用于冲洗光致抗蚀剂的稀释剂和处理光致抗蚀剂层的方法

文档序号:6849803阅读:247来源:国知局
专利名称:用于冲洗光致抗蚀剂的稀释剂和处理光致抗蚀剂层的方法
技术领域
本发明涉及一种用于冲洗光致抗蚀剂的稀释剂和处理光致抗蚀剂层的方法,尤其涉及一种用于冲洗基板上光致抗蚀剂层边缘的稀释剂,例如液晶显示器基板或者半导体基板,以及用该稀释剂处理光致抗蚀剂层的方法。
相关技术的描述为了制造例如在液晶显示器(LCD)回路或者半导体集成回路中使用的那些微细的线路图案,光致抗蚀剂组合物包括一种聚合物树脂,一种光敏化合物和一种溶剂,该组合物均匀涂布或施加在位于一基板上的绝缘层或导电金属层上,然后将该涂布了的或施加了的基板进行软烘烤(soft-baked),以蒸发溶剂。用一些形式的辐射对该软烘烤过的基板选择性曝光,例如紫外光,电子或X-射线,然后将曝光了的基板进行硬烘烤(hard-baked)。此后,对硬烘烤了的基板显影,以产生所需的图案。使用掩模对显影了的基板进行蚀刻,以除去绝缘层或导电的金属层,除去余留下的光致抗蚀剂层则完成将微细图案转移至基板表面的过程。
由于位于基板边缘的光致抗蚀剂层比位于基板中心区域的均匀性差,该不均匀的光致抗蚀剂层或珠粒应当从半导体薄片上除去,然后清除该基板。
用于除去不均匀过量的光致抗蚀剂或珠粒的机械和化学方法是已知的,但是这些方法离合乎需求还有很大余地。如果通过刮擦将固化了的涂层机械剥离,则除去材料的同时几乎不可避免地伴随着某些物理损伤。可替代的是用稀释剂通过剥离,清洗或稀释对固化了的涂层进行化学剥离。稀释剂一般为甲基异丁基酮(MIBK)。
这种化合物具有良好的冲洗光致抗蚀剂的能力,但是它对人类和环境有毒性,且其应用被ISO 14000严格限制。因此,需要用其它材料代替甲基异丁基酮。
美国专利号4983490公开了一种光致抗蚀剂处理组合物。该组合物包括1到10重量份的丙二醇烷基醚(PGME)和1到10重量份的丙二醇烷基醚醋酸酯(PGMEA)。但是该组合物冲洗光致抗蚀剂的能力较差,与MIBK相比,其具有较低的光致抗蚀剂溶解度和蒸发速率。
还需要这样一种用于冲洗光致抗蚀剂的稀释剂,其对人类无毒害,对生态无不利影响并没有不适气味,而且还能从基板快速和完全除去固化或未固化的光致抗蚀剂层,而不会对基板造成污染和损伤。
发明简述本发明的一个目地是提供一种用于冲洗光致抗蚀剂的稀释剂,其对人类无毒害,并没有不适气味。
本发明另一目的是提供一种用于冲洗光致抗蚀剂的稀释剂,其对环境友好,因此容易处理其废液和废水。
本发明又一目的是提供一种用于冲洗光致抗蚀剂的稀释剂,其显示出优越的冲洗光致抗蚀剂层的能力。
本发明还有一目的是提供一种用于冲洗光致抗蚀剂的稀释剂,其能在室温下存储,且在不用改变传统设备和生产条件下使用。
本发明还有一目的是提供一种用该稀释剂处理光致抗蚀剂层的方法。
可使用这样一种用于冲洗光致抗蚀剂的稀释剂来实现这些和其它目的,该稀释剂包括50到80重量%的醋酸正丁酯,丙二醇烷基醚和丙二醇烷基醚醋酸酯。
为了达到这些和其它的目的,本发明提供一种处理光致抗蚀剂层的方法。在该方法中,光致抗蚀剂组合物涂布在基板上。该光致抗蚀剂组合物包括一种聚合化合物,一种光敏化合物和一种溶剂。然后用一种用于冲洗光致抗蚀剂的稀释剂冲洗该光致抗蚀剂层。该稀释剂包括50到80重量%的醋酸正丁酯,丙二醇烷基醚和丙二醇烷基醚醋酸酯。优选通过在冲洗步骤之前加热涂布在基板上的光致抗蚀剂进一步实施软烘烤步骤。
本发明进一步包括一种制作用于液晶显示器回路或半导体回路的微细回路图案的方法。在该方法中,光致抗蚀剂组合物涂布在用于液晶显示器或半导体的基板上。光致抗蚀剂组合物包括一种聚合化合物,一种光敏化合物和一种溶剂。将基板上的光致抗蚀剂组合物加热,以从组合物中蒸发溶剂,该加热步骤被称作“软烘烤步骤”。结果光致抗蚀剂层形成在基板上。通过掩模用某些形式的辐射对基板上的光致抗蚀剂层进行选择性曝光,例如紫外光,电子或X-射线,以得到图案。然后将曝光了的基板浸到显影溶液中,将曝光了的或者未曝光的光致抗蚀剂层溶解,这种步骤被称作“显影步骤”。对显影了的光致抗蚀剂层加热处理,该加热步骤被称作“硬烘烤步骤”。之后,对硬烘烤了的基板进行蚀刻,以产生线路图案,并剥离残余的光致抗蚀剂。在涂布,软烘烤,曝光,显影或硬烘烤步骤的任一步骤之后使用一种用于冲洗光致抗蚀剂的稀释剂冲洗该光致抗蚀剂层。这种稀释剂包括50到80重量%的醋酸正丁酯,丙二醇烷基醚和丙二醇烷基醚醋酸酯。


通过参考以下与附图相关的详细描述,本发明更完整的评价,以及其所带来的许多优点将更明白易懂,其中图1是依据本发明一实施方式和一比较实施例的稀释剂溶解速率的示意图。
本发明详细描述本发明稀释剂包括醋酸正丁酯,丙二醇烷基醚和丙二醇烷基醚醋酸酯。该稀释剂优选包括50-80重量%,更优选60-70重量%的醋酸正丁酯,优选15-30重量%,更优选20-30重量%的丙二醇烷基醚,和优选5-20重量%,更优选5-15重量%的丙二醇烷基醚醋酸酯。
如果醋酸正丁酯的量小于50重量%,则蒸发速率和光致抗蚀剂溶解度下降。而如果其量大于80重量%,则蒸发速率和渗透能力增加得太多。如果丙二醇烷基醚的量小于15重量%,则蒸发速率和渗透能力增加得太多。而如果其量大于30重量%,则蒸发速率和光致抗蚀剂溶解度下降。如果丙二醇烷基醚醋酸酯的量小于5重量%,则蒸发速率和渗透能力增加得太多。而如果其量大于20重量%,则蒸发速率和光致抗蚀剂溶解度下降。
对甲基异丁酮(MIBK)(传统上用作稀释剂)和用于本发明稀释剂的醋酸正丁酯(n-BA),丙二醇烷基醚(PGMA)和丙二醇烷基醚醋酸酯(PGMEA)进行毒性测试,引燃和爆炸测试,结果列在表1和表2中。
表1毒性测试

● TWA(时间重均)几乎所有雇员都可重复接触的平均浓度,一天8小时和一周40小时均不会带来不利影响● STEL(短时间接触限度)雇员可短时间(15分钟)接触的浓度,不会造成麻醉或刺激,而麻醉或刺激中任何一项都会造成意外以及工作效率下降。
● LD50(致命剂量50)使50%的受试动物死亡物质的剂量● LD10(最低致命浓度)已报道的在小于24小时的接触时间导致人类或动物死亡的空气中物质的最低浓度● N.A.不可获取表2 引燃和爆炸测试

在表2中,蒸发速率是用相对值表示的,设定醋酸丁酯的蒸发速率为1,爆炸极限是用浓度范围表示的,在该浓度处在合适的点火源下发生火焰传播。如表1和2所示,与传统方法中使用的MIBK的性能相比,本发明中使用的n-BA显示了卓越的生物和物理安全性能,并显示出与PGMA或者PGMEA性能同样的或良好的生物和物理安全性能。
用于制备光致抗蚀剂层的光致抗蚀剂组合物是相关技术领域中公知的,光致抗蚀剂组合物包括一种聚合化合物,一种光敏化合物和一种溶剂,其良好实例为酚醛清漆树脂。有用的光敏二叠氮化合物基化合物可通过多羟基二苯甲酮与基于二叠氮化合物的化合物反应得到,例如1,2-萘醌二叠氮化合物或2-二叠氮基-1-萘酚-5-磺酸。光致抗蚀剂组合物中的溶剂一般包括二甲苯,醋酸丁酯,醋酸纤维素酯,丙二醇烷基醚醋酸酯,或者这些物质的混合物。
可用传统的涂布技术将光致抗蚀剂组合物涂布在半导体或LCD基板上,例如浸涂,喷涂,旋转和离心步骤。基板材料的例子为硅,铝,二氧化硅,氮化硅,钽,铜,多晶硅,陶瓷和各种可聚合树脂。当将光致抗蚀剂涂布在基板上,尤其是通过旋涂方式时,会由于光致抗蚀剂堆积产生不均匀部位,例如位于基板边缘上的珠粒。
本发明用于冲洗光致抗蚀剂的稀释剂被喷涂在基板上,由此珠粒溶解,并产生均匀的光致抗蚀剂层。可替代的是,将光致抗蚀剂层浸在稀释剂中,由此控制光致抗蚀剂层的厚度。在随后的软烘烤步骤或硬烘烤步骤之后还可实施冲洗步骤。
在20到100℃下加热涂布过的基板以实施软烘烤步骤。该步骤允许溶剂蒸发,同时不会使光致抗蚀剂组合物中的固体组分热解,实施该步骤直至大部分溶剂蒸发,以在基板上得到光致抗蚀剂组合物的薄涂层。
此后,利用一种合适的掩模,用一种形式的辐射,例如紫外光,电子或X射线对涂布有光致抗蚀剂层的基板进行选择性曝光,以获得理想的图案。然后将曝过光的基板浸在含水的碱性显影溶液中,直至曝过光的或未曝光的光致抗蚀剂层(取决于光致抗蚀剂的类型)全部或几乎完全溶解。然后将除去了曝过光的或未曝光的光致抗蚀剂的基板从显影溶液中取出。然后对所得基板进行热处理以改进粘结性,和增加光致抗蚀剂的抗化学药品性能,该步骤被称作硬烘烤步骤。用一种蚀刻剂或气相等离子体处理该显影了的基板,以蚀刻已曝光部分,而残留的光致抗蚀剂保护其覆盖的基板区域。用一种剥离剂(stripper)从已蚀刻的基板除去该光致抗蚀剂层,完成图案向基板表面的转移。
以下实施例进一步说明了本发明。
实施例1和比较例1将两个涂布有光致抗蚀剂的半导体晶片浸在稀释剂组合物和稀释剂中。稀释剂组合物包括65重量%的n-BA,24重量%的PGME,和11重量%的PGMEA,稀释剂是由MIBK组成的。测试除去全部光致抗蚀剂的时间(即干燥后不存在微量的光致抗蚀剂),结果列于表3。
表3

实施例2和比较例2将1.7g的稀释剂组合物和1.7g的稀释剂分别倒入两个铝盘中,并静置32分钟。稀释剂组合物包括65重量%的n-BA,24重量%的PGME,和11重量%的PGMEA,稀释剂由MIBK组成。分别测试稀释剂组合物和稀释剂的残余重量,结果列于表4。
表4

如表3和4所示,本发明稀释剂组合物与MIBK相比具有更低的挥发性,并具有类似的光致抗蚀剂溶解性。
实施例3和比较例3将光致抗蚀剂组合物涂布在两个硅晶片上,在140℃实施软烘烤步骤,并维持90秒,在硅片上得到厚度为2.09微米的光致抗蚀剂层。将所得硅片分别浸在稀释剂组合物和稀释剂中。稀释剂组合物包括65重量%的n-BA,24重量%的PGME,和11重量%的PGMEA,稀释剂由MIBK组成。测试随时间变化的层厚度,结果列在图1中。如图1所示,与MIBK相比,实施例3的光致抗蚀剂稀释剂显示良好的光致抗蚀剂溶解性,低堆积和渗透性能。
实施例4和比较例4将光致抗蚀剂组合物涂布在用于液晶显示设备的正方形玻璃基板上,实施软烘烤步骤以得到光致抗蚀剂层。分别用稀释剂组合物和MIBK冲洗光致抗蚀剂层的边缘部分,稀释剂组合物包括65重量%的n-BA,24重量%的PGME,和11重量%的PGMEA。用表面扫描器扫描在光致抗蚀剂层四个侧边上(相应于观测点,1,2,3和4)得到的光致抗蚀剂轮廓,并确定光致抗蚀剂的堆积和渗透性能。扫描结果列在表5中。用冲洗过的光致抗蚀剂层边缘部分的高度表示堆积值,用从边缘到被稀释剂渗透而改变的表面外形部分的水平距离表示渗透值。
表5

与MIBK相比,实施例6的光致抗蚀剂稀释剂显示出更低的堆积和渗透性能。这些结果显示了本发明稀释剂可冲洗光致抗蚀剂层的边缘部分,而不会造成其变形。
用于冲洗本发明光致抗蚀剂的稀释剂对人类无毒性,对生态也无不利影响,并没有不适气味。其废液和相关的废水容易处理,使得该稀释剂对环境友好。此外,本发明光致抗蚀剂稀释剂具有优越的冲洗能力。
虽然已参考优选实施方式详细描述了本发明,但是本领域技术人员应理解,在不偏离如下权利要求所述的本发明的精神和范围情况下,可作出各种变形和替代。
权利要求
1.一种用于冲洗光致抗蚀剂的稀释剂,其包括50到80重量%的醋酸正丁酯,丙二醇烷基醚,和丙二醇烷基醚醋酸酯。
2.如权利要求1所述的稀释剂,其中醋酸正丁酯的量为整个组合物的50到80重量%,丙二醇烷基醚的量为整个组合物的15到30重量%,丙二醇烷基醚醋酸酯的量为整个组合物的5到20重量%。
3.一种处理光致抗蚀剂层的方法,其包括以下步骤将光致抗蚀剂组合物涂布在基板上,该光致抗蚀剂组合物包括一种聚合化合物,一种光敏化合物和一种溶剂;用冲洗光致抗蚀剂用的稀释剂冲洗光致抗蚀剂层,该稀释剂包括50到80重量%的醋酸正丁酯,丙二醇烷基醚,和丙二醇烷基醚醋酸酯。
4.如权利要求3所述的方法,其进一步包括冲洗步骤之前的软烘烤步骤,通过加热基板上的光致抗蚀剂层实施该软烘烤步骤。
5.一种制备液晶显示器或半导体回路的方法,其包括如下步骤(a)将光致抗蚀剂组合物涂布在用于液晶显示器或半导体的基板上,该光致抗蚀剂组合物包括一种聚合化合物,一种光敏化合物和一种溶剂;(b)软烘烤,在该步骤中加热已涂布的基板,使溶剂从组合物中蒸发,在基板上形成光致抗蚀剂层;(c)通过掩模对基板上的光致抗蚀剂层进行选择性曝光,以得到图案;(d)显影,在该步骤中将曝光了的基板浸到水性的显影溶液中,以溶解曝光了的或者未曝光的光致抗蚀剂层;(e)硬烘烤,在该步骤中对显影了的光致抗蚀剂层加热处理;(f)对硬烘烤了的基板进行蚀刻,以产生线路图案,并剥离残余的光致抗蚀剂;(g)在(a)到(e)步骤的任一步骤之后,使用一种冲洗光致抗蚀剂用的稀释剂冲洗该光致抗蚀剂层,该稀释剂包括50到80重量%的醋酸正丁酯,丙二醇烷基醚和丙二醇烷基醚醋酸酯。
6.如权利要求5所述的方法,其中通过将稀释剂喷射到光致抗蚀剂层上实施冲洗步骤,除去光致抗蚀剂层的边缘。
7.如权利要求5所述的方法,其中通过将光致抗蚀剂层浸在稀释剂中实施冲洗步骤,控制光致抗蚀剂层的厚度。
8.如权利要求5所述的方法,其中涂布步骤是通过将基板浸在组合物中实施的,或者通过喷涂或旋涂方式将组合物涂布在基板上。
9.如权利要求5所述的方法,其中基板选自由硅,铝,二氧化硅,氮化硅,钽,铜,多晶硅,陶瓷和各种可聚合树脂组成的组。
全文摘要
本发明提供一种用于冲洗光致抗蚀剂的稀释剂,其包括50到80重量%的醋酸正丁酯,丙二醇烷基醚,和丙二醇烷基醚醋酸酯。该稀释剂既对人类无毒害,也不对生态带来不利影响,而且没有不适的气味。其废液和与之相关的废水容易处理,由此使得这种稀释剂对环境友好。本发明的光致抗蚀剂稀释剂具有优异的冲洗能力。
文档编号H01L21/02GK1413317SQ00817711
公开日2003年4月23日 申请日期2000年12月8日 优先权日1999年12月24日
发明者朴弘植, 周振豪, 李有京, 姜圣哲, 吴世泰, 姜德万 申请人:三星电子株式会社, 克拉里安特国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1