芯片型保险丝及其制造方法

文档序号:7229519阅读:196来源:国知局
专利名称:芯片型保险丝及其制造方法
技术领域
本发明涉及一种芯片型保险丝,可以表面贴装方式固定在电路板上,特 别涉及一种在熔丝上方具备中空穴的芯片型保险丝构造及其制作方法。中空 穴更可以形成密封状态,包含小于1个大气压力的气体。
背景技术
保险丝广泛应用于电子和电机工业,保护产品免于过大电流的破坏和可 能发生的起火灾难。其原理是当电流流经具备适当阻抗的导电熔丝,当电流 超过额定规格时,熔丝因过热而烧断,隔绝电流进入产品。而烧断后的阻抗 愈高,则隔绝效果愈佳。通常熔丝的截面积愈大,则阻抗愈低,额定电流愈 高。保险丝与被保护的电路串联,在额定电流范围内使用时,电压降与温度 上升愈少愈好。而熔丝经由过大电流加热,在完全熔断前会产生电弧,其是 瞬间且局部的高能量,破坏力很强,是保险丝设计与制作上必须考虑的重要 因素。传统的保险丝由中空的绝缘体构成,成份是玻璃或陶瓷。绝缘体内放置 细长形的熔丝,使用的材料通常是银和铜的合金。在绝缘体的两端分别压合 或黏结一个金属盖,并与熔丝的两端分别对应连接。电流经过熔丝产生的热 和过大电流负载下产生的电弧,完全限制在中空的绝缘体内。传统的保险丝 必须通过焊接在电路板上的保险丝座与电路串联,亦可进行替换,工业界已 使用多年,通常使用在电子和电机产品的电源输入端。缺点是尺寸太大,常用的小尺寸规格(直径x长度)是5x20毫米(mm),不适合现今电子产品轻薄短 小的需求。为了适应电子产品轻薄短小的需要,工业界于近年来推出芯片型保险 丝,特点是尺寸小,常用的长度与宽度规格是1.6x0.8毫米(mm)与3.2x1.6 毫米(mm),可以表面贴装方式固定在电路板上。因其尺寸小,不仅可应用于 电源输入端,更可使用于产品内部的电路板与线路,形成多层次的保护。另外因其可以自动化机器生产,制造费用比传统的保险丝更低。请参阅图1,现有技术的芯片型保险丝1包含基板11、熔丝12、保护层 19、两个端电极14和两个末端垫16。基板ll电绝缘,通常是长方形,其材质是氧化铝陶瓷、玻璃或高分子。熔丝12的成份是金、银、铝、铜、白金等金属,以溅镀、电镀等薄膜制造工艺制作于基板11的表面。两个金属材料的末端垫16分别连接到熔丝12的两端,其宽度较熔丝12大,厚度和熔 丝12—样或更厚,材料可不同于熔丝12。为了制作方便,末端垫16的材料 和厚度,最好能和熔丝12相同,如图1所示。用以导电的端电极14形成于基板11两端的侧边,经由末端垫16与熔 丝12的两端分别对应连接,是芯片型保险丝1与电路板(未显示)的接点。保 护层19涂布于熔丝12与基板11的表面,其材料是玻璃或耐温高分子,隔 离或减少环境中的湿气、氧气与机械力等对熔丝12的腐蚀与破坏。上述现有技术的芯片型保险丝1虽然结构简明,但是保护层19与熔丝 12直接接触,因此在额定电流范围内使用时,熔丝12所产生的高热易造成 保护层19内的局部高温与热应力,因此会降低芯片型保险丝1长期使用的 可靠度。尤其在过大电流的负载下,熔丝12完全熔断前所产生的高热与电 弧,熔化或破坏保护层19,导致熔融状态下的熔丝材料很可能飞溅出去,造 成邻近金属线路之间的短路,甚至引发起火意外。美国专利公告第5,726,621号与第6,034,589号公开一种芯片型保险丝, 提供局部改进技术,对原本为一条的熔丝结构,改成多条熔丝并联的结构, 并以绝缘层隔绝相邻的两条熔丝。其以"绝缘层-熔丝-绝缘层-熔丝----绝缘层" 的多层堆叠方式,将电流分散至多处,其中的绝缘层由玻璃和陶瓷材料构成。 这些发明减少上述公知技术的热应力与保护层破坏问题,但是熔丝仍然与绝 缘层直接接触,上述热应力与保护层破坏的问题并未彻底解决,而且多层堆 叠方式的制造成本较高。因此,本发明的目的在于提供一种在熔丝上方具备中空穴的芯片型保险 丝,以解决上述问题。发明内容本发明的目的在于提供一种具有中空穴的芯片型保险丝。本发明以电绝5缘材料为基板,将导电熔丝制作在基板之上;保护层形成于熔丝的上方,且 在熔丝的外围与基板黏结,因此在熔丝与保护层之间形成中空穴。该中空穴 阻绝保护层和熔丝的直接接触,所以在额定电流范围内使用时,保护层内不 会形成局部高温与热应力,提高长期使用的可靠度。该中空穴还可以避免熔 丝在过大电流负载下产生的高热和电弧熔化或破坏保护层,以确保零件的完 整与使用安全。中空穴还可以形成密封状态,将小于1个大气压力的气体密 封在内。本发明的另一目的在于提供一种具有密封中空穴的芯片型保险丝的制 作方法。首先,提供一片配置有很多个相同的熔丝的大基板。接着,在每一 个熔丝上面覆盖以高分子为主的牺牲层,再以含有玻璃材料的保护层覆盖牺 牲层。然后,加热去除牺牲层,于是就在原来牺牲层的位置形成- -个中空穴。 接着,提高温度以熔化整个保护层,保护层因此在熔丝的外围与基板黏结, 冷却后密封中空穴。最后,制作端电极,并以钻石刀片或激光,将芯片型保 险丝自基板切割分离。本发明的另一目的在于提供一种薄膜和厚膜的整合技术,以低成本的方 法制作低阻抗的精细厚膜熔丝。本发明在一片大基板的表面,以厚膜印刷方 式,形成一层银和玻璃复合的导电膜,涵盖基板的表面。然后,涂布光刻胶, 并以曝光、显影、蚀刻等薄膜制造工艺,形成具有精细熔丝的导电膜,其中, 熔丝的宽度可以小至20微米。银和玻璃复合的导电膜是以银作为导电媒介, 玻璃作为黏结的媒介。为实现上述目的,本发明提供一种芯片型保险丝,包含基板;熔丝, 配置于该基板之上;保护层,形成于该熔丝的上方,且在该熔丝的外围与该 基板黏结;中空穴,形成于该熔丝与该保护层之间,至少包含一部分该熔丝; 以及至少一个端电极,与该熔丝电连接。如上所述的芯片型保险丝,其中该基板电绝缘,成份是纯度90%以上的 氧化铝。如上所述的芯片型保险丝,其中该熔丝具有导电性,其成份包含银和玻 璃的复合材料。如上所述的芯片型保险丝,其中该保护层特性均匀且电绝缘,其成份包 含玻璃。如上所述的芯片型保险丝,其中该保护层至少一部分经由至少一个中间 层,间接与该基板黏结。如上所述的芯片型保险丝,其中该保护层以整体熔化的方式,在该熔丝 的外围与该基板黏结。如上所述的芯片型保险丝,其中该中空穴包含气体,且该气体的压力小 于1个大气压。如上所述的芯片型保险丝,其中所述至少一个端电极形成于该基板两端 的侧边,且在该基板的边缘与该熔丝电连接。如上所述的芯片型保险丝,进一步包含隔热层,形成于该基板与该熔丝 之间。如上所述的芯片型保险丝,其中该隔热层含有玻璃成份。如上所述的芯片型保险丝,进一步包含电弧抑制层,覆盖于该熔丝之上, 介于该熔丝与该中空穴之间。如上所述的芯片型保险丝,其中该电弧抑制层含有玻璃成份。如上所述的芯片型保险丝,进一步包含至少一个末端垫,配置于该基板 上,电连接该熔丝至该基板的边缘。为实现上述目的,本发明还提供一种芯片型保险丝,包含基板;隔热 层,形成于该基板之上;熔丝,配置于该隔热层之上;保护层,形成于该熔 丝的上方,且于该熔丝的外围与该隔热层黏结;以及中空穴,形成于该熔丝 与该保护层之间,至少包含一部分该熔丝。如上所述的芯片型保险丝,其中该保护层至少--部分经由至少- 个中间 层,间接与该隔热层黏结。如上所述的芯片型保险丝,其中该保护层以整体熔化的方式,在该熔丝 的外围与该隔热层黏结。如上所述的芯片型保险丝,进一步包含电弧抑制层,覆盖于该熔丝之上, 介于该熔丝与该中空穴之间。为实现上述目的,本发明还提供一种芯片型保险丝的制造方法,包含 (a)提供基板;(b)形成含有银和玻璃的导电膜于该基板之上;(C)形成光刻 胶图案于该导电膜之上;(d)蚀刻未被该光刻胶图案保护的导电膜;以及(e) 去除该光刻胶图案,形成具有精细熔丝的导电膜。如上所述的制造方法,其中该熔丝的宽度介于20微米至200微米之间, 且其厚度介于1微米至20微米之间。本发明可以避免熔丝在过大电流负载 下产生的高热和电弧熔化或破坏保护层,以确保零件的完整与使用安全。关于本发明的优点与精神可以通过以下的发明详述及所附附图得到进 一步的了解。


图l为现有技术的立体示意图;图2为本发明第一优选具体实施例的立体示意图;图3为本发明第一优选具体实施例的截面图;图4为本发明第二优选具体实施例的立体示意图;图5为本发明第二优选具体实施例的截面图;图6为本发明的隔热层与烙丝制作方法的俯视图;图7为本发明的电弧抑制层制作方法的俯视图;图8为本发明的牺牲层制作方法的俯视图;图9为本发明的保护层与中空穴制作方法的俯视图;图10A-图10C为本发明的保护层与中空穴制作方法的程序截面图;以及图11A-图11B为本发明的端电极制作方法与组件分离的俯视图。 其中,附图标记说明如下1:芯片型保险丝11:基板12:熔丝14:端电极16:末端垫19:保护层2、 3:芯片型保险丝21:基板22:熔丝24:端电极26:末端垫27:中空穴29:保护层31:隔热层33:电弧抑制层51:基板52:熔丝53:牺牲层54:端电极55:未密封的中空穴56:末端垫 59:保护层 63:电弧抑制层90-1、 90-2、…、90-N: 95-1、 95-2、…、95-N:57:中空穴 61:隔热层纵向的切割分离线 横向的切割分离线具体实施方式
请参阅图2,图2示出根据本发明第一优选具体实施例的芯片型保险丝 2的立体示意图。保护层29在长度方向和宽度方向部分切开,以清楚显示内 部构造。图3为图2沿着宽度的中心线(l-l线)切幵的截面图。芯片型保险丝 2包含基板21、熔丝22、中空穴27、保护层29、两个端电极24和两个末端 垫26。基板21是电绝缘,其材料是纯度90%以上的氧化铝、玻璃、或其它电 绝缘陶瓷材料,其中以纯度96%的氧化铝最适用,厚度约0.2至1.0毫米(mm)。熔丝22是一层导电膜,其成份是金、银、铝、铜、白金等纯金属或合 金,也可以是银和玻璃复合的导体,制作于基板21的上表面。熔丝22的两 端分别连接到两个金属材料的末端垫26,末端垫26的宽度通常比熔丝22大, 厚度和熔丝22—样或更厚,材料可不同于熔丝22。为了制作方便,末端垫 26的材料和厚度,最好能和熔丝22相同,如图2和图3所示。熔丝22的宽度约20至200微米0im),厚度约0.2至20微米(,),依额 定电流的大小而不同。熔丝22的宽度愈大,厚度愈厚,则电阻愈低且额定 电流愈高。以宽度70微米0im),厚度5微米Oim)的银质熔丝为例,其额定 电流约是2安培。熔丝22可以是直线、弯曲线条或是其它不规则形状的线 条。熔丝22的总长度愈长,则电阻值愈高。熔丝22可以只是一条直线,也可以由多条材料与尺寸完全相同的直线并联而成。在熔丝22的上方有中空穴27,其边长约200至2000微米0im),包含整 个熔丝22。保护层29的主要成份是玻璃,熔化温度最好是介于摄氏400至 600度之间。保护层29涂布于熔丝22的上方,且于熔丝22的外围,直接或 经由末端垫26间接与基板21黏结,并将中空穴27封住。中空穴27可以是非密封状态,内部维持1个大气压力的空气,与周围环境相同。但是中空穴27最好能形成密封状态,以填充低于1个大气压力 的干燥空气、氮气、其它气体或是真空状态,其中以填充干燥空气作为缓冲气体的制作成本为最低。密封状态的中空穴27,为熔丝22提供一个安全与 稳定的环境,免于受到环境中的湿气、氧气与化学物等的腐蚀。中空穴27 的边长可以小至200微米Oim),也就是0.2毫米(mm),因此适用于1.6x0.8毫 米(mm)或更小型的芯片型保险丝的制作。中空穴27完全隔绝保护层29与熔丝22接触,故在额定电流范围内使 用时,保护层29内不会形成局部高温与热应力。而中空穴27内的气体是非 常好的缓冲材料,因此熔丝22在过大电流负载下产生的高热和电弧不会熔 化保护层29,同时避免局部高温的热应力造成保护层29破裂。另外密封状 态的中空穴27,因其内部的气体压力低于1个大气压,还可以降低气体因为 高温造成的压力上升。中空穴27有一适当的高度,以10至500微米0im)较 适宜,若高度太低则无法发挥预期的功能;而过高的高度则会增加制作成本。端电极24形成于该基板21两端的侧边,经由末端垫26与熔丝22的两 端分别对应连接。端电极24是芯片型保险丝2与电路板(未显示)结合的接触 点,通常是由三层材料构成,底层是银和玻璃的复合材料,或是与基板21 黏结性好的金属薄膜,例如钛、铬或其合金;中间层是镍,外层则是锡。现以额定电流2安培的银质熔丝22为测试样品,说明比较本发明的实 施例与现有技术的差异。测试的方法是施加30安培的过大电流负载(电压维 持32伏特),量测熔丝22的熔断时间,熔断后的电阻,以及在显微镜下观察 其测试后的外观。实验组本实施例,中空穴27的边长约200-400微米Oim),高度约50-200 微米(pm),填充空气,气压约300毫米水银柱(mmHg),玻璃材质的保护层 29密封整个中空穴27。比较组1:图1所示的现有技术,在熔丝12的上面,直接覆盖玻璃材质 的保护层19,厚度是10-20微米Oim)。比较组2:图1所示的现有技术,在熔丝12的上面,直接覆盖玻璃材质 的保护层19,厚度是100-200微米0im)。因为测试电流是额定电流的15倍,熔丝的熔断时间非常短,远低于1 毫秒(ms);熔断后的电阻大于10,000欧姆,三组之间的差异并不明显。但是10测试后的外观变化,三组之间差异很大。比较组1的保护层较薄,测试后被 熔化,熔丝部分外露。比较组2的保护层较厚,测试后破裂,部分保护层弹 开,暴露熔丝。本实施例的实验组,测试后外观完整,保护层无任何熔化或 破裂迹象。与现有技术相较,本实施例确实可以避免熔丝在过大电流负载下 产生的高热和电弧,熔化或破坏保护层,以确保零件的完整与使用安全。图4和图5描绘了根据本发明第二优选具体实施例的芯片型保险丝3的示意图。图4是立体示意图,保护层29在长度方向和宽度方向部分切开, 以清楚显示内部构造。图5为图4沿着宽度的中心线(l-l线)切开的截面图。 芯片型保险丝3包含基板21、熔丝22、中空穴27、保护层29、两个端电极 24和两个末端垫26,与上述的第一优选具体实施例相同。第二优选具体实施例的芯片型保险丝3与第一优选具体实施例的芯片型 保险丝2的主要不同之处在于芯片型保险丝3另包含隔热层31,介于基板 21与熔丝22之间;以及具有电弧抑制作用的电弧抑制层33,覆盖于熔丝22 的上面,介于熔丝22与中空穴27之间。基板21电绝缘,其材料是纯度卯%以上的氧化铝、玻璃、或其它绝缘 陶瓷材料,其中以纯度96%的氧化铝最适用,厚度约0.2至1.0毫米(mm)。 纯度96%的氧化铝耐高温、耐腐蚀而且价格合理,但是氧化铝的导热性很好, 所以电流经过熔丝22产生的热,有一部分是经由基板21传导散开,所以在 过大电流负载下,熔丝22需要更大电流和更长的时间方能熔断。因此针对快速反应型的保险丝,则需要在熔丝22与氧化铝基板21之间, 制作隔热层31,以阻隔熔丝22与基板21之间的热传导。隔热层31含有玻 璃成份,熔点约摄氏600至1000度。玻璃的导热性较氧化铝低很多,是很 适用的耐高温隔热材料。因为隔热层31的作用,电流流经熔丝22产生的热,得以集中于加热熔 丝22,其熔断时间因而縮短,故得以快速反应过大电流的负载。另外传导至 基板21的热能大为减少,基板21承受的热应力降低,还可以提升长期使用 的可靠度。隔热层31的厚度约5至100微米Omi),厚度愈厚,隔热效果愈 好,但制作成本则愈高。现以额定电流1安培的银质熔丝22为例,在4安培的过大电流负载下, 若熔丝22直接黏结在96%氧化铝基板21上面,熔断时间约25毫秒(ms)。相同条件下,如果在熔丝22与基板21之间,介入含有玻璃的隔热层31,厚 度10-20微米Oim),则熔断时间减少为1毫秒(ms)。隔热层31显著提升熔丝 22对过大电流负载的反应速度。隔热层31可以布满基板21的表面,也可以局部性的制作在基板21的 表面,只要其范围能够阻隔熔丝22与基板21的直接接触即可达到效果。玻 璃或其它隔热性良好的材料构成的基板,则不需要隔热层31;慢速反应型的 保险丝也不需要隔热层31。电弧抑制层33是由玻璃或玻璃与陶瓷的复合材料构成,至少涵盖整个 熔丝22,熔点约为摄氏500至700度,但是必须低于熔丝22的熔点,其目 的是降低熔丝22在过大电流负载下产生的电弧强度。当熔丝22在过大电流 负载下加热,并自某一点开始熔化而产生微细的间隙,电流经由此微细的间 隙放电形成电弧,其为瞬间的局部高能量,足以破坏熔丝22及其邻近的材 料。通常电流愈大,电压愈高,则产生的电弧愈强。现以纯银材质的熔丝22为例,说明电弧抑制层33的工作原理。熔丝22 在过大电流负载下,温度快速升高并传导至电弧抑制层33。当温度超过其熔 点时,电弧抑制层33熔化成液体状态。当温度继续升高至纯银的熔点(摄氏 960度)时,熔丝22自某一点开始熔化而产生微细的间隙,液体状态的电弧 抑制层33则流入此微细的间隙,阻隔电流自微细的间隙放电,因而降低电 弧的强度。电弧抑制层33的厚度约5至100微米0im),厚度愈厚则电弧抑制效果 愈好。电弧抑制层33可以只是覆盖在熔丝22之上,包含在中空穴27之内, 也可以扩开覆盖在中空穴27以外的区域,介于保护层29与隔热层31之间, 或保护层29与末端垫26之间。请参阅图6至图9与参考图IOA至图IOC,详细说明本发明的芯片型保 险丝的制作方法。芯片型保险丝的尺寸通常很细小,大量生产的制作方法是 在一片大基板上布置并制作很多个相同的元件,最后再分离成个别的元件。如图6所示,先提供一片大基板51,其为一种电绝缘且耐高温材料,是 纯度达90%以上的氧化铝、玻璃或其它电绝缘的陶瓷材料。基板51的外型 通常是长方形,边长约50至150毫米(mm),所以一片基板上可布置几百个 甚至几千个元件,依元件尺寸大小而不同。首先,在基板51的表面上制作隔热层61,其作法是将玻璃粉末,或玻 璃与陶瓷粉末,与溶剂、黏结剂混合成膏状物,再以网版或钢版印制在基板51的表面,并经由摄氏50至150度烘烤去除溶剂。重复印制与烘烤过程, 可以增加隔热层61的厚度。然后,将基板51置入高温炉中,加热至玻璃的 熔点,最好是介于摄氏600至1000度之间,冷却后形成含有玻璃成份的隔 热层61。再制作熔丝52与末端垫56于隔热层61的表面,熔丝52是导电膜,厚 度约0.2至20微米Oim),宽度约20至200微米Oim),依额定电流大小而不 同,其成分是金、银、铝、铜、白金等纯金属或其合金。其制作方法是工业 界常用的薄膜制造工艺,例如溅镀、蒸镀等方式。溅镀的成本很高r比较适 用于1微米Oim)以下的膜厚。1微米Omi)以上的膜厚,可以先用溅镀制作底 层薄膜,再以电镀方式增大其膜厚。其程序首先是在基板51的表面,布满 熔丝薄膜,再以曝光、显影等方法形成光刻胶图案并进行化学蚀刻,制作出预先设计的熔丝。但是熔丝52的厚度是5微米Oim)以上,即使以上述的溅镀和电镀的复 合制作方法制作,程序太复杂且成本太高。以厚膜印刷制作厚度5微米0im) 以上导体是一个程序简单且成本低的解决方案,但是精细度不够,线宽至少 是200微米0im)以上。因此,要制作厚度5微米(pm)以上,宽度约20至200微米Oim)的熔丝 52,厚膜和薄膜的技术整合,是一种可行的解决方案。其作法是以网版印刷 方式,将含有银粉末与玻璃粉末的银膏印制在隔热层61上,涵盖隔热层61 的表面;再经由烘烤去除溶剂和高温熔化玻璃的过程,形成一层银和玻璃复 合的导电膜。主要以银作为导电媒介,玻璃作为黏结媒介,玻璃对银的重量 比通常是低于15%。然后,涂布光刻胶于导电膜之上,并进行曝光、显影程序,产生预定的 光刻胶图案。再以化学溶液,蚀刻未被光刻胶图案保护的导电膜;最后以丙 酮或其它溶剂去除光刻胶图案,形成具有精细熔丝的导电膜。其中光刻胶的 厚度必须比一般的薄膜制造工艺的厚,因为以网版印刷方式制作的银和玻璃 复合的导电膜,颗粒较粗大而且表面较不平整。纯金属的蚀刻比较单纯,蚀刻液也已经商业化。两种以上不同属性成份组成的合金或复合物,蚀刻工艺困难很多,蚀刻液必须能够溶解每一种成份。 银和玻璃复合的导电膜,蚀刻液必须特别调制,以硝酸、氢氟酸等为基本溶 液,方能同时蚀刻银和玻璃。以此种厚膜和薄膜的整合技术制作熔丝52,程序简易且成本低。厚度5微米0im)的银和玻璃复合的导电膜,蚀刻后的宽度 可以精细至20微米。末端垫56分别连接熔丝52的两端,将熔丝52与端电极作电连接,连 接处就在末端垫56厚度的截面,因此末端垫56的宽度通常比熔丝52大, 除了增大连接的面积,还可以降低电阻。为了制作方便,末端垫56的材料 和厚度,最好能和熔丝52相同,如图6所示。但是如果末端垫56的厚度太 薄,例如l微米Oim)以下,连接的面积太小,造成连接的强度不足,因此需 要以电镀或厚膜印制方式,增大末端垫56的厚度。如图7所示,熔丝52与末端垫56制作完成后,接着在每一个熔丝52 的上面制作电弧抑制层63。其制作方法是将玻璃膏,以网版或钢版印制在熔 丝52之上,包含整个熔丝52,并经由摄氏50至150度烘烤去除溶剂。重复 印制与烘烤过程,可以增加电弧抑制层63的厚度。然后将基板51置入高温 炉中,加热至玻璃的熔点,最好是介于摄氏500至700度之间,冷却后形成 含有玻璃成份的电弧抑制层63。请参阅图8,电弧抑制层63制作完成后,接着在每一个电弧抑制层63 的上面制作牺牲层53。牺牲层53主要是高分子树脂材料,其要求是容易成 形,且可以在摄氏400度以下与氧气完全作用挥发消失。压克力树脂是很好 的选择,其可以和松油醇(Terpineol)等适当的溶剂混合成膏状型态,以网版 或钢版印刷方式印制在电弧抑制层63之上。印制后再施以摄氏50至150度的烘烤以去除溶剂,形成预设形状和大 小的树脂。重复上述印制和烘烤的工艺,可以增大厚度。光刻胶或其它感光 性高分子材料也可以用来制作牺牲层53,以曝光及显影方式成形,尺寸细小且精密,但是生产成本较高。针对图2与图3的第一优选具体实施例,隔热层61与电弧抑制层63并 不需要,因此熔丝52与末端垫56直接制作于基板51的表面。牺牲层53则 覆盖在熔丝52之上,包含整个熔丝52。请参阅图9,说明保护层59与中空穴57的制作方法;而图10A、 IOB、10C为保护层59在熔丝52的中心线(3-3线)的截面图。保护层59的主要成 份是玻璃,熔点最好是介于摄氏400至600度之间。制作程序首先是以网版 或钢版印制由玻璃粉末、黏结剂与溶剂组成的膏状物,完全包覆牺牲层53。 如图10A所示,印制后再以摄氏50至150度的烘烤去除溶剂,形成预设的 形状和尺寸,其为玻璃粉末和黏结剂的组合;重复印制和烘烤的工艺以得到 要求的厚度。然后将整个基板51置入高温炉中,分两个阶段加热。第一阶段温度设 定在摄氏300至400度之间,在l个大气压的空气下,目的是去除牺牲层。 请参阅图IOB,牺牲层53的高分子树脂和空气中的氧气作用而形成二氧化 碳和水蒸气而挥发不见,因此原先牺牲层53的位置就成为一个未密封的中 空穴55。黏结玻璃粉末的黏结剂也同时氧化消失,只留下玻璃粉末。如图10C所示,第二阶段温度设定在玻璃的熔点,最好是摄氏400至 600度,气体是等于或小于1个大气压的空气、氮气或其它气体,依需求而 定。玻璃粉末熔化,厚度降低而成致密的玻璃,冷却后密封整个中空穴57。 玻璃熔化的过程会让中空穴57的高度和外型有些变化,但是对长度和宽度 的改变很有限。依据气体定律, 一个固定体积的密闭空间,其内部的气体压力和绝对温 度成正比。例如保护层59的玻璃在摄氏400至600度高温以及1个大气压(760 毫米水银柱)下熔化,所以冷却到室温后,中空结穴57内的气压低于1个大 气压,约为300毫米水银柱(mmHg)。图IIA与图IIB是制作端电极与元件自基板切割分离的制作方法说明。 请参阅图9,首先是以钻石刀片或激光切割保护层59与基板51 。并行线95-1 、95-2.....95-N是横向的切割线,其间距也就是芯片型保险丝的宽度。并行线90-l、 90-2.....90-N是纵向的切割线,其间距也就是芯片型保险丝的长度。首先是依95-l、 95-2、 ...、 95-N的切割线作横向切割,切开保护层59, 但不切穿基板51。接着以90-l、 90-2、...、卯-N的切割线作纵向切割,切 幵保护层59并切穿基板51。如图IIA所示,基板51因此分离成多个条状 小基板。接着在切开的条状小基板的两端制作端电极54的底层金属,其作 法是以溅镀方式,制作一层与基板黏结性好的金属薄膜,例如钛、铬或其合金。底层金属也可以使用浸沾或滚沾方式沾银膏,并烘烤烧结成一层银薄膜。 接着以电镀方式,在底层金属上面制作一层镍,最后再将锡电镀在镍上面, 完成整个端电极54的制作过程。请参阅图11B,然后依图IIA所示的切割线95-1、 95-2、 ...、 95-N折断,分离成一颗颗芯片型保险丝,完成整个芯片型保险丝的制作过程。通过以上优选具体实施例的详述,希望能更加清楚描述本发明的特征与 精神,而并非以上述所公开的优选具体实施例来对本发明的范围加以限制。 相反地,其目的是希望能将各种改变及等效的变型涵盖在本发明的权利要求 的范围内。因此,本发明的权利要求的范围应该根据上述的说明作最宽广的 解释,以使其涵盖所有可能的改变以及其等效的变型。
权利要求
1. 一种芯片型保险丝,包含基板;熔丝,配置于该基板之上;保护层,形成于该熔丝的上方,且在该熔丝的外围与该基板黏结;中空穴,形成于该熔丝与该保护层之间,至少包含一部分该熔丝;以及至少一个端电极,与该熔丝电连接。
2、 如权利要求1所述的芯片型保险丝,其中该基板电绝缘,成份是纯 度卯%以上的氧化铝。
3、 如权利要求1所述的芯片型保险丝,其中该熔丝具有导电性,其成 份包含银和玻璃的复合材料。
4、 如权利要求1所述的芯片型保险丝,其中该保护层特性均匀且电绝 缘,其成份包含玻璃。
5、 如权利要求1所述的芯片型保险丝,其中该保护层至少一部分经由 至少一个中间层,间接与该基板黏结。
6、 如权利要求1所述的芯片型保险丝,其中该保护层以整体熔化的方 式,在该熔丝的外围与该基板黏结。
7、 如权利要求1所述的芯片型保险丝,其中该中空穴包含气体,且该 气体的压力小于1个大气压。
8、 如权利要求1所述的芯片型保险丝,其中所述至少一个端电极形成 于该基板两端的侧边,且在该基板的边缘与该熔丝电连接。
9、 如权利要求1所述的芯片型保险丝,进一步包含隔热层,形成于该 基板与该熔丝之间。
10、 如权利要求9所述的芯片型保险丝,其中该隔热层含有玻璃成份。
11、 如权利要求l所述的芯片型保险丝,进一步包含电弧抑制层,覆盖 于该熔丝之上,介于该熔丝与该中空穴之间。
12、 如权利要求11所述的芯片型保险丝,其中该电弧抑制层含有玻璃成份。
13、 如权利要求l所述的芯片型保险丝,进一步包含至少一个末端垫, 配置于该基板上,电连接该熔丝至该基板的边缘。
14、 一种芯片型保险丝,包含 基板;隔热层,形成于该基板之上; 熔丝,配置于该隔热层之上;保护层,形成于该熔丝的上方,且于该烙丝的外围与该隔热层黏结;以及中空穴,形成于该熔丝与该保护层之间,至少包含一部分该熔丝。'
15、 如权利要求14所述的芯片型保险丝,其中该保护层至少一部分经 由至少一个中间层,间接与该隔热层黏结。
16、 如权利要求14所述的芯片型保险丝,其中该保护层以整体熔化的 方式,在该熔丝的外围与该隔热层黏结。
17、 如权利要求14所述的芯片型保险丝,进一步包含电弧抑制层,覆 盖于该熔丝之上,介于该熔丝与该中空穴之间。
18、 一种芯片型保险丝的制造方法,包含(a) 提供基板;(b) 形成含有银和玻璃的导电膜于该基板之上;(c) 形成光刻胶图案于该导电膜之上;(d) 蚀刻未被该光刻胶图案保护的导电膜;以及(e) 去除该光刻胶图案,形成具有精细熔丝的导电膜。
19、 如权利要求18所述的制造方法,其中该熔丝的宽度介于20微米至 200微米之间,且其厚度介于1微米至20微米之间。
全文摘要
本发明提供一种芯片型保险丝及其制造方法。该芯片型保险丝以电绝缘材料为基板,熔丝配置于基板之上。保护层形成于熔丝的上方,且在熔丝的外围与基板黏结,因此在熔丝与保护层之间形成中空穴。此中空穴隔绝保护层和熔丝直接接触,避免熔丝在过大电流负载下产生的高热和电弧,熔化或破坏保护层。中空穴还可以成为密封状态,将小于1个大气压力的气体密封在内。芯片型保险丝进一步包含隔热层与电弧抑制层,以分别降低在过大电流负载下的反应时间和电弧强度。本发明还提供一种芯片型保险丝的制造方法,尤其是形成熔丝与中空穴的方式。本发明可以避免熔丝在过大电流负载下产生的高热和电弧熔化或破坏保护层,以确保零件的完整与使用安全。
文档编号H01H85/055GK101261914SQ200710085540
公开日2008年9月10日 申请日期2007年3月8日 优先权日2007年3月8日
发明者蔡聪明 申请人:诚佑科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1