碳化硅中间带太阳电池及其制备方法

文档序号:7061813阅读:303来源:国知局
碳化硅中间带太阳电池及其制备方法
【专利摘要】本发明提供了一种碳化硅中间带太阳能电池及其制备方法。该碳化硅中间带太阳能电池包括:n型碳化硅衬底;形成于该n型碳化硅衬底上的经深能级杂质离子注入和纳秒激光退火的本征层,其作为中间带光吸收层;以及形成于该本征层上的p型帽层。本发明碳化硅中间带太阳电池结构系首次提出,其可以大幅提高碳化硅太阳电池的光响应波长和转换效率。
【专利说明】碳化硅中间带太阳电池及其制备方法

【技术领域】
[0001]本发明涉及半导体【技术领域】,尤其涉及一种碳化硅中间带太阳能电池及其制备方法。

【背景技术】
[0002]碳化硅(SiC)属于第三代宽带隙半导体材料,这类半导体材料还包括立方氮化硼(c-BN)、氮化镓(GaN)、氮化铝(AlN)、金刚石(C)等。碳化硅材料由于带隙宽、临界击穿场强高、导热性能好、载流子饱和漂移速度大以及化学性质特别稳定等突出优点,在高温、高频、大功率、抗辐射的微电子和光电子器件方面具有巨大的应用潜力。碳化硅材料具有200多种同质异构多型体,其中3C-SiC、6H-SiC和4H-SiC是三种技术比较成熟的碳化硅半导体材料。
[0003]近年来,中间带太阳电池引起了人们极大的研究兴趣,这是因为它的转换效率理论上可以达到63%。它的工作原理是:在作为太阳电池吸收层的半导体材料的禁带内形成一个新的窄能带,即中间带。这样对于新形成的太阳电池来讲,能量大于禁带宽度的高能光子直接把价带电子激发到导带上,形成光电流;而对于能量小于禁带宽度的光子,它可以先把价带上的一个电子激发到中间带上,然后第2个这样的低能光子再把中间带上的电子激发到导带上,结果是2个低能光子通过协同激发也可以在价带和导带上产生一个电子空穴对。这样的总体效果是在不影响太阳电池开路电压的情况下,大大拓展了太阳电池对太阳光的吸收波长,产生了额外的光电流,大幅提高了原太阳电池的能量转换效率。将性质稳定的碳化硅半导体材料改性并制作成中间带太阳电池,它将会特别适合在外太空等极端环境条件下工作。
[0004]但是目前碳化硅中间带太阳电池方面的研究才刚刚开始,尚未有新的碳化硅中间带太阳能电池结构提出。


【发明内容】

[0005](一 )要解决的技术问题
[0006]鉴于上述技术问题,本发明提供了一种碳化硅中间带太阳能电池及其制备方法。
[0007]( 二 )技术方案
[0008]根据本发明的一个方面,提供了一种碳化硅中间带太阳能电池。该碳化硅中间带太阳能电池包括:n型碳化硅衬底I ;形成于该η型碳化硅衬底I上的经深能级杂质离子注入和纳秒激光退火的本征层2,其作为中间带;以及形成于该本征层2上的P型帽层3。
[0009]根据本发明的另一个方面,还提供了一种碳化硅中间带太阳能电池的制备方法。该制备方法包括:步骤B:在η型碳化硅衬底I上生长本征层2 ;步骤C:对本征层2进行离子注入;步骤D:应用纳秒超快激光对离子注入后的本征层2进行退火;以及步骤E:在退火后的本征层2上生长P型帽层3。
[0010](三)有益效果[0011 ] 从上述技术方案可以看出,本发明碳化硅中间带太阳能电池及其制备方法具有以下有益效果:
[0012](I)碳化硅中间带太阳电池结构系首次提出,,它可以大幅提高碳化硅太阳电池的光响应波长和转换效率;
[0013](2)采用p-1-n结构,这有利于太阳光的吸收和光生载流子的收集,对提高太阳电池效率有利。

【专利附图】

【附图说明】
[0014]图1为根据本发明实施例碳化硅中间带太阳能电池的结构示意图;
[0015]图2为根据本发明实施例碳化硅中间带太阳能电池制作方法的流程图。
[0016]【主要元件】
[0017]l-η型碳化硅衬底; 2-本征层;
[0018]3-p 型帽层。

【具体实施方式】
[0019]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属【技术领域】中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明的保护范围。
[0020]本发明首次提出了一种新颖的碳化硅中间带太阳电池结构,以及它的制作方法。
[0021]在本发明的一个示例性实施例中,提供了一种碳化硅中间带太阳能电池。图1为根据本发明实施例碳化硅中间带太阳能电池的结构示意图。如图1所示,本实施例碳化硅中间带太阳能电池包括:n型碳化硅衬底I ;形成于该η型碳化硅衬底上的经深能级杂质离子注入和纳秒激光退火的本征层2,其作为中间带光吸收层;以及形成于该本征层上的P型帽层3。
[0022]以下对本实施例碳化硅中间带太阳能电池的各个部分进行详细说明。
[0023]本实施例中,η型碳化硅衬底为3C、4H或6Η碳化硅单晶片,载流子浓度介于115至 11Vcm3。
[0024]本实施例中,本征层2为由外延生长于η型碳化硅衬底I上的SiC薄膜经由深能级杂质离子注入并进行纳秒激光退火后形成的。该本征层的厚度介于Iym至15μπι之间,其中,深能级杂质的原子百分比浓度介于0.1%至1%之间,以形成中间带;纳秒激光退火保证可以修复离子注入产生的晶格损伤。
[0025]本实施例中,P型帽层3为外延生长于本征层2上的SiC薄膜,其厚度介于10nm至300nm。该p型帽层中,p型掺杂原子浓度介于115?1018/cm3。并且,本征层和p型帽层与所述η型碳化硅衬底的晶型、取向均一致。
[0026]在本发明的另一个示例性实施例中,还提供了一种上述碳化硅中间带太阳能电池的制作方法。图2为根据本发明实施例碳化硅中间带太阳能电池制作方法的流程图。请参照图1和图2,本实施例碳化硅中间带太阳能电池的制作方法包括:
[0027]步骤A:对η型碳化硅衬底I进行预处理,以去除表面的污染物和氧化层;
[0028]本实施例中,所用η型碳化硅衬底I为3C、4H和6H碳化硅单晶衬底片,载流子浓度介于115至11Vcm3 ;
[0029]在制备本征层2之前,对η型碳化硅衬底I先进行化学清洗,再传入真空室进行氢气表面刻蚀,这2步的目的是为了除去碳化硅衬底I表面的污染物和氧化层,为后面的碳化娃薄膜外延生长做准备。氢气刻蚀η型碳化娃衬底I时,采用的刻蚀压力为10?150torr,温度为1300?1600°C,氢气流量为10?20L/min,刻蚀时间为10?60min。
[0030]步骤B:在η型碳化硅衬底I上生长本征层2 ;
[0031]该本征层2的掺杂浓度低于1015/cm3,厚度为I?10 μ m。米用低压化学气相沉积技术在η型碳化硅单晶衬底片上外延生长本征层。生长本征层2时,生长压力为10?150torr,生长温度为1500°C?1550°C,所用碳源为含碳的无氧高纯气体,所用硅源为含硅的无氧高纯气体;按碳、硅原子摩尔比为I?2的比例通入气体;生长时氢气流量为5?20L/min ;生长时间为60?120min。
[0032]步骤C:对本征层2进行离子注入;
[0033]本步骤中,待生长完本征层2,从低压化学气相沉积生长系统取出碳化硅衬底片,对本征层2进行离子注入。所注入的深能级杂质原子在本征层2内产生的杂质能级必须距离导带边或价带边大于0.5电子伏。离子注入后,深能级杂质原子在碳化硅本征层2内的原子百分比浓度为0.1?1%,以产生一个窄的中间带。
[0034]步骤D:应用纳秒超快激光对离子注入后的本征层2进行退火;
[0035]待对本征层2进行离子注入后,本征层2会产生大量的晶格损伤。通过纳秒超快激光退火可以消除这些晶格损伤。需要说明的是,所选的激光波长、能量密度和样品上每点的辐照次数需保证可以修复离子注入产生的晶格损伤,但不要改变本征层表面的平整性。
[0036]本步骤中,激光的能量密度为I?5J/cm2,样品上每点的激光辐照数目为I?10个。
[0037]步骤E:在退火后的本征层2上生长P型帽层;
[0038]在正式生长P型帽层之前,将纳秒激光退火后的样片再传入低压化学气相沉积生长系统,首先进行氢气表面刻蚀,刻蚀参数同步骤A内的氢气刻蚀参数,但时间缩短为10?30mino
[0039]本步骤中,采用与步骤B相同的外延生长方式和参数生长P型帽层3,所用的掺杂剂为含P型掺杂剂的无氧高纯气体或有机源,生长时间缩短为10?60min。
[0040]至此,完成实施例一碳化硅中间带太阳电池的制作。
[0041 ] 在本发明的再一实施例中,还提供了一种具体的碳化硅中间带太阳能电池的制作方法。
[0042]请继续参照图2,采用3C_SiC单晶衬底片,其抛光面为Si(OOl)面,经过化学清洗干净后,放入低压化学气相沉积设备中,通入氢气,保持压力为30托,升温至1400°C后保温,用氢气对衬底表面进行刻蚀,刻蚀45分钟。然后将衬底片升温至1550°C,通入1.5sccm流量的乙烯和2sCCm流量的硅烷,保持温度不变,生长90min,完成本征层的生长。整个生长过程压力保持在50torr,氢气流量为3000sCCm。然后取出样片进行V+离子注入,注入剂量为I X 1lfVcm2,注入电压为40kV。再对离子注入后的本征层进行KrF准分子激光(波长为248nm,脉冲半高宽为20ns,光斑尺寸为矩形3mmXlmm)退火,能量密度为3J/cm2,样片表面每点所受激光辐照数目为5个。激光退火后,再将样片传入低压化学气相沉积系统内,经氢气表面清洗1min之后,再升温到1550°C,通入1.5sccm流量的乙烯和2sccm流量的硅烷,以及Isccm的硼烷,进行P型帽层生长,生长20分钟。生长P型帽层过程中,压力保持在50托,氢气流量为3000sccm。
[0043]至此,已经结合附图对本发明实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明碳化硅中间带太阳能电池及其制备方法有了清楚的认识。
[0044]此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
[0045]综上所述,本发明提供一种新颖的碳化硅中间带太阳能电池及其制备方法。其中碳化硅中间带太阳电池结构系首次提出,,它可以大幅提高太阳电池的光响应波长和转换效率,并且,采用P-1-n结构,这有利于太阳光的吸收和光生载流子的收集,对提高太阳电池效率有利。
[0046]以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
【权利要求】
1.一种碳化硅中间带太阳能电池,其特征在于,包括: η型碳化娃衬底(I); 形成于该η型碳化硅衬底(I)上的经深能级杂质离子注入和纳秒激光退火的本征层(2),其作为中间带光吸收层;以及 形成于该本征层(2)上的P型帽层(3)。
2.根据权利要求1所述的碳化硅中间带太阳能电池,其特征在于,所述本征层(2)的厚度介于Ιμπι至15 μ m之间,其中,深能级杂质的原子百分比浓度介于0.1%至1%之间。
3.根据权利要求1所述的碳化硅中间带太阳能电池,其特征在于,所述P型帽层(3)的厚度介于10nm至300nm,其中,P型掺杂原子浓度介于115?1018/cm3。
4.根据权利要求1至3中任一项所述的碳化硅中间带太阳能电池,其特征在于,所述本征层(2)、P型帽层(3)与所述η型碳化硅衬底(I)的晶型和取向一致。
5.根据权利要求1至3中任一项所述的碳化硅中间带太阳能电池,其特征在于,所述η型碳化硅衬底⑴为3C、4H或6Η碳化硅单晶片,载流子浓度介于115至1018/cm3。
6.一种权利要求1至3中任一项所述碳化硅中间带太阳能电池的制备方法,其特征在于,包括: 步骤B:在η型碳化硅衬底(I)上生长本征层(2); 步骤C:对所述本征层(2)进行离子注入; 步骤D:应用纳秒超快激光对离子注入后的本征层⑵进行退火;以及 步骤E:在退火后的本征层(2)上生长P型帽层(3)。
7.根据权利要求6所述的制备方法,其特征在于,所述步骤C的离子注入步骤中,所注入的杂质原子在本征层(2)内产生的杂质能级距离导带边或价带边大于0.5eV;离子注入后,杂质原子在碳化硅本征层(2)内的原子百分比浓度为0.1?1%。
8.根据权利要求6所述的制备方法,其特征在于,所述步骤D的退火步骤中,激光的能量密度为I?5J/cm2,样品上每点的激光辐照数目为I?10个。
9.根据权利要求6所述的制备方法,其特征在于,所述步骤B和步骤E中,均采用低压化学气相沉积技术外延生长碳化硅薄膜,分别作为本征层(2)和P型帽层。
10.根据权利要求9所述的制备方法,其特征在于,所述步骤B和步骤C中,低压化学气相沉积技术外延生长碳化硅薄膜的相关参数如下:生长压力为10?150torr,生长温度为1500°C?1550°C,所用碳源为含碳的无氧气体,所用娃源为含娃的无氧气体;按碳、娃原子摩尔比为I?2的比例通入气体;生长时氢气流量为5?20L/min ;生长时间为60?120分钟; 其中,所述步骤B中,生长时间为60?120min,所述步骤E中,生长时间为10?60min。
11.根据权利要求6至10中任一项所述的制备方法,其特征在于,所述步骤B之前还包括: 步骤A:对所述η型碳化硅衬底进行预处理,以去除表面的污染物和氧化层。
12.根据权利要求11所述的制备方法,其特征在于,所述步骤A包括: 对所述η型碳化硅衬底进行化学清洗;以及 在真空环境下对化学清洗后的η型碳化硅衬底进行氢气表面刻蚀; 其中,所述氢气表面刻蚀采用的刻蚀压力为10?150torr,温度为1300?1600°C,氢 气流量为10?20L/min,刻蚀时间为10?60min。
【文档编号】H01L31/077GK104409553SQ201410612819
【公开日】2015年3月11日 申请日期:2014年11月4日 优先权日:2014年11月4日
【发明者】王科范, 张光彪, 丁丽, 刘孔, 曲胜春, 王占国 申请人:中国科学院半导体研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1