一种锂硫电池用一体化电极及其制备方法

文档序号:7247296阅读:282来源:国知局
一种锂硫电池用一体化电极及其制备方法
【专利摘要】本发明涉及一种用于锂硫电池的一体化电极及其制备方法,所述一体化电极是由集流体和集流体上原位生长的碳硫复合物构成,其中碳硫复合物是由导电碳材料及填充于碳材料孔结构中的单质硫组成,单质硫占碳硫复合物的质量百分比为10~95%,单质硫在集流体上的担量为0.1~5mg/cm2。该一体化电极工艺上简单,容易实现。通过该方法制备的电极能够明显降低集流体与碳硫复合物间的接触电阻,提高活性物质硫的利用率,而且该一体化电极不需要添加任何粘结剂,避免了由于粘结剂的稳定性带来的电池循环稳定差的问题,节省了成本,具有重要的商业价值。
【专利说明】—种裡硫电池用一体化电极及其制备方法
【技术领域】
[0001]本发明涉及锂硫电池领域,特别涉及一种锂硫电池电极及其制备方法。
【背景技术】
[0002]随着化石能源日益紧缺、环境问题日趋严重,开发新的能源储存及转换技术已成为世界能源战略重点。其中,锂硫电池是极具发展潜力和应用前景的高能量密度二次电池。
[0003]锂硫电池是一种以金属锂为负极、单质硫为正极的二次电池,其比能量理论上可达到2600Wh/kg,实际能量密度目前能达到300Wh/kg,未来几年内极有可能提高到600Wh/kg左右,同时单质硫正极材料具有来源丰富、价格便宜、环境友好等优点,被认为是当前最具研究吸引力的二次电池体系之一。
[0004]然而,锂硫电池的发展还存在很多问题。正极活性物质硫室温为绝缘体,离子导电性差,电化学过程易形成溶于电解液的多硫化锂而使活性物质流失,在充放电过程中电极表面易形成较厚的二硫化锂和硫化锂绝缘层,并且充放电过程中硫发生体积膨胀和收缩使电极材料结构发生变化,另外,电池在发生自放电过程中,穿梭至锂负极的多硫化锂与锂片发生化学反应,使锂片发生腐蚀。综上,锂硫电池电极材料容量发挥低、循环稳定性差,如何克服这些缺点是单质硫应用的关键。
[0005]目前,为了提高单质硫的利用率,传统的锂硫电池正极通常是将含有活性物质硫的碳硫复合物与导电剂及粘结剂混合形成浆料后,刮涂至铝箔上,利用碳硫复合物中的碳及导电剂传递电子,铝箔收集电流。虽然该电极制备简单,但存在一些问题:1.碳硫复合物与集流体之间仅是靠粘结剂粘在一起,二者之间的接触电阻无法避免;2.额外添加导电剂,增加了正极中碳的含量,相当于降低了单质硫的含量,从而降低了电池的能量密度;
3.添加的粘结剂均为高分子的有机物,价格昂贵,且这些有机物在电池运行过程中易发生分解或溶解到电解液中,影响电池的循环稳定性。
[0006]为了改善一般电极结构的上述问题,本发明提供一种新的一体化电极。其以集流体为基底,利用分步化学法将碳硫复合物原位担载在集流体上,与集流体结合为一体而成复合电极。其中一体化电极的制备方法为:在集流体的孔隙中浸溃导电碳的前驱体,经高温热解后形成碳包覆的集流体,然后,通过“硫化”处理过程,形成碳硫复合物与集流体一体的复合电极。该一体化电极工艺上简单,容易实现。通过该方法制备的电极能够明显降低集流体与碳硫复合物间的接触电阻,提高活性物质硫的利用率,不需要额外添加导电剂,降低了电极的质量,提高了电池的能量密度,而且该一体化电极不需要添加任何粘结剂,避免了由于粘结剂的稳定性带来的电池循环稳定差的问题,节省了成本,具有重要的商业价值。

【发明内容】

[0007]本发明的目的在于提供一种锂硫电池用一体化电极及其制备方法。
[0008]为实现上述目的,本发明采用的技术方案为:为克服传统电极中存在的问题,该一体化电极以集流体为基底,利用分步化学法将碳硫复合物原位担载在集流体上,与集流体结合为一体而成复合电极。其中一体化电极的制备方法为:在集流体的孔隙中浸溃导电碳的前驱体,经高温热解后形成碳包覆的集流体,然后,通过“硫化”处理过程,形成碳硫复合物与集流体一体的复合电极。该一体化电极工艺上简单,容易实现。通过该方法制备的电极能够明显降低集流体与碳硫复合物间的接触电阻,提高活性物质硫的利用率,不需要额外添加导电剂,降低了电极的质量,提高了电池的能量密度,而且该一体化电极不需要添加任何粘结剂,避免了由于粘结剂的稳定性带来的电池循环稳定差的问题,节省了成本,具有重要的商业价值。
[0009]一种用于锂硫电池的一体化电极:包括集流体、生长于集流体上的导电碳材料及填充于碳材料孔结构中的活性物质硫,其中单质硫占碳硫复合物的质量百分比为10 %~95%,单质硫在集流体上的担量为0.1~5mg/cm2。
[0010]一种用于锂硫电池的一体化电极的制备方法为以集流体为基底,利用化学还原法将碳硫复合物原位担载在集流体上,与集流体结合为一体而成复合电极。
[0011]其具体的制备方法包括以下过程:
[0012](I).将导电碳材料前驱体均匀分散于溶剂中,形成浆料A,其中浆料A的浓度范围为 5 ~90wt.% ;
[0013]⑵.将浆料A制备到集流体上,挥发溶剂后,导电碳材料前驱体于集流体上的质量分数为10% -70% ;
[0014](3).将制备有 导电碳材料前驱体的集流体转移到通有惰性气体的高温炉中进行碳化处理,得到极片B,处理温度范围为600~1100°C ;
[0015](4).将极片B进行充硫处理后,得到一体化电极。
[0016]其中形成浆料A的过程进一步包括:在导电碳的前驱体分散于溶剂中后,可向混合液中添加碳纳米管或纳米纤维,使其发挥导电碳与集流体间的支架作用。
[0017]并且形成浆料A的过程还进一步包括:在导电碳的前驱体分散于溶剂中后,也可向混合液中添加模板剂,使其导电碳形成规则有序的结构;还可以添加表面活性剂,使导电碳的前驱体能更好的分散于溶剂中。
[0018]所述导电碳的前驱体为酚醛树脂、蔗糖、浙青、糠醇、三聚氰胺、苯酚、间苯二酚、间苯三酚、导电聚合物等中的一种一种或二种以上;所述分散导电碳前驱体的溶剂为乙醇、水、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、苯中的一种。
[0019]所述将浆料浸溃到集流体上的方法为刮涂法、溶液浸溃法、真空浸溃法、喷涂法、丝网印刷法、激光打印法中的一种;所述的集流体为泡沫碳、碳纸、碳布、泡沫镍、粗糙化处理的铝箔中的一种;所述惰性气体为氮气、氩气、氦气中的一种;所述充硫处理方法为--溶液复合法、熔融法、原位反应复合法、凝胶沉淀复合法、气相充硫法及减压气相充硫法中的一种。
[0020]所述模板剂为二氧化硅、氧化镁、三氧化二铝、正硅酸乙酯、正硅酸甲酯、碳酸钙、苯乙烯、聚甲基丙烯酸甲酯(PMMA)等;所述表面活性剂为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)、十六烷基溴化胺(CTAB)、聚醚(F127)等。其中,碳纳米管/纳米纤维与导电碳材料前驱体的质量比为1:(0.5-5);导电碳材料前驱体与模板剂的质量比为1:(0.f I);表面活性剂于浆料A中的质量百分数为I~5%。
[0021]与现有技术相比,本发明具有如下优点:[0022](I).该一体化电极制备周期短,工艺简单,成本底;
[0023](2).该一体化电极采用将碳硫复合物直接原位担载于集流体上的方式,大大降低了集流体与碳硫复合物间的接触电阻,提高了活性物质硫的利用率;
[0024](3).该一体化电极制备过程中不需要额外添加导电剂,降低了电极中碳的质量,提高了电池的能量密度;
[0025](4).该一体化电极有效的利用了集流体上的大孔结构,使集流体在电池运行过程中不仅起到集流作用,还发挥了支撑及传导锂离子的作用,提高了电池的放电倍率;
[0026](5).该一体化电极不需要添加任何粘结剂,避免了由于粘结剂的稳定性带来的电池循环稳定差的问题,节省了成本,具有重要的商业价值
[0027](6).本发明制备的一体化电极具有较高的硫利用率和良好的循环稳定性。较传统的电极放电电压平台提高0.1V,放电容量可达到1400mAh/g-S,提高了 372mAh/g_S,循环20圈后,放电容量保持率为96%,提高了 13%。
[0028]附图及其说明
[0029]图1.本发明制备的一体化电极的结构示意图。
[0030]图2.本发明制备的一体化电极与同条件下制备的传统电极的首圈放电曲线比较(放电倍率为0.1C,截至电压1.5-2.8V)。
[0031]图3.本发明制备的一体化电极与同条件下制备的传统电极的循环稳定性测试曲线(放电倍率为0.1C,截至电压1.5-2.8V)。
【具体实施方式】
[0032]下面通过实施例对本发明作详细描述,但是本发明不仅限于实施例。
[0033]实施例1
[0034]称取5g蔗糖,将其溶于去离子水中,添加0.5g浓度为98 %的硫酸,形成浆料A,浆料A的浓度为90 %,取面积为6.25cm2的碳纸(厚度为90 μ m),将其浸溃到浆料A中,完全浸润后,取出,80°C干燥12h,160°C干燥6h,多次浸溃后,保持碳纸本身的孔隙残留率为5% ;然后将浸溃好的碳纸转移至通有氩气保护的管式炉中,900°C焙烧5h,降至室温。将焙烧后的碳纸转移至气相充硫装置(气相充硫装置为一密闭的容器,充硫过程中容器内充满有硫蒸汽)中,300 V充硫2h后即得本发明制备得一体化电极,其中充硫量为95 %。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0035]由图2可以看出,本发明制备的一体化电极首圈放电容量可达到1400mAh/g-S,单质硫的利用率为84%。比传统方法制备的电极放电容量提高372mAh/g-S,单质硫的利用率提高23% ;并且放电电压平台也提高0.1V。因此,通过本发明制备的锂硫电池一体化电极有效的降低了碳硫复合物与集流体间的接触电阻,提高了单质硫的利用率。
[0036]由图3可以看出,本发明制备的一体化电极经20次循环后,电池的容量保持率为96%,并基本保持不变。比传统电极容量保持率提高13%。因此,通过本发明制备的锂硫电池一体化电极较传统电极具有优异的循环稳定性。
[0037]实施例2
[0038]称取5g酚醛树脂(浓度为60 % ),将其稀释于乙醇中,形成浆料A,浆料A的浓度为5%,取面积为6.25cm2的泡沫镍,将其浸溃到浆料A中,完全浸润后,取出,80°C干燥12h,多次浸溃后,保持泡沫镍本身的孔隙残留率为95% ;然后将浸溃好的泡沫镍转移至通有氩气保护的管式炉中,800°C焙烧3h,降至室温。将焙烧后的泡沫镍转移至气相充硫装置中,300°C充硫2h后即得本发明制备得一体化电极,其中充硫量为5%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0039]实施例3
[0040]称取5g酚醛树脂(浓度为60%),将其稀释于乙醇中,添加0.6g碳纳米管,充分搅拌后形成浆料A,浆料A的浓度为40%,取面积为6.25cm2的碳纸,将浆料A中刮涂至碳纸上,80°C干燥12h,碳纸本身的孔隙残留率为50% ;然后将刮涂后的碳纸转移至通有氩气保护的管式炉中,900°C焙烧3h,降至室温。将焙烧后的碳纸采用熔融法充硫后即得本发明制备得一体化电极,其中充硫量为75%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。具体数据见附图2、附图3。
[0041]对比例为采用酚醛树脂为碳源制备的碳硫复合物(充硫量75%),采用传统刮涂工艺制备的电极组装而成的钮扣电池放电性能。
[0042]实施例4
[0043]称取2g糠醇,将其稀释于乙醇中,添加4g碳纳米管及0.2g 二氧化硅模板,充分搅拌后形成浆料A,浆料A的浓度为60%,取面积为6.25cm2的碳布,将浆料A中刮涂至碳布上,80°C干燥12h,碳布本身的孔隙残留率为50%;然后将刮涂后的碳布转移至通有氮气保护的管式炉中,600°C焙烧5h,降至室温。将焙烧后的碳布用10%的氢氟酸溶液浸泡24h,水洗至中性。干燥后的碳布采用溶胶凝胶法充硫后即得本发明制备得一体化电极,其中充硫量为40%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0044]实施例5
[0045]称取2g三聚氰胺,将其稀释于水中,添加0.4g碳纳米纤维及2g 二氧化硅模板,充分搅拌后形成浆料A,浆料A的浓度为50%,取面积为6.25cm2的泡沫碳,将浆料A真空浸溃至泡沫碳上,80°C干燥12h,泡沫碳本身的孔隙残留率为70% ;然后将泡沫碳转移至通有氦气保护的管式炉中,700°C焙烧2h,降至室温。将焙烧后泡沫碳用10%的氢氟酸溶液浸泡24h,水洗至中性。干燥后的泡沫碳采用溶液复合法充硫后即得本发明制备得一体化电极,其中充硫量为50%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0046]实施例6
[0047]称取5g浙青,将其稀释于N-甲基吡咯烷酮中,充分搅拌后形成浆料A,浆料A的浓度为50%,取面积为6.25cm2的腐蚀后的铝箔,将浆料A中喷涂至铝箔上,80°C干燥12h,然后将喷涂后的铝箔转移至通有氩气保护的管式炉中,1100°C焙烧3h,降至室温。将焙烧后的铝箔采用熔融法充硫后即得本发明制备得一体化电极,其中充硫量为50%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0048]实施例7
[0049]称取5g苯酚,将其稀释于IOg水中,添加浓度为37%的甲醛溶液,其中苯酚与甲醛的摩尔比为2:1,滴加0.5摩尔的硫酸,调PH值为5,取面积为6.25cm2的泡沫镍,将其浸溃到浆料A中,完全浸润后,取出,80°C干燥12h,多次浸溃后,保持泡沫镍本身的孔隙残留率为95% ;然后将浸溃好的泡沫镍转移至通有氩气保护的管式炉中,800°C焙烧3h,降至室温。将焙烧后的泡沫镍转移至气相充硫装置中,300°C充硫2h后即得本发明制备得一体化电极,其中充硫量为70%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0050]实施例8
[0051]称取5g间苯二酚,将其稀释于IOg水中,添加浓度为37%的甲醛溶液,其中苯酚与甲醛的摩尔比为2:1,滴加0.5摩尔的硫酸,调PH值为5,取面积为6.25cm2的碳布,将浆料A中激光打印至碳布上,80°C干燥12h,碳布本身的孔隙残留率为50% ;然后将碳布转移至通有氩气保护的管式炉中,900°C焙烧3h,降至室温。将焙烧后的碳布采用减压气相充硫法充硫后即得本发明制备得一体化电极,其中充硫量为80%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0052]实施例9
[0053]称取2g三聚氰胺,将其稀释于水中,浓度为50%,添加0.4g碳纳米纤维,0.44g十六烷基溴化胺及2g碳酸钙模板,充分搅拌后形成浆料A,取面积为6.25cm2的泡沫碳,将浆料A真空浸溃至泡沫碳上,80°C干燥12h,泡沫碳本身的孔隙残留率为70% ;然后将泡沫碳转移至通有氦气保护的管式炉中,700°C焙烧2h,降至室温。将焙烧后泡沫碳用10%的氢氟酸溶液浸泡24h,水洗至中性。干燥后的泡沫碳采用溶液复合法充硫后即得本发明制备得一体化电极,其中充硫量为50%。在充满氩气的手套箱中组装成扣式电池测试其电化学性倉泛。
[0054]实施例10
[0055]称取5g浙青,将其稀释于N-甲基吡咯烷酮中,充分搅拌后形成浆料A,浆料A的浓度为50%,向浆料A中添加5gPMMA及0.5gP123,充分搅拌后,取面积为6.25cm2的腐蚀后的铝箔,将浆料A中喷涂至铝箔上,80°C干燥12h,然后将喷涂后的铝箔转移至通有氩气保护的管式炉中,1100°C焙烧3h,降至室温。将焙烧后的铝箔采用熔融法充硫后即得本发明制备得一体化电极,其中充硫量为50%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0056]实施例11
[0057]称取2g糠醇,将其稀释于乙醇中,添加4g碳纳米管及0.4g苯乙烯,充分搅拌后形成浆料A,浆料A的浓度为60 %,取面积为6.25cm2的碳布,将浆料A中刮涂至碳布上,80°C干燥12h,碳布本身的孔隙残留率为50% ;然后将刮涂后的碳布转移至通有氮气保护的管式炉中,600°C焙烧5h,降至室温。将焙烧后的碳布用10%的氢氟酸溶液浸泡24h,水洗至中性。干燥后的碳布采用溶胶凝胶法充硫后即得本发明制备得一体化电极,其中充硫量为40%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
[0058]实施例12
[0059]称取5g酚醛树脂(浓度为60 % ),将其稀释于乙醇中,形成浆料A,浆料A的浓度为5%,向浆料A中添加3g三氧化二铝,0.06gF127,充分搅拌后,取面积为6.25cm2的泡沫镍,将其浸溃到浆料A中,完全浸润后,取出,80°C干燥12h,多次浸溃后,保持泡沫镍本身的孔隙残留率为95% ;然后将浸溃好的泡沫镍转移至通有氩气保护的管式炉中,800°C焙烧3h,降至室温。将焙烧后的泡沫镍转移至气相充硫装置中,300°C充硫2h后即得本发明制备得一体化电极,其中充硫量为5%。在充满氩气的手套箱中组装成扣式电池测试其电化学性倉泛。
[0060]实施例13[0061 ] 称取5g蔗糖,将其溶于去离子水中,添加0.5g浓度为98 %的硫酸,形成浆料A,浆料A的浓度为90%,向浆料A中添加IOg正硅酸乙酯后,取面积为6.25cm2的碳纸(厚度为90 μ m),将浆料A丝网印刷至碳纸上,80°C干燥12h,160°C干燥6h,多次印刷后,保持碳纸本身的孔隙残留率为5% ;然后将碳纸转移至通有氩气保护的管式炉中,900°C焙烧5h,降至室温。将焙烧后的碳纸转移至气相充硫装置中,300°C充硫2h后即得本发明制备得一体化电极,其中充硫量为85%。在充满氩气的手套箱中组装成扣式电池测试其电化学性能。
【权利要求】
1.一种锂硫电池用一体化电极,其特征在于:所述一体化电极是由集流体和集流体上原位生长的碳硫复合物构成,其中碳硫复合物是由导电碳材料及填充于碳材料孔结构中的单质硫组成,单质硫占碳硫复合物的质量百分比为10~95%,单质硫在集流体上的担量为0.1 ~5mg/cm2。
2.—种权利要求1所述一体化电极的制备方法,其特征在于:所述电极是以集流体作为基底,利用化学还原法将碳硫复合物原位担载在集流体上,与集流体结合为一体而成的复合电极。
3.根据权利要求1所述的制备方法,其特征在于:所述电极具体的制备过程如下, (1).将导电碳材料前驱体均匀分散于溶剂中,形成浆料A,其中浆料A的浓度范围为5 ~90wt.% ; (2).将浆料A制备到集流体上,挥发溶剂后,导电碳材料前驱体于集流体上的质量分数为 10-70% ; (3).将制备有导电碳材料前驱体的集流体转移到通有惰性气体的高温炉中进行碳化处理,得到极片B,处理温度范围为600~1100°C ; (4).将极片B进行充硫处理后,得到一体化电极。
4.按照权利要求3所述制备方法,其特征在于:所述导电碳材料前驱体为酚醛树脂、蔗糖、浙青、糠醇、三聚氰胺、苯酚、间苯二酚、间苯三酚、导电聚合物等中的一种或二种以上,所述分散导电碳前驱体的溶剂为乙醇、水、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、苯中的一种。
5.按照权利要求3所述的制备方法,其特征在于:将浆料制备到集流体上的方法为刮涂法、溶液浸溃法、真空浸溃法、喷涂法、丝网印刷法、激光打印法中的一种;所述的集流体为泡沫碳、碳纸、碳布、泡沫镍、招箔中的一种;所述惰性气体为氮气、IS气、氦气中的一种。
6.按照权利要求3所述的制备方法,其特征在于:形成浆料A的过程还可以包括:在导电碳材料的前驱体分散于溶剂中后,向混合液中添加碳纳米管或纳米纤维,其中,碳纳米管或纳米纤维与导电碳材料前驱体的质量比为1: (0.5-5)。
7.按照权利要求6所述的制备方法,其特征在于:所述碳纳米管或碳纳米纤维为进行净化与表面氧化处理后的碳纳米管或碳纳米纤维。
8.按照权利要求3所述的制备方法,其特征在于:形成浆料A的过程还可以包括:在导电碳的前驱体分散于溶剂中后,向混合液中添加模板剂或表面活性剂; 所述模板剂为二氧化硅、氧化镁、三氧化二铝、正硅酸乙酯、正硅酸甲酯、碳酸钙、苯乙烯、聚甲基丙烯酸甲酯(PMMA); 所述表面活性剂为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物、十六烷基溴化胺或聚醚; 导电碳材料前驱体与模板剂的质量比为1:(0.1~1);表面活性剂于浆料A中的质量百分数为I~5%。
9.按照权利要求1所述的制备方法,其特征在于:所述充硫处理方法为:溶液复合法、熔融法、原位反应复合法、凝胶沉淀复合法、气相充硫法及减压气相充硫法中的一种。
【文档编号】H01M4/13GK103840141SQ201210484885
【公开日】2014年6月4日 申请日期:2012年11月23日 优先权日:2012年11月23日
【发明者】张华民, 王美日, 张益宁, 曲超, 王倩, 李婧, 聂红娇 申请人:中国科学院大连化学物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1