、光纤视频、外部定位(和标记)和随后的通过照亮探针尖或通过其它类似的手段的定位。
除了“单程”针,完整系统还应包括可通过编程或手动控制被使用的智能外部能量发生器。可以通过包含(但不限于)阻抗(和阻抗的变化)、温度(和温度的变化)、正常电压(或电流)调节等的各种传感器减轻(或者为了保护病人限制)手动控制。所述发生器将以受控的方式在50KHz~2.5MHz的频率范围中产生RF能量。
发生器在程序控制条件下也是可用的。所述编程将传输电能的预定的“团块”(或包),由此剂量(在限制内)被医师按比例调到希望的效果。该团块在临床研究中是预定的,并可具有诸如与低、正常、高输出水平对应的最小效果、平均效果、最大效果的预设参数。输出周期将由医师通过脚踏开关、探针自身上的按钮、声音或激活方法的其它类似方法被激活。当团块输出被激活时,它可以通过松开激活手段(即,脚踏开关、按钮等)被终止(在任何时间)。但是,它将提供不大于或不长于激活装置保有的输出,并且也限于预设的时间长度和剂量。要传输第二包能量,激活机构必须在另一包能量可被传输之前被松开(内部设定的)时间周期。并且,由于该技术可被用于各种应用中(例如,整形外科、导致背部疼痛的脊神经和希望终止穿过神经的信号流动的其它应用),因此传输系统(即,单程针或探针、和要求供给其的发生器)可以具有不同的尺寸、表面面积或机械配置。一些系统甚至会要求量或类型大大不同的能量包。通过向发生器提供包含编码电路、连接器或提供标识的其它手段的特定手持工具装置,为不同的应用控制程序设置和偏好,使得它可为不同的应用或方法自动传输需要的能量包。
消融方法可同时包含线性区或圆形区。有效消融区域可通过“铺放”一系列单个消融区由此产生消融的组织的线被修改。通过抽取、插入和/或移动有源尖端同时在连续的区域中进行消融,这会扩展任何产生的病变的线性成分,这一点会是可能的。在替代方案中,可通过在周期中在较小的环中操纵尖端沿周向扩展有效的消融区域,由此移动尖端并放大有效的消融区域。


图1示出双极驱动器系统。
图2是双极针的示意图。
图2A是分开的双极针的示意图。
图3A是锥形双极探针的放大侧视图。
图3B是中空凿形双极探针的放大侧视图。
图3C是渐缩锥形双极探针的放大侧视图。
图3D是分开的锥形双极探针的放大侧视图。
图4是双极驱动器系统的示意图。
图5A是没有辅助探针的消融过程。
图5B是利用辅助探针的消融过程。
图6是用于神经消融的混合双极针的侧视图。
图6A是用于肿瘤消融的混合双极针的侧视图。
图7是辅助神经探针的侧视图。
图7A是辅助双尖神经探针的侧视图。
图8是利用辅助神经探针的被引导的消融过程的侧视图。
图9示出采样电外科波形。
图10是在视觉上引导的消融过程的侧视图。
图11~11A示出控制器和探针数据库结构。
以下定义这里使用的术语。
(医学术语)皱眉肌-产生眉毛沉陷和皱眉的前额的骨骼肌降口角肌-产生嘴角的沉陷的嘴角的骨骼肌降下唇肌-导致嘴唇外翻和下压的下嘴唇的骨骼肌肌张力障碍-说明非本意的骨骼肌的异常收缩的医学情形额肌-产生眉毛升高或眉毛上升的前额的骨骼肌多汗-过度发汗的情形嚼肌-产生闭颌和嚼的颌的骨骼肌颏肌-使下嘴唇位置稳定的下嘴唇和下巴的骨骼肌眼轮匝肌-负责眼皮闭合的眼皮区域的骨骼肌口轮匝肌-负责嘴唇和嘴的闭合和能力的嘴区域的骨骼肌副交感神经-是指自治神经系统的一部分颈阔肌-保护颈部的更深的结构的颈部的骨骼肌降眉间肌-负责皱眉和沿鼻额区产生水平皱纹的前额中心的骨骼肌鼻液溢-过度的鼻粘液分泌眉纹肌(Supercilli)-位于眼皮之上的皱肌的一部分颞肌-使下颌骨稳定的颌的骨骼肌大颧肌-产生脸中间的微笑或皱纹的脸部的骨骼肌(电学术语)ADC模数转换器ASCII美国计算机信息交换标准波特单位为位每秒的串行通信数据速率字节长度为8位的数字数据字符来自ASCII组的符号检查和列表中的数据的数值总和CPU中央处理单元EEPROM电可擦可编程只读存储器闪速存储器电可改写只读存储器(参见EEPROM)GUI图形用户界面十六进制整数的以16为基数的表示I2C BUS内部集成电路总线。由飞利浦为印刷电路板上的嵌入的IC和子系统之间的独立通信路径开发的简单的二线双向串行总线。在用于内部系统管理和诊断功能的系统板上和之间使用I2C总线。
中继发信号通知计算机执行另一任务PC个人计算机PWM脉冲宽度调制ROM只读存储器字长度为16位的数字数据具体实施方式
(总体操作的详细说明)本部分提供关于本系统的总体操作的信息。图1具有两个主要部件和一个任选的部件,它们是能量发生器400、探针371(在图3A~D中说明替代性探针)和任选可被使用的探针771或772。
在正常操作中,新型的探针371会在单个MIS针中组合独特的双极配置,通过使用MIS技术被插入病人体内。可包含和/或传输后面说明的各种功能的探针最初在解剖学上被引导到期望或希望的位置的区域。利用定位尖端301的各种手段将消融区放置在适当的区域中以中继穿过神经101的信号流动。
(装置操作的详细说明)本部分参照

探针的使用。存在许多可能的电极直径和尖端形状的组合。“新型”探针执行各种功能,诸如刺激、光和电子引导、药物传输、抽样和受控的消融。该双极电极被设计为从入口的单点插入的小直径的针,由此使疤痕最小化并使精确的电极放置简化。这种低成本、紧凑设计为本领域提供新的工具。
探针可如图1和图8教导的那样使用电子引导为深的应用发射光纤照明。本发明提供能够执行精确的消融同时使对附近的组织结构的损伤最小化的简单、低成本的消融探针。测量的消融能量和精确的探针瞄准为从业者提供现有技术不能得到的工具。从业者在微创过程中具有空前的治疗永久性的控制。这种过程一般执行时间少于一个小时,仅需要局部麻醉,不需要现有医学领域中通用的缝合或化学品。
(刺激/消融)首先,探针电极301必须相对于目标神经101处于希望的位置上(图4),然后,用户通过使用选择的功率设置404通过开关410和310开始治疗(图4)。控制器将发生器411(图4)和412配置为幅度频率和调制包络,从而传输50KHz~2.5MHz、5~500瓦的可用能量。求和结点413组合应用需要的RF输出并将它们带到脉冲宽度调制器415,用于输出功率控制。调制发生器420的输出与射频RF信号422和423一起被施加到乘法器415。这使得能够将复杂的能量分布传输到时变的非线性生物负载。所有的这些设置基于由安装的探针371提供给发生器的信息选择的功率404设置和调制包络420(图4)设置,这些信息然后被发生器421加载。
例如,用于切割的高幅度正弦波910(图9)和用于凝结的脉冲宽度调制(或PWM)正弦波920对于电外科领域均是公知的。平均总功率的精确的功率比和极限由积分器435控制,从而使对附近结构的损伤最小化或者对于较浅的过程使接近皮肤的烧伤最小化。在附近结构111(图2A)太接近使得诸如371(图3)、372(图3A)和372(图3B)的电极无法避开时,附加探针几何结构如图3D、图6和图6A教导的那样提供引导能量并将消融限制在较小的区域从而避开其它结构的新的方法。为了安全起见,硬连线开关436在系统故障、探针被拔出或处于过功率条件的情况下禁用功率放大器,由此同时保护病人和从业者。
调制器415的输出被施加到功率放大器416部分的输入。功率放大器416的输出然后被供给到阻抗匹配网络418中,该匹配网络418向高度变化和非线性的生物负载提供动态的受控的输出,并需要功率级和阻抗匹配两方面的动态控制。为了最佳的用于探针的功率传送、功率级和固定的处理频率,执行匹配网络418的调谐。对于本公开实施例,系统的峰值功率是500瓦。通过尖端的接近性和在发生器自身中包含的控制回路建立精确控制。最后的能量包络420被传输到探针尖端310和返回电极302。
能量的这种精确控制使得能够扩展消融区域140和1203(图10)和处理有效性的延续性。低或中能量设置404使得能够暂时中断神经传导3~6月。在404中的更高的能量设置可导致1年到永久的更长的神经传导中断。在现有技术中,过程很少对这种穿过神经的信号流动的终止的持续性进行控制。本发明使从业者增强控制这种持续性的能力。病人可在选择更长或永久治疗选项之前评价受控的暂时的治疗。
低能量神经刺激物771已被集成到系统中,以有助于更精确地识别附近结构和高度精确的目标位置。最后,直接从装置和/或穿过到探针的通信介质403读取诸如温度311、电压、频率、电流等的附加传感器。
(有指导的消融)除了如371(图3)和372教导的那样具有探针的基本上沿径向对称的消融模式以外,将消融功率切换到或分割为多个电极(图3D)可产生非对称的消融区。具有探针610的这种高强度源608(图6和6A)使得在较浅过程中对附近结构111的损伤或皮肤330的烧伤最小化。并且,图2A和图3D为选择的或非对称消融识别探针配置。
(功率反馈)功率放大器输出430和缓冲的反馈信号437与模数转换器(或ADC)431连接,用于处理器分析和控制。所述信号437控制功率调制420设置并影响阻抗匹配控制信号419。该积分的功率信号437被记录到操作条件数据库(图11)中,用于后面的过程回顾。在将该功率级与过程最大值相比时,还将其与从探针取得的读数1492(图11)相比,如果超过,那么将又禁用放大器输出,由此保护病人免受错误或设备故障影响。类似地,来自探针和诸如温度330的发生器传感器的限制也用于终止或大大减少调制的功率级并最终终止过程。
(探针识别)在电力启动时,控制器401(图4)通过串行通信403(或总线)读取保持在探针自身331(和371)中的探针状态和内部识别(ID)。使用串行通信是因为它对于大多数单芯片微处理器是通常可用的。可以使用本方法或类似的方法(例如,I2C或SPI),但为了简化本公开实施例将使用串行。串行通信403使得发生器能够对嵌入探针本身中的单芯片微处理器内的EEROM存储器331、温度传感器330、处理器、ACD和DAC进行寻址和控制。用户选择希望的功率设置404,并基于从EEROM或微处理器331读取的探针识别进行适当的配置。探针371通过电缆1334(图1)与控制单元101或发生器连接。该探针意图不在于多过程用途。因此要防止使用这种探针,控制器401(图4)从ID存储器模块331读取存储的时间基准。如果探针的初始化时间1467(图14)是零,那么当前的实时时钟482值通过串行总线403被写入探针331的初始时间基准。如果模块331上读取的时间为非零,那么探针的初始时间基准被加到两(2)倍的过程时间上(基于探针类型)图141420。如果该值在与当前的实时时钟482相比时小于当前时间,那么控制器将通过显示器450、扬声器451和闪光探针照明608警告从业者将终止过程将并使得探针无效。
控制器401还为与安装的探针的兼容性检验选择的过程1415(图11)。如果不兼容,那么还向用户提示选择不同的功率设置404、过程或探针371。如果探针371与功率设置404匹配,那么系统启用功率放大器416、引导光源408、和低压神经模拟732。这两个过程通过强制的“联络”协议和串行化的信息被实施,该串行化信息必须为要建立的过程存在并被电子电路适当地检验。在临床过程中,要求信息被包含在探针内的嵌入的电子仪器传输,这提供实施该协议并由此又防止未被授权的重新使用的另一方式。最终目的是防止病人之间的交叉感染。探针将通过具有独特的、串行化的特性并被给予上述过程实现这一点。一旦被插入,探针就将通过串行总线403将序列号键入数据记录系统,并且电路逻辑然后防止探针的重新使用和可能发生的交叉感染。并且,这种方案将防止未被授权的第三方探针的使用,因为它们将不被激活,由此防止可能为劣等或未被认证的探针被使用和存在对病人的潜在危险。
(神经目标定位工具)在治疗之前,从业者可如图4、图7、图7A、图8和图10教导的那样使用辅助探针771(图4)以定位目标101和附近结构111。当针771在适当的位置中时,从业者可在皮肤的表面上定位和放置标记755(参照图7和图8)或将辅助探针771留在位置上。对于较浅的皮下过程,来自源408的探针尖照明448对从业者可见,从而帮助将探针放置在预标记的位置。
(通过荧光标记染料定位)在寻找较大的目标的其它过程中,诸如更发散的神经结构或异常生长的小块区域(例如,诸如癌瘤),如图6A教导的那样,使用附在目标结构上的特殊设计的染料的注射。探针610(图6)被移入目标671的附近。光源608照亮量子点/染料标记抗体670。染料在特定材料的频率/波长上发荧光675,并且一般将发射对红外(IR)或可能为其它波长区域的波长区域可见的光。返回光纤680将发射675传输到用于测量的检测器478,结果然后显示在条形图544上(图1)并且/或者通过附近的扬声器451发出音调。可见和IR光发射在有限的距离上传播,从而允许为刚刚在皮肤330之下的浅目标使用附加的外部检测器678。通过该方法的定位与在图8中教导的探针610移动在接近时使信号输出最大化的电子引导的探针方法类似。IR发射传播并可用任选的附加外部传感器678进行更深的(一般为几个厘米)检测。不幸的是,许多染料在可见光区中发荧光,使得对于较深的目标或者当被骨头遮挡时,不能进行外部检测。但是,探针610(图6A)通过在单个紧凑的探针中集成目标照明674、发射675检测器、消融、活组织检查和药物传输解决该问题。电子探针引导(图8)在需要时被用于与荧光检测组合以迅速定位目标。本发明提供用于定位和处理要被消融、破坏或去除的较小/较深的肿瘤和其它组织的微创系统。
(电子探针引导)低能神经刺激电流810(图8)帮助定位希望的处理区并避开附近结构。探针771在向/从辅助探针尖702的神经刺激体和电流测量之间可选(图8)。返回电极736为局部接地点735提供返回路径。消融探针开关367向/从探针372选择低能刺激体/接收器和高能消融。测量的引导电流811和光478的幅值被传输到显示器554并通过扬声器451被传输到音频反馈452。
(光探针引导)公开的发明提供通过补充刺激源732并用作初步的引导帮助探针放置(图10)的光源408。探针771在向或从辅助探针尖702的神经刺激体和电流811测量之间可选。消融探针开关367向或从探针371、372、373和374选择低能刺激体/接收器和高能消融。在该模式中,医师操作员将通过上述的各种手段在皮肤的表面上具有以前放置的标记755。如果光照明被打开时,那么当448时,医师操作员775将看到尖端。它448将在皮肤下提供亮点,从而指示尖端相对于标记755的定位。医师775然后根据这些标记将探针尖301引导到精确的对准位置中,从而使得能够消融该目标组织101。
(数据和声音)测量要被记录在USB存储器438中的诸如平均功率437、发光强度478、探针电流811、能量438和温度330的实时工程参数。同时,诸如频率423、调制420等的公开的内部参数也被记录在USB存储器438中。另外,探针、病人和过程参数(图11)被写入本地存储器438中。从业者通过麦克风455口述文本和声音注释,这些注释被保存在存储器438上(图1)。所有的数据和记录均通过使用实时时钟482被加上时间标记。这使得能够进行详细的后过程制图和分析。
(数据传送)在过程结束时,系统将记录的数据438传送在USB可去除存储器1338中以及文件服务器1309和1307中。在公开的实施例中,在以太网连接480上执行数据传送。被存储在本地存储器438中的探针使用记录1460(图11)然后被写入可去除存储模块1338中。并行的记录通过以太网连接480或类似的手段被映射到本地存储器1309和远程服务器1306存储器1307。敏感的记录被加密并通过安全网络连接被传送,并且也被写入可去除模块1320中。在远程服务器中包含的数据库跟踪以下信息制造的设备、探针附件库存、使用、清单、修理/保修交换信息和程序记录器。由于保证系统400用于新的过程1410(图11),因此相关的数据库被自动更新以反映新的清单/过程代码1416、可能的功率设置1417等。这保证设备是当前的,并且当新的探针/过程在被开发和认证时,向从业者警告它们。
(附图的详细说明)在详细解释本发明的公开的实施例之前,应当理解,本发明不限于示出的其应用或特定配置的细节。本发明能够提出其它实施例。并且,这里使用的术语是为了说明探针及其操作。这里说明的各个装置实施例具有大量的等同物。
(图1双极驱动器系统)图1示出系统的两个需要的部件、各种模块和任选的项目。总在过程中使用的两个部件将是能量发生器/控制器/数据存储装置400和探针371。400包含能够识别适当授权的探针、防止以前使用的探针的重新使用、如上所述产生适当的能量、执行安全检查、存储数据和所述的其它功能的先进的电子系统。400的主要功能可包含,但不限于,产生光、产生定位刺激电流、产生消融能量、数据记录、存储、通信和检索以及对MIS过程十分关键的其它功能。探针371及其各种形式是单穿刺双极外科工具,该单穿刺双极外科工具可用于相对于希望被消融、改变或破坏的目标组织101识别其尖端301的适当的定位。探针771及其各种衍生物可任选地用于帮助定位和适当地放置探针371的尖端301。
(图2双极探针的等距视图)双极探针310表示图3A~C中所示的除探针上的针尖类型之外的探针371、372、373。图3D与其它不同是因为它具有分开的返回探针。双极探针310(绘制不按比例)包含由诸如聚四氟乙烯、PTFE或其它绝缘材料的适当的生物惰性材料制成的绝缘介电体309,该绝缘介电体309覆盖除电极302作为返回电极被暴露的位置以外的电极302。导电性返回电极302管由医疗级不锈钢、钛或其它导电材料制成。中空或实心的导电性尖端电极301从包围的介电绝缘体305伸出。309、302、305和301及其内腔的尺寸(直径、长度、厚度等)可被调整以考虑不同的表面积,从而导致对特定的治疗应用有特定的电流密度。
中空电极301常被用作传输诸如局部麻醉剂的药物的注射器。尖端电极301通过阻抗匹配网络418与功率放大器416连接(图4)。返回电极302通过阻抗匹配网络418向功率放大器416传输返回电流。公开的实施例中的介电绝缘体是用作光导管或光缆的透明的医疗级聚碳酸酯。光源LED或激光器408(图4)通过光缆/透明电介质305在探针的远端提供照明,用于在皮肤下即在较浅的过程中引导探针。在替代性实施例中,如图6教导的那样,用多个用于观看和照明的光纤代替介电绝缘体。
消融区306和140在电极301周围沿径向延伸,一般跟随电场线。对于非常接近皮肤330的过程,在区域306中存在烧伤机会。要使烧伤机会最小化,提供图3D中的分开的返回电极探针374。由此集中远离区域306到140的电流,反之亦然。在图2A中,绝缘体307将返回电极分成也可被选择性激活的两个部分302和303,分开返回电流比为0~50%。有源电极也被分成两个部分301和311,因此,可沿希望的方向引导能量。这种电极配置在探针的邻近部分上被识别,因此,操作员可定位针和电极。图6教导用于更精确的能量传输的激光引导的消融。
(图2A分开的双极探针的等距视图)双极探针380(绘制不按比例)包含由诸如聚四氟乙烯、PTFE或其它电绝缘材料的适当的生物惰性材料制成的绝缘介电体309,该绝缘介电体309覆盖分开的返回电极302和303。公开的导电性返回电极302和303由医疗级不锈钢、钛或其它导电材料制成。中空或实心的分开的导电性尖端电极301和311从包围的介电绝缘体305伸出。中空/分开的导电尖端的操作与图3D中教导的探针尖端310十分类似。消融区1203(图10)和140~144在电极301周围沿径向延伸,一般跟随电场线。对于非常接近皮肤330的过程,在区域306中存在烧伤机会。要使烧伤机会最小化,使用分开的返回电极探针311,由此集中远离区域306到140的电流。对于对附近结构111存在风险的过程,消融区域1203必须是非径向消融区。公开的分开电极380允许分割或分开向电极对301/302和311/303传输的能量。公开的分割或两对之间的比值是0~100%。位于电极对之间的双放大器或时间多路复用/开关主放大器416将能量引向目标101,从而避开111。这种简单的开关网络可靠地分配电能量,同时使对附近结构的损伤最小化。
(图3A锥形双极针)双极探针371公开了用于微创单点进入的锥形电极301和尖端351。探针直径358与20规格或其它小规格注射器针类似,但可根据应用、需要的表面积和必需的穿透深度为更大或更小。在公开的实施例中,电极杆302长30mm,有近5mm是不绝缘的。两者的长度和表面积均可改变以满足诸如美容外科或消除背部疼痛的各种应用。导电性返回电极302由医疗级不锈钢、钛或其它导电材料制成。公开的实施例中的介电绝缘体是可同时用作光导管或光缆的诸如聚碳酸酯的透明医疗级材料。高强度光源408 LED/激光器(图4)在探针的工作端提供引导照明448。如图8教导的那样,照亮源调制/闪光率与接收的刺激电流810成比例。小直径电极允许一般用局部麻醉执行的微创过程。如其它地方说明的那样,这种配置可包含用于传输制剂的内腔。
(图3B中空凿形)中空凿形电极352常用作传输诸如局部麻醉剂的药物、药物/示踪染料的注射器。中空电极也可抽样。公开的实施例中的介电绝缘体305是透明医疗级聚碳酸酯并用作光导管或光缆。新型的双目的电介质减小探针直径并降低制造成本。一般为LED或激光器的光源408(图4未示出)在探针的工作端提供照明448。它提供用于在皮肤下引导探针的照明源。如图6所示,在第二实施例中,介质绝缘体被多个用于观察/照明的光纤代替/与其组合。
(图3C渐缩锥形)双极探针373公开了用于微创单点进入的渐缩锥形探针。其结构与图3A中教导的探针317类似。探针尖端的绘制没有按比例以教导尖端几何尺寸。在公开的实施例中,电极301长约5mm,并由医疗级不锈钢制成,但可以为各种长度以适应特定的应用和表面积要求。实心的渐缩导电尖端电极353从渐缩的介电绝缘体305伸出。透明介电绝缘体305也用作端接到提供照明448的高强度光源408(图4)上的光导管或光缆。电极组合被安装在人机控制手柄388(没有按比例绘制)中。手柄388保持消融开/关开关310、消融/刺激模式开关367、识别模块331和用于电缆1334的终端(图13)。温度传感器330(位于尖端附近)监视组织温度。
(图3D分开的锥形双极探针)在图2A和图3D中均对该探针进行了说明。双极探针374(绘制不按比例)包含由诸如聚四氟乙烯的适当的生物惰性材料制成的绝缘介电体309,该绝缘介电体309覆盖分开的返回电极302和303。导电性返回电极302由医疗级不锈钢、钛或其它适当的导电材料制成。中空或实心的分开的导电性尖端电极301和311从包围的介电绝缘体305伸出。它们的操作与图2A中教导的探针尖端380十分类似。实心的渐缩导电尖端电极311和301从透明介电绝缘体305伸出。介电绝缘体305也用作端接到提供照明448的高强度光源408上的光导管或光缆。
探针手柄(绘制未按比例)封闭存储模块331、开/关开关310和模式开关367。温度传感器330(位于尖端附近)监视组织温度。分开电极380(图2)允许分割或分开向电极对301/302和311/303传输的能量。双放大器或时间多路复用/开关主放大器416位于电极对之间,从而将能量引向目标101,避开产生非对称消融体积的111。从单个进入点注入小直径电极针,从而使疤痕最小化并简化精确的电极放置。
连接包含覆盖脊形不锈钢电极管302的渐缩介电套筒309。绝缘套筒309由适当的生物惰性材料制成,该绝缘套筒309覆盖电极302。电介质305将锥尖电极351和301隔开。
(图4A双极驱动器系统的示意图)参见“装置操作的详细说明”部分。
(图5A消融过程(没有辅助探针))消融探针371被插入和在解剖学上被引入要被消融的目标神经(框531)位于的区域中。施加测试电流811(框532)。如果探针位于紧邻目标神经,那么将检测到/观察到生理反应(例子在消除眉间皱纹的过程中,将观察到额头的肌肉刺激)。如果观察到反应,那么可任选地在皮肤的表面上施加标记以对神经的区域进行定位。施加功率(框535)以尝试消融神经。如果没有观察到生理反应(框534),那么对探针重新定位使其更接近目标神经并重复刺激测试(框536和537)。如果没有观察到生理反应,那么过程可被终止(框544)。并且,可以沿任何方向上、下、近、远、圆形、以某一图案等移动探针以为更永久的结果消融更大的面积。
在框537中,如果又观察到刺激,那么可将消融功率设为更高(框538),作为替代方案,如所述的那样,可以沿各个方向移动针,或可以重新施加更大剂量的能量,以为更有效或更永久地终止穿过神经的信号传导形成更大的面积的消融。在传输功率后(框540),可以重新施加刺激能量(框541)。如果没有刺激,那么过程结束(框544)。如果仍存在穿过神经的信号流动(刺激或生理反应),那么可重新定位探针(框542)并且过程重新开始(框533)。
(图5B通过使用诸如771和772的辅助探针进行的视觉引导的消融过程的流程图)辅助探针771和772(图7和图7A)提供迅速和精确地定位目标结构101并在随后标记目标位置755的方法。辅助探针远远小于消融探针(类似针刺针)。结构一般用墨水或类似的笔标记,使得能够迅速将被照亮的消融探针371或其它消融探针引到标记755。任选地,可使用未被照亮的探针,从而使从业者能够简单地感觉探针尖端。对于较深的结构,使用探针777(图8)作为电子信标。来自探针尖端702的与刺激电流类似但更小的小电流811被用于引导消融探针372(图8)。
操作530(图5B)穿过皮肤330和神经101附近的肌肉层710插入辅助探针771或772(图7和图7A)。通过使用辅助探针标记765测量(图7和图7A)目标101深度766。决定533检查探针是否在适当的位置中,如果不是,那么在534中进行调整。操作532启用神经刺激电流811。当获得肌肉刺激或获得生理反应时,辅助探针尖端在适当的位置中。可通过读取标记765标注深度,并可使位置标记755处于操作状态535。在根据标记处于适当位置的探针处于操作状态536和537时,操作538设置功率级404并闭合消融开关410。作为替代方案,可以如其它地方教导的那样从消融探针直接施加刺激。操作540和控制器401设置发生器411(图4)频率、调制420包络并启用功率放大器416以传输预设的消融能量。区域1203(图10)表示作为例子的锥形尖端301的消融区域的一般形状。
在各消融之间,在541中对过程540(图5C)(神经传导)进行测试。探针放大器416传输来自电极301或辅助探针771或它们两者的小神经刺激电流811。基于神经传导测试541,如果达到希望的水平的传导,那么过程完成。操作542将探针移动到下一个位置并重复传导测试541。如果完成,那么在操作544中移除探针。通过特定的过程和希望的永久性设置数量和消融强度/能量。从业者选择过程/功率级404(图4),并且控制器401通过识别331(图4)为了与选择的过程兼容比较安装的探针。如果安装的探针与选择的功率范围404不兼容,那么从业者被警告。
作为例子而非限制,在图10中示出五个消融区域(140、141、142、143和144)。消融从区域144开始,然后,探针移动到143等直到140。作为替代方案,可以在插入过程中移动、沿横向移动、以圆形方式或其它方式移动,以放大目标神经破坏的区域。神经响应可在各消融之后被测试,使得从业者能够立即检查神经传导的水平。如果需要,在施加附加消融之前进行探针位置和功率调整。这里教导的精确的探针定位工具和方法使得能够使用最小消融能量,由此使对非目标结构的损伤最小化。这转化为更少的恢复时间和最小的病人不适感。本发明向从业者提供执行微创神经传导限制过程的新工具,该工具具有以新的置信水平选择暂时或永久的神经传导中断的能力。该新工具提供一般用局部麻醉在办公室中或门诊患者环境中执行的低成本过程,该过程常花费不到一个小时。这与对永久性(神经再生长)的控制有限、外科过程需要缝合和较长的恢复间隔的现有技术形成对比。
(图6具有增强的激光目标定位的双极探针610的侧视图)探针插入和放置与图3教导的相同。探针结构与图3中的相同,使得电介质305具有提供成像/照明的插入的光纤690和680。附加光纤690~691被高强度激光源照亮。
在目标神经101或消融区域640接近第二神经111或皮肤330的特殊情况下,双极探针371或372(图3)在电极301和/或302之间产生圆形消融区,从而可能损伤诸如其它神经111的附近结构。在探针610在希望的位置时,激光器608(图4)在具有照亮的光纤690的目标670(图6A)上接通。向离子化区域640传输高强度激光的光纤被光纤690照亮。与激光照明同时,RF能量470被传输到电极301和302。通过高强度激光照明产生相对较低的阻抗路径,其中,RF能量将跟随这种新产生的路径。因此,可以为消融选择非常特殊的区域。通过允许在更低的功率下操作,能量被集中到需要它的位置,并且,消除或减少对诸如皮肤330或神经111的附近结构的损伤。通过添加低功率激光器(或其它类型的光源)和光纤传输系统,探针610对在图3中教导的已十分精确的消融进行改进。在公开的实施例中,提供二极管激励Nd:YAG(钕掺杂的氧化钇铝石榴石)激光器作为例子而不是限制。
(图6A荧光发射引导的混合双极肿瘤探针的侧视图)探针结构与图3A和图6相似,只是电介质305嵌有用于照明检测/成像的多个光纤380、690和680。这些增强的系统和过程增加前面公开的探针的可选择性。光纤690~691被一般是可调激光器或UVLED的高强度光源608照明。源608(图4)在使用可调激光器的公开的实施例中为示踪标记670提供照明。激发/照明波长是与对希望的目标671特有的标记670一起使用的染料/纳米粒子特有。标记/标记物一般是与荧光标记组合的蛋白质专有的抗原。新的探针照明允许为了最大的系统灵敏度向目标提供强烈的照明。许多被短(蓝/UV)波长光激发的染料在组织中的传输性较差,但容易被光纤690传输。为混合双极消融探针610提供的第二种应用是用于定位/破坏小肿瘤损害。探针针对外科不实际或者由于位置或亚操作尺寸而十分危险的情况。量子点或染料示踪抗体材料670被注入病人体内,它在病人体内附在目标结构671上。一旦被示踪,肿瘤就可被定位、测试和治疗。
(图7辅助单尖神经探针的侧视图)该探针可与治疗探针371和它们的衍生物中的任一种一起使用。针本身在本质上十分细,诸如针刺型针。由于其尺寸很小,因此可以实现大量的针插入,不留疤痕且疼痛很少。探针771将穿过皮肤330被插入目标组织附近。771、702的暴露的尖端将被暴露并通过导线734与发电机732连接。探针771的表面覆盖有电介质704,因此,只有表面702和返回电极736是暴露的电接触面。暴露的尖端702将前进到目标101的附近,并且将施加测试刺激电流。观察适当的生理反应,并且,当尖端702被适当地定位时,将通过观察标记765标注深度。可应用外部标记755作参照。消融探针371然后可前进到X标记755下的目标组织附近,并且可执行在其它地方说明的消融/神经破坏。
(图7A辅助双尖神经探针的侧视图)双尖探针772提供消除返回电极垫736的附加实施例。探针架/手柄739夹持两个细针702和701,在公开的实施例中,这两个细针隔开mm级的较短的距离(几个毫米)(730)。与探针771(图7)的结构相似,导电针701的杆覆盖有介电绝缘体706。第二导电针702的杆覆盖有介电绝缘体套筒703。发电机732通过导体734和735向探针提供电流。电流从701起源并通过电极702返回。示出大的探针手柄739以教导双探针。为了帮助探针深度测量,标记765被印刷在针杆上。介电绝缘套筒703和706将针杆电流与肌肉层710隔开。通过发电机732施加的电流直接刺激神经,同时避开肌肉710。具有更小的电流的更小的探针尖端允许精确地定位较小的结构。
探针702和701是在尺寸上与通常的针刺针类似的小规格针,由此使得能够以最小的不适感、流血量和插入力进行重复的探测。尖的探针通过皮肤330和肌肉层710被插入到神经101附近。从业者定位目标神经101,从而,如流程图(图5B)所示,皮肤表面可被标记755为消融步骤的定位辅助物。一旦希望的消融点被定位,那么消融探针610(图6)、371和相关的探针(图3)可被插入皮肤330下面、并被尖端305照亮448。它们通过皮肤可见(通过来自尖端305的照明448),并被引导到标记755(图8)。观察到的来自照明源305的强度765被用作测量的深度765的估计量。这种简单的探针系统使得能够用最小的疼痛和损害迅速、精确地定位目标结构。精确的目标定位使得能够使用更低的消融能量,由此使对附近结构的损伤最小化。
(图8具有辅助神经探针的引导的消融过程的侧视图)辅助探针771和772(图7和图7A)被用于精确定位目标结构101。探针771夹持具有覆盖有介电绝缘体704的杆的细导电针702。发电机732通过导体734向辅助探针提供较小的电流,并通过返回电极736向返回导体735提供较小的电流。锋利的辅助探针通过皮肤330和肌肉层710被插入到神经101附近。介电绝缘套筒704将针杆与肌肉层710隔开。通过发电机732施加电流,由此在避开肌肉710的同时直接刺激神经。没有绝缘套筒704的现有技术探针同时刺激神经和肌肉,从而遮蔽神经101并在随后使神经定位变得困难。
辅助探针771和772提供迅速定位浅或深的目标结构的方法。浅的结构一般用墨水笔标记,从而使得被照亮的消融探针371或其等同物被迅速引导到标记755。任选地,可以由简单地感觉探针尖端的从业者使用未被照亮的探针。对于深的结构,探针771也可被用作电子信标;来自探针尖端702的小电流811(强度更低,并且与刺激电流不同)被用于引导消融探针372。放大器430(图4)检测来自用于读取的尖端电极301的电流并通过控制器401显示它。作为替代方案,探针701被用作检测来自电极301的电流811的接收器。相对于辅助探针702水平1202和沿深度766移动探针尖端301以与距离成反比的方式改变电流810。被放大器430隔开和缓冲的检测的信号电流811被测量,并且电流被显示为用于迅速读取的简单的条形图554。另外,提供通过探针尖端351、352或等同物相对于辅助探针尖端702的接近度调节音调的音频反馈,以使从业者从针上移开目光的必要性最小化或消除这种必要性,由此有助于精确的探针放置。可变频率/音调和音量的音频信号与由452产生的感测电流811成比例。由扬声器451(图4和图1)发射的音调信号提供愉快和精确的帮助探针放置的方法。同时,照明源408被放大器456调节,以以与感测的电流成比例的比率闪烁。这使得从业者能够通过使用音频和视觉引导的组合迅速和精确地将消融探针372引入位置。音频和视觉辅助还减少从业者的培训/学习时间。新的实时探针放置反馈给予从业者系统正确工作的信心,因此他/她可集中于精致的过程。精确的探针定位使得能够在消融中使用最少的能量,从而使对非目标结构的损伤最小化并减少恢复时间和病人不适感。
(图9高能电外科正弦曲线切割波形910)用于凝结的低能脉冲宽度调制(PWM)正弦曲线920也是电外科领域中公知的。切割以及随后的凝结的变化也是公知的。
(图10视觉引导的消融过程的侧视图)辅助探针771和772(图7和图7A)已精确定位目标结构101并在随后标记目标位置140~144。浅的结构一般用墨水笔标记(755),从而使得被照亮的消融探针371、372或等同物被迅速引导到该点。对于深的结构,如图8教导的那样,探针771被用作电子信标,来自探针尖端702的小电流811被用于引导消融探针372。
消融探针372通过皮肤330和肌肉层710被插入神经101附近。照明源408允许从业者迅速、精确地将被照亮448的消融探针372引入位置。由从业者775看到的来自消融探针的照明448被用作深度估算中的附加辅助。可选择的神经刺激电流811帮助区域1204内定位神经101。这种新的实时探针放置系统给予从业者系统正确工作的信心,因此他/她可集中于精致的过程。精确的探针定位使得能够在消融中使用最少的能量,从而使对非目标结构的损伤最小化并减少恢复时间和病人不适感。
区域1203表示锥形尖端301的消融区域的一般形状。尖端301被定位在目标神经101的附近。消融一般需要一个或一系列被定位的消融。通过特定的过程和希望的永久性设置数量和消融强度/能量。
五个消融区域140、141、142、143和144被照亮;但是,可存在更多或更少的区域。消融从区域144开始,然后,探针移动到143等直到140,反过来,消融可在140开始并前进到144。并且,从业者可执行旋转移动,并由此进一步增加消融的面积和过程的永久性。在各消融过程540之间(图5C),从电极301发射较小的神经刺激测试电流811。通过1204示出神经刺激电流811的大致有效的范围。在各消融之后测试神经响应使得从业者能够立即检查神经传导的水平。没有探针372去除,从业者接收关于消融的质量的立即反馈。然后,在进行附加消融之前(如果需要)进行小的探针位置调整。
(图11~11A控制器和探针数据库结构)控制器101保持局部探针1460、病人1430、和过程140数据库。所有的工作一起保证对希望的过程使用正确的探针和设置。自动检验固定的探针与选择的过程匹配并检验探针验证和使用以避免病人交叉感染或使用未被授权的探针。自动探针库存控制迅速、精确地将过程结果传送给清单系统。
(图11过程参数代码数据库1410)从触摸屏,从业者从列表1410选择希望的过程。例如,“暂时神经传导”1411、“小肿瘤1CC”1412和“小神经消融”1413是几种选择。各过程具有要在清单系统中使用的独特的过程代码1416。功率范围参数1417是通过功率级控制404推荐的功率设置。与过程1415和功率范围参数1417相关的推荐的探针列入参数1419中。在连接探针时,从存储器331(图1、3和4)读取零件号码并将其与列表1419相比较。总功率参数1418是系统可为该过程传输的最大能量并由过程代码、使用的探针和软件参数确定。可以通过添加允许/批准的新的探针和过程,根据需要对这些参数进行修改、更新和改变。用积分器435(图4)对功率进行传输、测量和求和。功率积分电路被设计为如果超过最大能量就关闭功率放大器的硬连线冗余安全电路。这种新的特征保护病人免受系统故障或从业者错误的影响。标准过程时间1420被加倍并被加到当前的RTC482上,然后被写入探针存储器331中(在图1中)。
(图11~11A探针使用授权数据库1460)从触摸屏450(图1和图4),从业者从列表1410选择希望的过程。探针371和等同物(图3A~D)类型从推荐的列表1419中选出并通过电缆1334(图1)与控制单元101连接。一旦被连接,控制器401(图4)就从ID存储器模块331(图1)读取存储的时间基准。如果读取的开始时间1487是零(工厂故障),那么当前的实时时钟482(图4)在开始时间字段1467、1430和1435中被写入数据库1460中。同时,两倍于标准过程时间1420的参数被加到RTC482上并通过串行总线403被写入时间基准1487。如果探针开始时间1487读取(331)非零值,那么将该值与实时时钟482相比较。如果大于当前的时间加上标准的选择的过程持续时间1420的两倍,那么控制器通过显示器450、扬声器451和前面探针使用的条件的闪光探针照明608向从业者报警。要校正这种情况,从业者简单地连接新的无菌探针并重复上述过程。图13教导关于探针检验使用和相关数据库操作的附加细节。控制器401定期执行上述检验以向从业者报警他/她忘了改变探针。
在过程(图10)中,诸如峰值温度1473、功率1472、阻抗等的各种参数被读取、按比例缩放、存储和显示。诸如过程开始1467、结束时间1468、序列号1469和零件号码1468的参数也被记录。关键参数被写入本地高速存储器438中用于显示和分析。在允许的某一时间或过程的末端,数据被映射到可去除USB1320记忆棒1338中。探针专有参数1463被复制和写入探针存储器1338,用于在探针修整设施上使用。数据库检查和/CRC1449、1479和1499根据需要被检查和更新。被检测的诸如缺陷(电介质305(图3)破裂)的故障被保存到错误字段1494和1474。如果网络连接1305可用,那么用于更换探针的电子邮件请求被自动发送到修理/顾客服务中心1308。具有保存的失败信息1494的有缺陷的探针374被返回,用于存放和修理。
使用USB记忆棒使得能够在网络1326失败的情况下连续操作。数据被加载到存储器1338中,用于向用于备份的办公室计算机1306(图1)简单传输。常用的USB记忆棒1320具有几十到几百兆字节的较大的数据容量,成本低,保持时间长。USB记忆棒也可支持为病人数据的安全传送进行数据加密。与化学消毒过程相容的密封方案也是可用的。
如果诸如以太网802.11或无线802.11x的计算机网络1326是可用的,那么文件被映射到本地存储器1309、远程服务器1307中。远程服务器(一般通过设备制造者维护)可以是远程更新过程。要保证数据完整性和系统可靠性,提供由“Birdstep of Americas Birdsteptechnology,Inc 2101 Fourth Ave.Suite 2000,Seattle Washington”提出的高可靠性数据库引擎作为例子。Birdstep数据库支持分布式备份、广泛的故障和错误恢复,同时要求最少的系统资源。
(图11病人/过程数据库1430)从触摸屏,从业者从以前的过程1430选择或输入病人名字并产生新记录1433。类似地,从1410选择过程(例如,“暂时神经传导”1411、“小肿瘤1CC”1412和“小神经消融”1413)。各个过程具有用于清单系统的独特的过程代码1416。诸如从业者名字1440、日期1435的其它信息被输入记录1433中。如上面教导的那样,对过程合适的探针被连接和检验,零件1470和序列号1469被记录。
(图11声音和注释)从业者向文件1442输入附加文本注释,或用麦克风455(图5)向波文件1445记录它们,用于以后的回放或转录。本发明允许暂时/永久神经传导中断。由此,以从几个月到几年的间隔执行过程。免提集成声音记录器是极其有用的。在探测/消融时获得的详细的文本和声音注释也是记录特有的设置和病人响应。在回顾治疗进展时非常有帮助的特征取代写入注释而节省有价值的时间。从业者利用其桌上的标准音频工具重放声音/波文件1445。音频文件1445可通过电子邮件或文件传输被发送,用于转录,更新注释字段1442。
在过程结束时,记录被更新并被存储在存储器438中。备份拷贝被写入USB1320记忆棒1338(图1)中。如果诸如以太网802.11或无线802.11x的计算机网络1326是可用的,那么文件被映射到本地存储器1309、远程服务器1307中。病人名字1436、过程日期1435和过程代码1416通过网络或USB装置1320被自动传输到清单系统1306。USB记忆棒使得能够在网络1326失败的情况下连续操作。数据被加载到存储器1338中,用于向用于备份的办公室计算机1306(图1)简单传输。USB记忆棒1320具有几十到几百兆字节的较大的数据容量,成本低,保持时间长。USB记忆棒还支持为病人数据的安全传送进行数据加密。用最少的办公室纸质工作精确为给保险病人开帐单。探针库存被自动保持,使得更换探针根据需要自动发货。
权利要求
1.一种用于微创外科的系统,包括a.电学上隔开的RF能量发生器,该RF能量发生器用50KHz~2.5MHz的频率以幅度或频率调制形式传输最高为500瓦的RF能量;b.单针双极或多极探针,该单针双极或多极探针只需要单一穿刺进入路径并具有以提高过程本身中的精度所需的程度接近的电极;和c.通过照明、电信号的产生或通过使用荧光染料放置和定位所述单针探针的辅助装置。
2.如权利要求1所述的发生器,通过使用通过电压、电流、相位或改变频率测量有效负载的动态负载检测传输可智能调节的RF能量,该发生器包括a.与探针的连接;b.与探针的内部微控制器的连接,用于在需要时用于存储器和传感器读取和写入,并检索又对探针的特定过程使用的过程上的、控制次序和限制;c.外科功能需要的显示器和音响;d.用于记录保持与获得的操作参数、日期、时间、传感器测量以及声音或数据记录有关的过程信息的存储器;和e.与诸如RS-232、RS-485、以太网、蓝牙或任何其它可行的通信介质的通信信道的连接。
3.一种单针二电极探针,用于微创外科用双极或多极配置中,该单针二电极探针包括a.由尺寸和形状由应用需要规定的外科手术级金属制成的内直径电极;b.在两个暴露的电极之间覆盖和产生电学隔离的电压绝缘体;和c.由外科手术级金属制成的外套筒返回电极,该外套筒返回电极的表面积比消除接触的组织的烧伤所需的表面积大。
4.一种单针多电极探针,用于微创外科用多极配置中,该单针多电极探针包括a.由尺寸和形状由应用需要规定的外科手术级金属制成的内直径电极;b.在两个暴露的电极之间覆盖和产生电学隔离的电压绝缘体;和c.由外科手术级金属制成的外套筒返回电极,该外套筒返回电极的表面积比消除接触的组织的烧伤所需的表面积大。
5.如权利要求3或4所述的单针探针,内直径电极是中空的,使得可进行药物、荧光染料等的注射,并可采取包围的组织的样品。
6.如权利要求3、4或5所述的单针探针,向发生器传达与过程有关的信息、被嵌入探针中的传感器的测量值和探针专有信息。
7.如权利要求3、4、5或6所述的单针探针,具有能够照亮区域使得可便利探针的放置的电隔离体。
8.一种通过利用通过微创外科技术引入的单一穿刺探针消融组织或终止神经脉冲的流动的方法,包括a.将探针尖端定位在所述神经或目标组织附近,使得针型探针在末端或末端附近具有暴露的活性区域,所述探针和系统要产生RF能量,以消融、破坏组织或以半永久或永久的方式使穿过所述神经的神经传导变为不可能;b.将所述探针尖端放在适当的位置中,使得消融能量可被选择性地传输给目标组织,由此避免破坏必须保持完整且不被破坏或损伤的区域和组织;和c.从调谐的RF源传输RF能量,以破坏接近电极尖端的目标组织。
9.如权利要求7所述的方法,其中,通过电流信号、照明或其它手段提供辅助探针和消融探针之间的引导。
10.如权利要求7所述的方法,其中,定位包含通过使用具有手动引导的生理和解剖地标将探针的尖端放在希望的一般的区域中。
11.如权利要求7所述的方法,其中,通过使用来自探针的尖端区域的照明完成精确的定位,使得操作员可穿过皮肤和其它居间的结构看到尖端的精确位置。
12.如权利要求7所述的方法,其中,治疗探针被引导到希望的一般区域中,然后通过观察从探针的尖端发射的照明点的位置被精确引导到表面标记之下。
13.如权利要求7所述的方法,其中,将辅助探针插入目标组织的附近,从辅助探针施加刺激能量,确定位置,并通过标记组织或其它手段识别目标区域。
14.如权利要求7所述的方法,其中,通过从消融尖端施加刺激电流观察神经、肌肉或生理反应,由此确认适当的尖端位置与目标组织有关。
全文摘要
一种用于微创外科过程的外科系统和相关的方法用于短期和长期终止穿过神经的信号。由于使用了紧密耦合的单针双极探针,因此这种过程是对现有技术的改进。两个电极对用于处理的目标神经或组织的接近度使得它减少用外部电极(例如,板或探针)经受的损失。并且,探针具有与远远地在当前可用的探针之上定位探针和分配或采样相关的特征。得到的改进在将来为相关的医学工业提供技术跃进并为这些过程提供基线。
文档编号G06F13/00GK1981256SQ200580019750
公开日2007年6月13日 申请日期2005年6月14日 优先权日2004年6月17日
发明者威廉·扬森, 詹姆斯·纽曼, 詹姆斯·琼斯, 杰弗里·布斯凯 申请人:Jnj技术控股有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1