用于变阻器的陶瓷组合物和变阻器的制作方法

文档序号:7147012阅读:210来源:国知局
专利名称:用于变阻器的陶瓷组合物和变阻器的制作方法
技术领域
本发明涉及用于静电保护元件、噪声滤波器等的变阻器的陶瓷组合物,还涉及变阻器。更具体而言,本发明涉及主要由ZnO组成的用于变阻器的陶瓷组合物以及变阻器。
背景技术
迄今,为防止过电压,广泛使用主要由ZnO组成的单层烧结体的变阻器。近年来,除了防止过电压外,由设置在烧结体内的内电极组成的多层变阻器在作为静电放电(ESD)的保护元件和噪声过滤器的应用日益增加。
此外,随着电子设备如移动通讯设备和笔记本电脑的高集成化和低驱动电压的发展趋势,迫切需要能在低额定电压稳定运行并具有较高可靠性的变阻器。
电子设备中,经常在与外部的界面上发生ESD,并且作为保护内部器件的元件,广泛使用大量的齐纳二极管和芯片型变阻器。芯片型变阻器没有电流-电压的极性特征(I-V特性),但具有双向特性。因此,与加入了两种元素的SMD型齐纳二极管相比,使用芯片型变阻器时,可降低成本并减小安装面积。
顺便述及,使用主要由ZnO组成的烧结体的变阻器的阈值(下面称作“变阻器电压”)与电极间存在的晶粒晶界量成比例。一直认为每一晶粒晶界的变阻器电压为2-3V。因此,为了制作在30V或更低电压下运行的变阻器,电极间存在的晶粒晶界量必须小于10,甚至于几。
减少电极间晶粒晶界数量的方法有,降低特性层(即变阻器层)厚度以减少晶粒晶界数量的方法,和增大粒径,以减少晶粒晶界数量的方法。降低特性层厚度方法中,由于坯料片中存在针孔或厚度变化,坯料片是烧结步骤前预成形的片,以形成特性层,某些情况下,性能会明显不同,此外,在某些情况,晶粒强度会下降。另一方面,增大粒径的方法中,必须使晶粒生长,于是会发生晶粒异常生长的倾向,从而加大晶粒直径变化。结果,某些情况会加大性能变化。
因此,当制备低电压驱动的多层变阻器时,为保持元件强度和减少性能变化,内电极间的烧结体层即特性层必须有一定的厚度,此外,必须减少晶粒直径的变化。
主要由ZnO组成的变阻器材料一般分类为含Bi基次组分的材料,所述次组分选自Bi2O3、Sb2O3、CoO、MnO等,例如,日本审查专利申请公报53-11076,和含Pr基次组分的材料,由Pr6O11、CoO等形成,例如日本审查专利申请公报56-11076所述。
通过使用含Bi基次组分的阻挡材料(barriest),能以相对低成本制造适用于大电流应用的过电压保护的变阻器。然而,在焙烧中,低熔点的Bi2O3或Sb2O3会形成液相,也会蒸发。结果,难以减少粒径变化。因此,当减少以晶粒晶界数量来实现较低驱动电压时,由于粒径的变化势必加大性能变化。结果,很难稳定制造和应用低电压驱动并具有较高可靠性的多层变阻器。此外,由于粒径变化有的趋势,浪涌电流或ESD集中在有大粒径晶粒的位置,因而对浪涌电流和ESD的电阻也下降的趋势。
另一方面,含Pr基次组分的变阻器材料中,不含有在低温形成液相并易于蒸发的Bi2O3和Sb2O3。因此,能大量制造和供应具有稳定优良性能的变阻器。然而,与含Bi基次组分的变阻器材料相比,含Pr基次组分的变阻器材料存在的大问题是泄漏电流大。为达到较低驱动电压,在降低特性层厚度时,泄漏电流进一步加大,同时绝缘电阻和电压的非线性坏。因此,一直存在功耗增加和发生信号电路故障的问题。为了降低泄漏电流,有效方法是降低ZnO晶粒中杂质浓度,或加入较大量绝缘材料。然而,采用上述方法时,浪涌电阻明显下降。
当使用含Pr次组分的常用变阻器材料时,可在30V或更低电压下运行的多层芯片型变阻器中,难以抑制泄漏电流和达到高浪涌电阻。
日本未审查专利申请公报7-29709中,公开一种非线性电压的电阻器,能在低电压下运行,它具有高的浪涌电阻和对静电放电的高电阻。这一方法中,公开的非线性电压电阻器具有含ZnO为主组分、Pr6O11、Bi2O3、Mn3O4和CoO为次组分的组成。然而,由于Bi2O3易在低温形成液相,或易于蒸发,很难获得均匀的粒径。此外,也很难稳定供应较高可靠性并能在低电压下运行的非线性电压电阻器。
鉴于目前上述常规方法的状况,本发明的一个目的是通过一种用于变阻器的陶瓷组合物以及变阻器,上述陶瓷组合物能形成在低电压下稳定运行并具有低的泄漏电流、高浪涌电阻和高ESD电阻的高可靠性变阻器。

发明内容
本发明用于变阻器的陶瓷组合物包含氧化锌作为主要组分;次组分包括占总量的0.05-3.0原子%的镨、0.5-10原子%钴、含量为0.005-0.5原子%的钾、钠和锂中至少一种、总含量为2×10-5-0.5原子%的铝、镓和铟中至少一种以及0.005-5.0原子%的锆。
本发明变阻器包括一烧结体和许多在烧结体外表面上形成的端电极,该烧结体具有形成变阻器的陶瓷组合物,它具有上述特定组成。对其结构没有具体限制。即,可提供有上述烧结体的单层变阻器基材和在基材两面上的外电极构成的单层变阻器。然而,根据本发明一个特殊情况,上述烧结体内,形成许多内电极,所述内电极与烧结体层相互层叠,且内电极与各外电极进行电连接,从而形成多层变阻器。因此,提供的多层变阻器,能在低电压如30V或更低电压下运行,具有低的泄漏电流、高浪涌电阻、足够大的ESD电阻以及较高的可靠性。
附图简述

图1所示为显示本发明一个实施例的多层变阻器结构的剖面图。
图2所示为用于图1所示多层变阻器的层叠物的示意图。
图3所示为用于浪涌试验的浪涌波形图。
图4所示为用于ESD电阻试验的ESD波形图。
图5所示为显示Zr含量与ESD电阻间以及9V变阻器电压下初始绝缘电阻关系图。
图6所示为显示Zr含量与ESD电阻间以及12V变阻器电压下初始绝缘电阻关系图。
图7所示为显示Zr含量与ESD电阻间以及27V变阻器电压下初始绝缘电阻关系图。
实施本发明的最佳方式本发明用于变阻器的陶瓷组合物中,以钙、锶和钡中至少一种作为次组分,其总含量较好为总量的1.0原子%或更小。这种情况下,绝缘电阻IR可进一步提高。
本发明中,以镧、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱和钇中至少一种作为次组分,其总含量宜为总量的1.0原子%或更小。这种情况下,浪涌电阻可进一步提高。
本发明中,锆含量宜为总量的0.01-0.5原子%,这种情况下,即使变阻器电压较低,也能获得较大的ESD电阻。
更好的,锆含量为总量的0.05-0.5原子%,且即使在低的工作电压下,也能获得足够的ESD电阻。
本发明用于变阻器的陶瓷组合物中,镨(Pr)含量设定在0.05-3.0原子%范围的原因是当该含量低于0.05原子%时,由Pr6O11提供的氧量下降,并初始绝缘电阻和ESD电阻下降。另一方面,该含量大于3.0原子%时,Pr6O11主要在晶粒晶界离析,并且粒径变化增加。结果,电流或电场局部集中,因此浪涌电阻和ESD电阻下降。
Co含量设定在0.5-10原子%范围的原因是当该含量小于0.5原子%时,晶界上的密度下降,初始绝缘电阻和ESD电阻下降。另一方面,该含量大于10原子%时,由于Co不能全部溶解于ZnO并在晶粒晶界离析,于是导电性下降,浪涌电阻和ESD电阻下降。
钾(K)、钠(Na)和锂(Li)中至少一种的总含量设定在0.005-0.5原子%的原因如下当该含量小于0.005原子%时,K、Na和/或Li不能隔离所有晶粒晶界,结果,初始绝缘电阻下降。该含量大于0.5原子%时,由于K、Na和/或Li过度溶解于ZnO,晶粒电阻提高,浪涌电阻和ESD电阻下降。
铝(Al)、镓(Ga)和铟(In)中至少一种的总含量设定在2×10-5至0.5原子%的原因如下当该含量小于2×10-5原子%时,晶粒电阻过度增加,浪涌电阻和ESD电阻下降。当该含量大于0.5%时,晶粒电阻过度下降,初始绝缘电阻下降。
锆(Zr)含量设定在0.005-5.0原子%的原因如下当该含量小于0.005原子%时,不能抑制异常的晶粒生长,从而不能控制粒径变化,且不能减少有缺陷的晶粒晶界。结果,浪涌电阻和ESD电阻下降。当该含量大于5.0原子%时,由于ZrO2主要在晶粒晶界上离析,尽管绝缘电阻提高,但烧结性能下降,浪涌电阻和ESD电阻下降。
钙(Ca)、锶(Sr)和钡(Ba)中至少一种的总含量较好的设定在1.0原子%或更低的原因如下。该含量大于1.0原子%时,由于其在晶粒晶界发生过度离析,导电性下降,绝缘电阻在某些情况会增加,同时浪涌电阻和ESD电阻在某些情况下会下降。
此外,本发明中,镧(La)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、terbium(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和钇(Y)中至少一种的总含量设定在1.0原子%或更小范围,较佳在0.01-0.5原子%范围。当含有镧时,能有效提高浪涌电阻。
实施例下面,参照具体实施例描述本发明。
(实施例1)实施例1中,使用Pr、Co、K、Al或Zr作为次组分,主要改变Pr含量制备样品进而评价其性能。
首先,以ZnO、Pr6O11、CoO、K2CO3、Al2O3和ZrO2粉为原料,称取这些原料粉,使焙烧后的烧结体具有预定组成,用球磨湿混合原料粉24小时,形成混合浆料。脱水和干燥后,该混合浆料于700-1100℃在空气中煅烧2小时,形成煅烧的原料。用球磨将获得的煅烧原料充分粉碎,随后脱水和干燥。在该干燥的原料中加入有机粘合剂、有机增塑剂和分散剂,该混合物用球磨混合12小时,从而形成浆料。
采用刮刀法,在PET膜上处理形成的浆料,形成25微米厚的坯料片。将坯料片切出长方形。
接下来,将Pt膏丝网印刷在长方形陶瓷坯料片上,形成内电极图案。将多个其上印刷了内电极图案的陶瓷坯料片层叠,在该层叠物的顶部和底部放置平的陶瓷素坯片,形成层叠母体。
以1.96×108Pa压力压制形成的层叠母体,然后切割为形成变阻器的尺寸。按照上面所述,制得图2所述的层叠物。层叠物1中,陶瓷坯料片4和5分别与内电极2和3按照层叠方向相互交替层叠。即,陶瓷坯料片4和5相互层叠,使内电极2和3的端面以层叠方向放置在彼此相背的面上。这种层叠物,参考数字6指平的陶瓷坯料片。
按上所述获得的层叠物1中,层叠的内电极的数字设为10,内电极间的相叠加的面积设为2.3mm2,层叠物长度设为1.6mm,宽度为0.8mm,厚度为0.8mm。
获得的层叠物1于500℃在空气中加热12小时除去有机粘接剂。随后,在空气中,于1150-1250℃焙烧2小时,形成陶瓷烧结体。
如图1所示,在烧结体7的两个端面7a和7b上施用Ag膏,随后于800℃在空气中焙烧,形成外电极8和9,由此制得多层变阻器10。
接下来,对制得的多层变阻器进行如下测定。即,测定(1)变阻器电压(V1mA),(2)施加0.1秒的60%变阻器电压时达到的初始绝缘电阻(IR),(3)浪涌电阻和(4)ESD电阻。为评价浪涌电阻,施加两次图3所示的8×20μs的三角形电波且两次施加的间隔为5分钟后,获得变阻器电压,和当变阻器电压的变化率ΔV1mA与初始变阻器电压V1mA之比,即ΔV1mA/V1mA在10%内时,和IR变化即Δlog IR在1/2内时,测定最大电流波高度。为评价ESD电阻,从各多层变阻器的一对外电极施加10次图4所示IEC801-2的ESD脉冲后,当变阻器电压变化率ΔV1mA/V1mA在10%内时,和IR变化Δlog IR在1/2内时,测定最大施加电压。
结果列于下表1。此外,在表1中,还列出了实施例1制得的各变阻器烧结体的组成。
下面的表中,带星号的样品是含有氧化锌为主要组分且次组分包含总量的0.05-3.0原子%的镨,0.5-10原子%钴,总含量为0.005-0.5原子%的选自钾、钠和锂的至少一种,总含量为2×10-5-0.5原子%的选自铝、镓和铟的至少一种和0.005-5.0原子%锆的样品。
表1

*****如表1所示,样品1至3,由于其Pr含量小于0.05原子%,其初始IR、浪涌电阻和ESD电阻都较低。样品10和11,由于其Pr含量大于3.0原子%,尽管初始IR较高,其浪涌电阻和ESD电阻均较低。
另一方面,对样品4至9和12至24,由于其Pr含量在0.05-3.0原子%范围,能获得优良的性能,即,变阻器电压低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,此外,ESD电阻为30kV。因此,由于使用Pr含量在0.05-3.0原子%范围的样品,在设计为低电压如额定电压小于或等于30V下运行的线路的芯片型变阻器中,可降低泄漏电流,可达到高浪涌电阻和高ESD电阻。
(实施例2)实施例2中,对用作次组分的Pr、Co、K、Al和Zr,主要改变Co含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照下面表2改变次组分,并进行评价。结果列于下表2。
表2

***如表2所示,样品25和26,由于其Co含量小于0.5原子%,其初始IR和ESD电阻均较低。样品34,由于其Co含量大于10原子%,尽管初始IR较高,其浪涌电阻和ESD电阻均较低。
另一方面,对样品27至33和35至43,由于其Co含量在0.5-10原子%范围,尽管变阻器电压较低,如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,此外,ESD电阻为30kV。
因此,由于Co含量在0.5-10原子%范围,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
(实施例3)实施例3中,对用作次组分的Pr、Co、K、Al和Zr中,主要改变Co含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照下表2改变次组分含量,并进行评价。结果列于下表3。
表3

*****如表3所示,样品44至46,由于其K含量小于0.005原子%,其初始IR较低。样品54和55,由于其K含量大于0.5原子%,尽管初始IR较高,其浪涌电阻和ESD电阻均较低。
另一方面,对样品47至53和56至63,由于其K含量在0.005-0.5原子%范围,尽管变阻器电压较低,如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由于K含量在0.005-0.5原子%范围,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
随后,如下表4-6中所示,按照实施例3的方式,评价代替K,含有Na或Li的样品,以及含K、Na和/或Li任选组合的样品。
表4

**
表5

**表6

***
由表4可知,当Na含量在0.005-0.5原子%范围时,由样品65至71和73至87所获得的结果可知,如K的情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
此外,由表5可知,样品89至95和97至111中,Li含量在0.005-0.5原子%范围,如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
再由表6可知,对样品114至120,当K、Na和Li任选组合时,其总含量在0.005-0.5原子%范围,如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由表3-6列出的结果,当K、Na和Li中至少一种的总含量在0.005-0.5原子%范围时,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。此外,即使变阻器电压较低如约为9V,理解为可达到极优良性能,即,可达到1.0MΩ或更高的初始IR,大于或等于20A的浪涌电阻,和30kV的ESD电阻。
(实施例4)实施例4中,对用作次组分的Pr、Co、K、Al和Zr中,主要改变Al含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照下表7改变次组分含量,并进行评价。结果列于下表7。
表7

***如表7所示,样品122和123,由于其Al含量小于2×10-5原子%,尽管其初始IR较高,其浪涌电阻和ESD电阻均较低。对样品132,由于Al含量大于0.5原子%,尽管浪涌电阻和ESD电阻较高,其初始IR极低。
另一方面,对样品124至131和133至136,由于其Al含量在根据本发明设定的2×10-5-0.5原子%范围,尽管变阻器电压较低,如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由于Al含量设定在2×10-5-0.5原子%范围,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
随后,按照和实施例1的方式,使用含Ga或In代替Al的样品以及任选组合Al、Ga和Li的样品制备多层变阻器,并进行评价。此组分组成和评价结果列于表8-10。
表8

**
表9

**表10

***由表8可知,在含Ga代替Al的样品中,当Ga含量在2×10-5-0.5原子%范围时(样品138至143和145至158),尽管变阻器电压较低如约为9V,仍能获得优良的性能,即初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
由表9可知,以In代替Al和Ga,且当其含量设定2×10-5-0.5原子%范围时(样品160至165和167至180),如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
再由表10可知,Al、Ga和In任选组合情况,当其总含量在2×10-5-0.5原子%范围时(样品183至188),如上述情况,尽管变阻器电压较低如约为9V,初始绝缘电阻IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
因此,由表7-10列出的结果,当Al、Ga和In中至少一种的总含量在2×10-5-0.5原子%范围时,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,可降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。此外,当变阻器电压较低如约为9V,可达到1.0MΩ或更高的初始IR,大于或等于20A的浪涌电阻,和30kV的ESD电阻。
(实施例5)用作次组分的Pr、Co、K和Al的含量固定不变,但改变Zr含量。使用具有表11列出的组合物1-13组成的坯料片。按照实施例1的相同方式形成多层变阻器,不同之处是,焙烧之前将坯料片厚度调整为25、35和42μm,变阻器电压设定为约9、12和27V,随后,进行评价。结果列于表12。
表11

******
表12

******************
由表12可知,对本发明样品219至225,在使用厚42μm的陶瓷坯料片的样品中,变阻器电压V1mA在26-28V范围,可以使用在低电压如额定电压小于或等于30V下运行的线路;然而,初始IR较高,如50MΩ或更高。此外浪涌电阻大于或等于50A,ESD电阻为30kV。因此,可理解为获得了非常优良的性能。
另一方面,对Zr含量超出0.005-5.0原子%范围的样品216、217、218和226至228,ESD电阻小于或等于20kV。因此,当Zr含量设定在0.005-5.0原子%范围时,在设计为低电压如额定电压小于或等于30V下运行的线路的多层变阻器中,理解为能降低泄漏电流,并可达到高浪涌电阻和高ESD电阻。
此外,由样品193至199和206至212的结果可知,为了配合能在低电压下运行的线路,即使使用厚度为35和25μm的坯料片以获得12V或9V的变阻器电压,可理解为通过加入Zr而能获得具有高初始IR和高ESD电阻的多层变阻器。然而,当在12V变阻器电压Zr含量小于或等于0.01原子%时,以及在9V变阻器电压Zr含量小于或等于0.05原子%时,浪涌电阻和ESD电阻会下降。
图5至7是初始IR和ESD电阻在9、12和27V变阻器电压与各样品的Zr含量的关系曲线。由表12以及图5至7可知,在含ZnO为主组分,并Pr、Co、Al和K的组合物中加入适当量的Zr时,可理解为设计为与低电压运行线路配合的多层变阻器的初始IR和ESD电阻同时会得到提高。
(实施例6)实施例6中,对用作次组分的Pr、Co、K、Al和Zr中,主要改变Co和Al含量,制得样品,评价其性能。
按照实施例1方式制得多层变阻器,不同之处是,按照表13所示改变次组分含量,并进行评价。结果列于下表13。
表13

由表13可知,尽管同时改变Co和Al含量,当该变化在本发明范围之内时,初始IR为1.0MΩ或更高,浪涌电阻大于或等于20A,ESD电阻为30kV。
特别,当Co含量在2.5-10原子%范围,Co与Al比能满足Co/Al=20-3000时,可理解为能获得优良性能,即,获得2.0MΩ或更高的初始IR,大于或等于25A的浪涌电阻,和30kV的ESD电阻。
此实施例中,同时改变Co和Al含量;然而,当代替Al加入Ga、In或Al、Ga和In的混合物时,可获得如上所述的同样效果。
如上所述,当使用ZnO为主组分,Pr、Co、K、Al和Zr为次组分时,可制得能降低泄漏电流,得到高ESD电阻并能在低电压下运行的变阻器。还可理解,当不使用Pr、Co、K、Al和Zr中任一次组分时,不能制得能降低泄漏电流,得到高ESD电阻并能在低电压下运行的变阻器。此外,由表1至10,12和13所示结果可知,当使用含ZnO为主组分,包含总量为0.05-3.0原子%的Pr、0.5-5.0原子%的Co、总含量为0.005-0.5原子%的K、Na和Li中至少一种、总含量为2×10-5至0.5原子%的Al、Ga和In中至少一种以及0.005-5.0原子%的Zr的次组分的陶瓷组合物时,可制得能降低泄漏电流,得到高ESD电阻并能在低电压下运行的变阻器。
除了用作主组分的ZnO和作为次组分的各种元素外,还使用至少一种类型的元素。这种情况将在下面的实施例7中讨论。
(实施例7)按照实施例1方式制得多层变阻器,不同之处是,Pr、Co、K、Al和Zr含量固定不变,包含表14所示的至少Ca、Sr和Ba中的一种,并进行评价。结果列于下表14。
表14

样品261对应于表1所列的样品6。样品262对应于常规的多层变阻器。
由表14可知,当还包含Ca、Sr和Ba中至少一种时,能改善IR。这种情况下,如由样品263至270,273至280,282至289和291至295可知,当其总含量小于或等于1.0原子%时,能有效提高初始IR。当Ca、Sr和Ba的总含量大于1.0原子%时(样品271、272、281、290和296),尽管提高了IR,但ESD电阻下降。
(实施例8)按照实施例1方式,由表15所列的样品297至360的次组分组成的烧结体制得多层变阻器,不同之处是,Pr、Co、K、Al和Zr含量固定不变,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中的至少一种,并进行评价。此实施例中,样品297对应于表1所列的样品6。
此外,按照实施例1方式,制得样品361至384的多层变阻器,不同之处是,Pr、Co、K、Al和Zr含量固定不变,包含如表16所示Ca和La、Sr和La、Ba和La,或Ca、Sr、Ba和La成分,并进行评价。结果列于表15-1和15-2。
表15-1

表15-2

表16

由表15可知,对样品298至303,306至309,311至314,316至319,321至324,326至329,331至334,336至339,341至344,346至349,351至354,356至359,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中至少一种,进一步提高了浪涌电阻,样品299至302,307,308,312,313,317,318,322,323,327,328,332,333,337,338,342,343,347,348,352,353,357和358,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中中至少一种,含量在0.01-0.5原子%范围,甚至会进一步提高浪涌电阻。然而,样品304,305,310,315,320,325,330,335,340,345,350,355和360,包含La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Y中至少一种,但含量大于1.0原子%,浪涌电阻和ESD电阻反而下降。
由表16可知,用作烧结体的样品361至366还包含Ca和La,进一步提高了IR和浪涌电阻。此外,由表16还可知,钙含量较佳设定为小于或等于1.0原子%,La含量较佳设定为小于或等于1.0原子%。
由表16可知,样品367至372还包含Sr和La,进一步提高了IR和浪涌电阻。此外,尤其是包含0.01-0.5原子%La的样品368至370,更进一步提高了浪涌电阻。
由样品373至378的结果可知,当使用还包含Ba和La非烧结体时,更进一步提高了IR和浪涌电阻。尤其是La含量在0.01-0.5原子%的样品374至376,更进一步提高了浪涌电阻。
对样品379至384,由于包含如表16所示的Ca、Sr、Ba和La,更进一步提高了IR和浪涌电阻。此外,尤其是La含量在0.01-0.5原子%的样品381至383,更进一步提高了浪涌电阻。
如上所述,由于这些实施例中用于变阻器的陶瓷组合物包含氧化锌作为主组分,且次组分包含上述特定范围的Pr、Co、K、Na和Li中至少一种,Al、Ga和In中至少一种和Zr,制得的变阻器具有低泄漏电流和高ESD电阻,并且能在低电压下运行。
工业应用如上所述,本发明用于变阻器的陶瓷组合物宜用于制造在静电保护元件或噪声过滤器中使用的变阻器,尤其宜用于制造由相互叠加的多个变阻器层组成的多层变阻器。
权利要求
1.一种用于变阻器的陶瓷组合物,包含作为主组分的ZnO;和次组分,包括总量为0.05-3.0原子%镨、0.5-10原子%钴、总含量为0.005-0.5原子%的钾、钠和锂中至少一种、总含量为2×10-5-0.5原子%的铝、镓和铟中至少一种和0.005-5.0原子%的锆。
2.如权利要求1所述的用于变阻器的陶瓷组合物,其特征在于,所述组合物还包含钙、锶和钡中至少一种作为次组分,其总含量为小于或等于总量的1.0原子%。
3.如权利要求1或2所述的用于变阻器的陶瓷组合物,其特征在于,所述组合物还包含镧、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱和钇中至少一种作为次组分,其总含量为小于或等于总量的1.0原子%。
4.如权利要求1所述的用于变阻器的陶瓷组合物,其特征在于,锆含量为总量的0.01-5.0原子%。
5.如权利要求4所述的用于变阻器的陶瓷组合物,其特征在于,锆含量为总量的0.05-5.0原子%。
6.一种变阻器,包括烧结用于变阻器的陶瓷组合物而形成的烧结体以及在烧结体外表面上形成的许多端电极,所述陶瓷组合物包含作为主组分的氧化锌以及次组分,次组分包括含量为总量的0.05-3.0原子%的镨、含量为总量的0.5-10原子%的钴、总含量为总量的0.005-0.5原子%的钾、钠和锂中至少一种、总含量为总量的2×10-5-0.5原子%的铝、镓和铟中至少一种以及含量为总量的0.005-5.0原子%的锆。
7.如权利要求6所述的变阻器,其特征在于,所述变阻器还包括许多在烧结体内的内电极,所述许多内电极与烧结体层相互叠加并电连接到外电极,从而形成多层变阻器。
全文摘要
一种能在低电压下运行,具有小的泄漏电流并能达到高ESD电阻和浪涌电阻的变阻器。由用于变阻器的陶瓷组合物形成所述变阻器,所述陶瓷组合物包含作为主组分的ZnO;和次组分,包括总量为0.05-3.0原子%镨、0.5-10原子%钴、总含量为0.005-0.5原子%的钾、钠和锂中至少一种、总含量为2×10
文档编号H01C7/04GK1592939SQ0380159
公开日2005年3月9日 申请日期2003年8月13日 优先权日2002年8月20日
发明者广濑左京, 中山晃庆, 白露幸祐 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1