电力半导体装置的制作方法

文档序号:11814954阅读:204来源:国知局
电力半导体装置的制作方法

本发明涉及一种电力半导体装置。



背景技术:

当前,在为了对CPU(central processing unit)、功率晶体管等发热强烈的电子部件(电力半导体元件)进行冷却而安装散热器时,为了将二者的接合部的细微的间隙填埋而提高导热率,广泛地进行涂敷散热脂的做法。由于散热脂的导热率与金属相比非常低,因此为了进一步提高散热性能,还实现了散热鳍片一体型的电力半导体装置,即,不使用散热脂,而将散热鳍片和电力半导体装置的金属部基座板一体化。在散热鳍片一体型的电力半导体装置中,通过在基座板设置用于与散热鳍片进行接合的槽,在使包含形成了该槽的部分在内的基座板的一部分的表面露出的状态下进行树脂模塑,在将散热鳍片插入基座板的槽之后,进行铆接而固接,从而将基座板和散热鳍片设为一体,实现散热性能的提高。

对于以上述方式实现了高散热化的电力半导体装置,已知如下技术,即,通过将金属部件与基座板重叠,使该金属部件具有将电力半导体装置与接地电位连接的作用,从而对来自电力半导体元件的辐射噪声、误动作进行抑制(参照专利文献1)。

专利文献1:日本特开2012-49167号公报



技术实现要素:

在金属部件和基座板的表面,在大气中形成氧化膜,氧化膜的电阻比金属本身的电阻大。在上述现有技术中,通过将金属部件夹入散热鳍片和基座板之间,从而实现金属部件和基座板之间的电接触。即,金属部件和基座板的表面的氧化膜虽然会由于彼此的接触而被破坏,但未氧化的新生的表面露出的区域很微小,二者间的电连接基本上是通过在各自的表面所形成的氧化膜进行的。因此,存在如下问题,即,在即使金属部件、基座板不发生翘曲,金属部件和基座板进行面接触的情况下,能够通过未氧化的新生的表面彼此的接触而导通的部分的比例也较小,金属部件和基座板之间的电阻变大。

本发明就是鉴于上述情况而提出的,其目的在于得到一种电力半导体装置,该电力半导体装置的降低来自电力半导体元件的辐射噪声,对电力半导体元件的误动作进行抑制的效果优异。

为了解决上述课题,实现目的,本发明的特征在于,具有:电力半导体元件;基座板,其由导电性材料构成,与电力半导体元件热连接,以将电力半导体元件的发热传导至散热鳍片;以及导电性部件,其固定于基座板,并且与基座板导通,与接地连接,通过将设置于基座板的凸起与设置于导电性部件的切口嵌合,并且使凸起变形,从而使导电性部件被固定于基座板,实现导通。

发明的效果

本发明所涉及的电力半导体装置具有如下效果,即,通过使基座板的凸起变形,对导电性部件和基座板进行固定,从而使基座板和导电性部件之间的氧化膜破坏,在电阻微小的新生的表面露出的状态下使基座板和金属部件接触,由此能够使电阻减小,能够使降低来自电力半导体元件的辐射噪声,对电力半导体元件的误动作进行抑制的效果提高。

附图说明

图1是表示本发明的实施方式1中的电力半导体装置的结构的分解斜视图。

图2是本发明的实施方式1中的电力半导体装置的剖视图。

图3是本发明的实施方式1中的电力半导体装置的模塑部的剖视图。

图4是本发明的实施方式1中的电力半导体装置的金属部件的俯视图。

图5是本发明的实施方式1中的电力半导体装置的金属部件和基座板接触的部分在二者接触之前的放大剖视图。

图6是本发明的实施方式1中的电力半导体装置的金属部件和基座板接触的部分在二者接触之后的放大剖视图。

图7是本发明的实施方式1中的电力半导体装置的金属部件和基座板接触的部分在二者接触之后的放大剖视图。

图8是表示本发明的实施方式2中的电力半导体装置的结构的分解斜视图。

图9是本发明的实施方式2中的将金属部件插入基座板,使凸起变形之前的中空圆柱形的凸起附近的放大剖视图。

图10是本发明的实施方式2中的将金属部件插入基座板,使凸起变形之后的中空圆柱形的凸起附近的放大剖视图。

图11是表示本发明的实施方式2中的金属部件的俯视图。

图12是表示本发明的实施方式3中的电力半导体装置的结构的分解斜视图。

图13是本发明的实施方式3中的将电力半导体装置的金属部件和基座板组装之后的凸起附近的放大剖视图。

图14是表示本发明的实施方式4中的电力半导体装置的结构的分解斜视图。

图15是表示本发明的实施方式4中的金属部件的斜视图。

图16是表示本发明的实施方式5中的电力半导体装置的结构的分解斜视图。

图17是本发明的实施方式5中的电力半导体装置的基座板的定位部的放大图。

图18是本发明的实施方式5中的将金属部件插入基座板,使凸起变形之前的凸起附近的放大剖视图。

图19是本发明的实施方式5中的将金属部件插入基座板,使凸起变形之后的凸起附近的放大剖视图。

具体实施方式

下面,基于附图,对本发明所涉及的电力半导体装置的实施方式进行详细说明。此外,本发明不限定于本实施方式。

实施方式1

图1是表示本发明的实施方式1中的电力半导体装置的结构的分解斜视图,图2是本发明的实施方式1中的电力半导体装置的剖视图。实施方式1中的电力半导体装置1具有模塑部10、散热鳍片11、和金属部件(导电性部件)12。

图3是本发明的实施方式1中的电力半导体装置的、对散热鳍片11和金属部件12进行安装之前的模塑部10的剖视图。模塑部10具有:电力半导体元件21;引线框架24,在其一个面搭载电力半导体元件21;基座板22,在其一个面形成高导热绝缘层34,该基座板22配置于引线框架24的另一个面;以及模塑树脂23,其将电力半导体元件21封装,模塑部10是由基座板22和搭载了电力半导体元件21的引线框架24通过模塑树脂23进行一体成型而形成的。电力半导体元件21和引线框架24通过焊料25而接合。高导热绝缘片34由环氧树脂和导热性高的填料构成,将引线框架24和基座板22粘接。在基座板22的与形成高导热绝缘层34的面相反侧的面形成有凸部31,该凸部31从模塑树脂23凸出。在凸部31设置有多个槽32。另外,凸部31的周缘成为平坦面33。基座板22是将比金属部件12柔软、且导热性高的金属(铝等)作为材料而形成的。通过具有上述结构,从而能够将从电力半导体元件21发出的热高效地热传导至基座板22,并且将电力半导体元件21和基座板22电绝缘。

图4是本发明的实施方式1中的电力半导体装置的金属部件12的俯视图。金属部件12呈被切掉大致矩形状的切除部41后的板状,能够将基座板22的凸部31插入切除部41。在这里,所谓大致矩形,包含为了防止应力向角部集中而实施了倒圆角的形状。在切除部41的相对的2条边(在这里是两条短边)的边缘,设置有切口42。在基座板22的凸部31的外周,在将金属部件12安装于基座板22时与切口42相对应的部分设置有凸起35。此外,凸起35与基座板22的凸部31的侧面及平坦面33一体地成型。

金属部件12由比基座板22的材料硬的金属形成,能够应用例如钢板。此外,根据使用电力半导体装置1的环境的不同,金属部件12有可能氧化、腐蚀,因此作为金属部件12的材料,期望使用不易氧化、腐蚀的不锈钢板、镀锌钢板。特别地,由于镀锌钢板比不锈钢板更廉价,因此优选作为金属12的材料。

散热鳍片11呈薄板状,准备与在基座板22的凸部31设置的多个平行的槽32的数量相同的片数,分别插入凸部31的槽32中,以从左右夹入的方式受到铆接而固定于基座板22。由此,从电力半导体元件21发出的热被热传导至基座板22,进一步向散热鳍片11进行热传导而进行散热,从而能够抑制电力半导体元件21的温度上升。

图5~图7是将图1的A-A’剖面中的凸起35附近进行放大后的剖视图。图5示出将凸部31插入切除部41之前的状态,图6示出将凸部31插入切除部41之后的状态,图7示出将凸部31插入切除部41之后、使凸起35变形之后的状态。

通过将基座板22的凸部31插入切除部41,使基座板22的平坦面33和金属部件12的背面接触,从而成为金属部件12被大致定位于基座板22、凸起35被插入金属部件12的切口42后的状态。然后,仅对凸起35施加与金属部件12的表面垂直的方向的载荷,以压扁凸起35的方式进行塑性变形。通过使凸起35以前述方式进行塑性变形,从而凸起35进行塑性流动而在金属部件12的凸起35侧的面方向(和与平坦面33接触的背面相反的表面)扩展,凸起35的一部分被推压至切口42的内侧面。凸起35的其他部分进一步扩展,成为上攀至金属部件12的凸起35侧的面(和与平坦面33接触的背面相反的表面)的状态,将金属部件12机械地固定于基座板22。在这里,由于金属部件12是由比基座板22硬的金属形成的,因此即使对凸起35施加载荷,金属部件12也不易破损。

另外,凸起35由于进行塑性流动,因此表面的氧化膜被破坏,在电阻微小的新生的表面露出的状态下与金属部件12接触。

并且,关于金属部件12,也由于凸起35进行塑性变形而被推压至金属部件12时的压力、摩擦,其表面的氧化膜被破坏,在电阻微小的新生的表面露出的状态下与凸起35接触。

因此,在变形后的凸起35和金属部件12二者接触的部分,由于氧化膜被破坏、电阻变小,因此能够使基座板22和金属部件12之间的电阻减小。并且,通过将金属部件12设为与接地电位相同的电位,从而能够作为电力半导体装置而得到稳定的接地电位,能够使降低来自电力半导体元件的辐射噪声,对电力半导体元件的误动作进行抑制的效果提高。此外,在切除部41的除切口42以外的部位,虽然是经由氧化膜,但金属部件12通过平坦面33而与基座板22接触,由此,有助于导通。

此外,在本实施方式中,通过将载荷施加于凸起35而使凸起35进行塑性变形,但塑性变形的方法不限于此,例如也可以通过将凸起35熔融而使凸起35进行塑性变形。在该情况下,也能够得到与施加载荷的情况相同的效果。另外,基座板22的制造方法是,对槽32进行挤出成型,针对与槽32平行的每条短边进行切割,然后对凸起及平坦面33进行切削。即,在槽32成型后对凸起35进行成型,在将凸起35设置于基座板22的长边侧的情况下,将凸起35的宽度设定为大于或等于槽32之间的分隔部的宽度是不可能的。因此,考虑到凸起35的形状的自由度,在本实施方式中,将凸起35设置于基座板的与槽32平行的短边侧。当然,如果即使凸起35的宽度小于或等于槽32之间的分隔部的宽度也没有问题,则也可以将凸起35设置于基座板的长边侧。

另外,在这里,将凸起35的数量设为在基座板22的短边侧分别为2个,但不限定于此,也可以在1条边设置1处或者大于或等于3处凸起35。期望凸起35的数量是能够使金属部件12充分牢固地固定于基座板22、基座板22和金属部件12之间的电阻变得充分小所需的最小限的数量。

此外,即使金属部件12是没有切口42、将切除部以凸起35的宽度量进行了扩展的结构,也能够在将凸起35变形后使金属部件得到固定、确保导通,能够提高如下效果,即,降低来自电力半导体元件的辐射噪声,对电力半导体元件的误动作进行抑制。

实施方式2

图8是表示本发明的实施方式2中的电力半导体装置的结构的分解斜视图。与实施方式1的不同点在于,凸起35的形状在实施方式1中是半圆柱形,但在实施方式2中设为圆柱形。在将凸起36设为圆柱形的情况下,由于与基座板22的凸部31的侧面成为一体的面积变小,因此能够减小为了使凸起36塑性变形所需的载荷。

在下面叙述改变凸起35的形状的理由。关于在将凸部31插入切除部41后,为了使凸起35塑性变形所需的载荷,凸起35的截面积、或者与基座板22的凸部31的侧面一体化的面积越大,则载荷变得越大,并且,凸起35的数量越增多,则载荷变得越大。但是,在将凸起35塑性变形时,如果将过大的载荷施加于电力半导体装置,则有可能成为电力半导体装置发生故障的原因。因此,为了防止电力半导体装置的故障、使电力半导体装置的品质稳定,以用于使凸起35变形的载荷变得尽可能小的方式对凸起的形状、凸起的个数进行改进是重要的。

为了抑制用于使凸起35塑性变形所需的载荷,期望将凸起35的数量设为能够使金属部件12充分牢固地固定于基座板22、使基座板22和金属部件12之间的电阻变得充分小所需的最小限的数量。

另外,为了将凸起36设为更容易进行塑性变形的形状,也可以设为中空圆柱状。图9及图10是本发明的实施方式2中的将金属部件12插入基座板22,使凸起36变形前后的中空圆柱形的凸起36附近的放大剖视图。在将凸起36设为中空圆柱状的情况下,由于与基座板22的凸部31的侧面一体化的面积变小,而且凸起36的截面积减小,因此能够以更小的载荷使凸起36塑性变形。此外,在将凸起36设为与基座板12的凸部31的侧面完全独立的形状的情况下,如图11所示,金属部件12的切口43也可以是与切除部41分离的孔。

实施方式3

图12是表示本发明的实施方式3中的电力半导体装置的结构的分解斜视图,图13是本发明的实施方式3中的将金属部件12和基座板22组装后的凸起37附近的放大剖视图。在实施方式3中,将凸起37的形状设为板状。如图13所示,使该凸起37以倒向金属部件12的表面的方式进行塑性变形。即,在其他实施方式中,为了使凸起37变形,施加与基座板22的平坦面33垂直的载荷,但在本实施方式中,由于能够通过在与基座板22的平坦面33大致平行的方向施加载荷,从而将凸起37变形,因此能够抑制对配置于基座板22的下方的电力半导体装置施加大的载荷。另外,关于凸起37的截面,与由于载荷而倾斜的方向的厚度相比,与施加载荷的方向直行的边较长。由此成为如下结构,即,能够进一步减小使凸起37塑性变形时的载荷,而且能够将金属部件12充分牢固地固定于基座板22,基座板22和金属部件12之间的电阻变得充分小。通过设为上述结构,从而能够进一步减小由用于使凸起37塑性变形的载荷对电力半导体装置造成的影响。

实施方式4

图14是表示本发明的实施方式4中的电力半导体装置的结构的分解斜视图,图15是金属部件12的斜视图。与实施方式1的不同点在于,金属部件12在实施方式1中能够通过大致矩形状的切除部41来插入基座板22的凸部31、以及多个凸起35,但是在实施方式4中,如图15所示,金属部件12是如下结构,即,呈圆形,是在其中心存在仅供凸起35嵌合的切口45(孔)的垫片形状,使一个凸起35与1片金属部件12嵌合。在图14中,图示出使2个金属部件12与2处凸起35嵌合的情况的结构,但也可以是一处,还可以是大于或等于三处,选择能够充分地确保导通的个数即可。在使垫片形状的金属部件12与凸起35嵌合后,与实施方式1同样地,使凸起35变形而将基座板和金属部件12固定,将金属部件12分别进行接地连接。由此,与实施方式1同样地,能够降低来自电力半导体元件的辐射噪声,对电力半导体元件的误动作进行抑制。此外,金属部件12的形状不限定于垫片形状,只要是设置了与设置于基座板22的凸起35嵌合的切口45(还包含孔的情况)的形状即可。另外,凸起的形状也可以是在其他实施方式中所说明的形状。

实施方式5

图16是表示本发明的实施方式5中的电力半导体装置的结构的分解斜视图。与实施方式1的不同点在于,在金属部件12存在供凸部31插入的切除部,但不存在切口。即,基座板22的凸起形成为处于凸部31的内侧。如图16所示,在基座板22,在原本设置有实施方式1的凸起35的部位,将凸部31切削掉而形成定位部51,未图示的凸起38形成于基座板的定位部51的内侧。金属部件12的定位部50设置于实施方式1的切口42的部位。

基座板的定位部51的放大图是图17。凸起38是在基座板的定位部51的内侧以成为比凸部31低的台阶的形状设置的。图18、图19是本实施方式中的将金属部件插入基座板,使凸起变形前后的凸起附近的放大剖视图。通过朝向底面施加载荷而使凸起38进行塑性变形,塑性变形后的凸起38在基座板的定位部51和金属部件的定位部50之间的间隙中扩展,与金属部件12密接,从而将基座板22和金属部件12固定。此时,还发生氧化膜的破坏,也能够确保导通。在本实施方式中,与实施方式1同样地,也能够降低来自电力半导体元件的辐射噪声,对电力半导体元件的误动作进行抑制。

标号的说明

1 电力半导体装置

11 散热鳍片

12 金属部件(导电性部件)

21 电力半导体元件

22 基座板

31 凸部

32 槽

35、36、37、38 凸起

41 切除部

42、43、44、45 切口

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1