C+l波段的高功率超宽带ase光源的制作方法

文档序号:6917685阅读:632来源:国知局
专利名称:C+l波段的高功率超宽带ase光源的制作方法
技术领域
本发明涉及到光纤通信中所使用的光源,尤其是在密集波分复用系统中所使用的高功率和超宽带的光纤光源。
近年来,由于通信带宽从原来的C波段(1525nm~1565nm)不断地向L波段(1565nm~1605nm)拓展,这样,一方面要求用于传输信息的多波长光源的输出波长必须从C波段拓展到C+L波段(1525nm~1605nm),另一方面又要求用于通信系统中的光纤器件的工作带宽也必须能够同时覆盖光通信的C+L波段。因此,对用于制作多波长光纤光源和测试光纤无源器件的C+L波段超宽带光源的需求变得十分迫切。虽然,发光二极管(LED)和超发光的激光二极管(SLD)的带宽可以达到100nm,但是,由于输出功率较低从而限制了它们在DWDM系统中的应用。基于稀土掺杂铒光纤放大自发辐射(Amplified spontaneous emission,简称ASE)的超宽带光源由于具有内在极宽的发射谱、高的输出功率和易于与光纤系统耦合等优点,从而成为制作超宽带光源的最佳选择,近年来获得了广泛的研究。M.O.Berendt和R.P.Espindola在2000年相继报道了带宽为80nm的超宽带ASE光源(“Extended band erbium amplified spontaneous emission source”,Lasersand Electro-Optics Europe.,Conference Digest,2000244 and“80nm spectrally flattened,high power erbium amplified spontaneous emission fibre source”,Electron.Lett.,2000,36(15)1263-1265)。根据放大自发辐射原理,L波段的ASE谱是利用C波段ASE谱的转移而产生的,即要产生L波段的ASE谱,就需要将铒光纤加长,利用铒离子的二次吸收泵浦来将初始产生的C波段的ASE谱转移到L波段上。因此,为了同时获得C+L波段高功率超宽带的ASE谱,已有方法采用的是双泵双级结构这种结构是利用一只隔离器将掺铒光纤分为长短两级,分别用它们来产生L波段和C波段的ASE谱,然后组合在一起形成C+L波段的ASE超宽带光谱。但是,由于采用双泵双级结构,一方面必然导致所用光纤长度较长,另一方面会使其对泵浦源的功率要求较高,而且C+L波段超宽带ASE光源中采用的光纤通常为高掺杂铒光纤、价格比较昂贵,从而决定了这种C+L波段超宽带光源的高成本。
本发明的技术解决方案如下整个光源由掺杂铒光纤EDF、泵浦激光器LD、泵浦耦合器WDM等组成,其特征在于掺杂铒光纤为单级,泵浦耦合器为两个,采用正反向双向泵浦,并且作为反向泵浦的激光器必须为980nm波段;泵浦激光器的输出尾纤分别与两个泵浦耦合器的泵浦端相连,两个泵浦耦合器的公共端再分别与掺铒光纤EDF的两端相连,980nm泵浦耦合器的反向输出端作为光源的输出端。
此外,还可以在另一个泵浦耦合器的反向输出端连接一只宽带反射镜OFR。
也就是说,本发明采用了一种全新的双向泵浦单级结构。它是基于以下新发现而形成的当以980nm波段的激光器作泵浦源时,其在铒光纤中产生的反向ASE谱只为C波段(最高峰值落在1530nm波长附近)、且谱的形状与正向强泵浦时类似,而与光纤长度的增加无关,即延长铒光纤长度,980nm波段泵浦的反向ASE谱不会转移到L波段。因此,利用980nm泵浦的反向ASE谱的这种特性,再结合正向泵浦同段铒光纤形成的L波段ASE谱,即可形成C+L波段的ASE超宽带光谱(如果以1480nm波段的激光器作泵浦源时,其反向的ASE谱最高峰值则落在1560nm波长附近,就不能与正向泵浦同段铒光纤形成的L波段ASE谱结合形成平坦的C+L波段的ASE超宽带光谱)。
本发明的具体结构如下泵浦耦合器为两个,其中一个必须为980nm泵浦耦合器、另一个可以是980nm或1480nm泵浦耦合器。泵浦激光器则应与泵浦耦合器相适应当两个泵浦耦合器均为980nm时,泵浦激光器可以采用两个980nm波段的激光器分别作泵浦源,也可以采用一个功率较高的980nm波段激光器、再用分束耦合器将其分为功率比例适当的两路来分别泵浦;当泵浦耦合器为一个980nm、另一个1480nm时,泵浦激光器则采用一个980nm波段和一个1480nm波段的激光器分别作泵浦源。泵浦激光器的输出尾纤分别与两个泵浦耦合器的泵浦端(即兰色端)相连、波长相同的各自对应,两个泵浦耦合器的公共端(即黑色端)再分别与掺铒光纤EDF的两端相连。掺铒光纤只需一段、而无须分为两段,即形成单级双向泵浦的结构;其掺杂浓度可以任意选择,其长度的选取与掺杂浓度有关(浓度不同、所需的长度就不同,一般选取掺杂浓度较高的、以使长度较短),但光纤的长度必须足以使正向泵浦形成的ASE谱转移到L波段上,并使它可以与反向泵浦形成的C波段ASE谱匹配即可。最后,以980nm泵浦耦合器的反向输出端(即红色端)作为光源的输出端,使产生的C+L波段ASE光谱从980nm泵浦耦合器的反向输出端输出(当两个泵浦耦合器均为980nm时,可任选一个)。
此外,还可以在与光源输出端相对的另一个泵浦耦合器的反向输出端上连接一个宽带反射镜OFR、其反射率可以任意选取(一般选取在90%以上),用于将反向的ASE利用起来,从而可以降低正向泵浦激光器的泵浦功率和减少掺铒光纤的使用长度。当两个泵浦耦合器均为980nm时,可任选一个反向输出端作为光源输出端、另一个反向输出端则连接反射镜;当泵浦耦合器为一个980nm、另一个1480nm时,则以980nm泵浦耦合器的反向输出端作为光源输出端、1480nm泵浦耦合器的反向输出端连接反射镜。
本发明的工作过程如下980nm波段泵浦激光器的输出光波通过980nm泵浦耦合器反向耦合进入一段掺杂铒光纤,铒光纤中的铒离子通过吸收980nm波长的泵浦激光能量后形成放大的自发辐射,从而在980nm泵浦耦合器的反向输出端产生C波段的ASE谱。另一个泵浦激光器(1480nm或980nm波段)的输出光波则通过与之对应的1480nm或980nm泵浦耦合器正向耦合进入同一段掺杂铒光纤中,在铒光纤前端(即正向耦合进入的初始端)的铒离子通过吸收1480nm或980nm波长的泵浦激光能量后,首先形成的是C波段的放大自发辐射ASE谱,由于铒光纤长度较长,铒光纤前端产生的ASE谱则作为后端铒光纤的泵浦源,因此,铒光纤后端(即正向耦合进入的末尾端)的铒离子则通过吸收前端形成的C波段ASE后、通过放大自发辐射将C波段的ASE转移到L波段上。因此,通过调节泵浦激光器的输出功率比,让1480nm或980nm泵浦激光器正向泵浦产生的L波段的ASE谱与980nm泵浦激光器反向泵浦产生的C波段的ASE谱恰好匹配,形成具有高功率和高平坦度的、可同时覆盖光通信的C波段和L波段的超宽带ASE光源。如果在形成正向泵浦的1480nm或980nm泵浦耦合器的反向输出端加上一只宽带反射镜,就可以将其反向的ASE谱反射回铒光纤,从而可以降低对应的1480nm或980nm泵浦激光器的输出功率和减少掺铒光纤的使用长度。
本发明的创新之处在于提出了一种在单级铒光纤中同时获得C+L波段的高功率超宽带的ASE谱的光源结构。其关键是选择980nm波段的泵浦激光器作为反向泵浦源,利用其泵浦掺铒光纤所形成的反向输出ASE谱只为C波段的特性,再结合利用1480nm或980nm波段泵浦激光器作为正向泵浦源在同一段光纤中所获得的L波段ASE谱,从而同时获得C+L波段ASE谱。这样,就避免了现有技术中需要通过两段铒光纤来分别产生C波段和L波段的ASE谱而直接导致的缺陷。因此,双泵单级C+L波段超宽带ASE光纤光源具有如下几个主要的优点①具有高达13.5dBm以上的输出功率和近80nm平坦带宽的ASE谱,同时覆盖了光通信的C+L波段,效果稳定。不仅可以提高利用宽带光源制作的多波长光纤光源的输出功率,而且也将极大地提高光纤无源器件的测试效率。
②采用单级铒光纤双向泵浦结构,不仅使组件结构简单,制作容易,而且所需光纤长度比双级结构短(具体长度根据铒光纤的掺杂浓度而定),从而降低了对泵浦源功率的要求,因而降低了ASE光源的成本。
附图
2、本发明实施例所形成的ASE光谱图。
LD2通过WDM2反向耦合进入铒光纤EDF,用于提供抽运能量产生C波段的ASE谱。LD1通过WDM1正向耦合进入同一段掺铒光纤EDF,在掺铒光纤前端形成的ASE谱经过再次吸收、泵浦其后端铒光纤,从而产生L波段ASE谱。EDF的浓度、长度固定时,对应于不同的LD2功率,配合调节LD1功率即可获得不同输出功率的平坦ASE谱。例如,当固定LD2输出功率为79mW时,调节LD1的输出功率,并观察输出的ASE谱的变化。当LD1的输出功率调至16.7mW时,所产生的正向L波段ASE谱正好与反向C波段ASE谱匹配,输出的C+L波段ASE谱具有最佳的平坦度,带宽近80nm(1525nm~1605nm),输出功率高达13.5dBm,效果令人满意。输出的C+L波段ASE宽带光谱如附图2所示。如果要获得更高的光源输出功率,可以通过适当增大LD2的功率、并配合调节LD1的输出功率而实现(对于不同的掺铒光纤和泵浦激光器,可以通过实验调节出所需的合适功率,然后根据该调节所得的合适功率进行选配,实际使用时则无需再调节)。因此,本发明的单级双泵结构宽带光源具有调节灵活,使用方便,光谱平坦度良好等优点。
综上所述,本发明在一段单级铒光纤中成功地获得了近80nm平坦带宽的超宽带ASE光源,它同时覆盖了光通信的C波段和L波段,输出功率高达13.5dBm以上。该ASE光源不仅可以为制作C+L波段的多波长光纤光源提供一个平坦度好和输出功率高的超宽带光源;同时也为光纤无源器件产品的测试提供一个测试光谱范围覆盖整个光通信的C+L波段的超宽带ASE光源。
权利要求
1.一种C+L波段的高功率超宽带ASE光源,由掺杂铒光纤EDF、泵浦激光器LD、泵浦耦合器WDM等组成,其特征在于掺杂铒光纤为单级,泵浦耦合器为两个,采用正反向双向泵浦,并且作为反向泵浦的激光器必须为980nm波段;泵浦激光器的输出尾纤分别与两个泵浦耦合器的泵浦端相连,两个泵浦耦合器的公共端再分别与掺铒光纤EDF的两端相连,980nm泵浦耦合器的反向输出端作为光源的输出端。
2.如权利要求1所述的C+L波段的高功率超宽带ASE光源,其特征在于在另一个泵浦耦合器的反向输出端连接一只宽带反射镜OFR。
全文摘要
本发明是一种C+L波段的高功率超宽带ASE光源,它涉及到光纤通信中所使用的光源,尤其是在密集波分复用系统中所使用的高功率和超宽带的光纤光源。本发明采用的是单级铒光纤双向泵浦结构,其中,泵浦耦合器为两个,其泵浦端分别与泵浦激光器相连、并且泵浦激光器至少有一个为980nm波段,两个泵浦耦合器的公共端再分别与掺铒光纤的两端相连,980nm泵浦耦合器的反向输出端作为光源的输出端;另一个泵浦耦合器的反向输出端还可接宽带反射镜。它实现了在单级铒光纤中获得同时覆盖光通信的C+L波段的ASE谱,从而避免了现有技术中将铒光纤分为长短两级来分别产生L波段和C波段ASE谱时所导致的缺陷。该光源具有光谱带宽、平坦度好、输出功率大等优点。
文档编号H01S3/00GK1466279SQ0211316
公开日2004年1月7日 申请日期2002年6月10日 优先权日2002年6月10日
发明者黄文财, 卫炳江, 谭华耀, 明海, 许立新, 谢建平 申请人:中国科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1