用于冷却包封式芯片的具有部分地包封式冷却通道的封装体的制作方法

文档序号:13664635阅读:119来源:国知局
用于冷却包封式芯片的具有部分地包封式冷却通道的封装体的制作方法

本申请涉及一种功率模块,一种封装体,一种车辆,一种使用方法,一种制造功率模块的方法,以及一种制造封装体的方法。



背景技术:

例如用于汽车应用场合的功率模块对功率部件提供了物理容纳作用,所述功率部件通常是成包括一个或多个集成电路元件的电子芯片形式的功率半导体装置。功率模块的集成电路元件的示例是绝缘栅双极晶体管(igbt,insulated-gatebipolartransistor)和二极管。

仍存在可能的空间来降低制造成本,并简化功率模块的电子芯片到外部电路的连接,同时高效地散热。



技术实现要素:

需要一种封装体,其使得能够高效地散除工作过程中所产生的热量,同时制造起来简单。

根据一个示例性实施例,提供了一种功率模块,其包括:半导体芯片;至少一个冷却板,其具有至少一个冷却通道,所述至少一个冷却通道热耦接至半导体芯片且配置成使得冷却剂(比如流体,即气体和/或液体)能够被引导通过所述至少一个冷却通道;和包封材料,其包封半导体芯片的至少一部分和所述至少一个冷却通道的至少一部分;其中,冷却板的主表面的至少一部分形成功率模块的外表面的一部分。

根据另一示例性实施例,提供了一种封装体,其包括:电子芯片,其具有第一主表面和相反的第二主表面;第一冷却通道,其热耦接至电子芯片的第一主表面,且配置成使得冷却剂能够被引导通过第一冷却通道;第二冷却通道,其热耦接至电子芯片的第二主表面,且配置成使得冷却剂能够被引导通过第二冷却通道;和包封材料,其包封电子芯片的至少一部分、第一冷却通道的至少一部分和第二冷却通道的至少一部分;其中,第一冷却通道和第二冷却通道中的至少一个的至少一部分(尤其是相应地包括所述至少一个第一冷却通道或所述至少一个第二冷却通道的冷却板的至少一部分)在周向方向上(即,绕着冷却剂的流动方向)部分地由包封材料覆盖且部分地从包封材料暴露。

根据又一示例性实施例,提供了一种制造功率模块的方法,该方法包括:将半导体芯片与具有至少一个冷却通道(其可具有空心管道)的至少一个冷却板热耦接,冷却剂能够被引导通过所述至少一个冷却通道;和通过包封材料包封半导体芯片的至少一部分和所述至少一个冷却通道的至少一部分,从而冷却板的主表面的至少一部分形成功率模块的外表面的一部分。

根据又一示例性实施例,提供了一种制造封装体的方法,该方法包括:将电子芯片的第一主表面热耦接至第一冷却通道(其可界定出空心管腔),冷却剂能够被引导通过第一冷却通道;将电子芯片的第二主表面热耦接至第二冷却通道(其可界定出空心管腔),冷却剂能够被引导通过第二冷却通道;和通过包封材料包封电子芯片的至少一部分、第一冷却通道的至少一部分和第二冷却通道的至少一部分,从而第一冷却通道和第二冷却通道中的至少一个的至少一部分(尤其是至少包括所述至少一个电子芯片和包封材料的封装体的材料块上和/或中的一部分)在周向方向上部分地由包封材料覆盖且部分地从包封材料暴露。

根据又一示例性实施例,提供了一种车辆,其包括具有上述特征的功率模块或具有上述特征的封装体。

根据又一示例性实施例,具有上述特征的功率模块或具有上述特征的封装体被用于汽车应用场合。

一个示例性实施例可具有的优点是:由于封装体的冷却通道设计,可高效地散除在功率模块的工作过程中由半导体芯片所产生的热量。这可通过将一个或优选多于一个部分地包封的冷却通道集成或嵌入到封装体中并热耦接至芯片来实现。优选布置多个部分地包封的冷却通道,其优选在芯片的两个相反的外表面上热耦接至芯片,从而有利地产生了高效的双面冷却。因此,冷却剂(比如冷却流体)在所述一个或多个冷却通道中内部地流动、以便与芯片热相互作用、从而进行热交换,能够高效地散除在封装体的工作过程中由芯片产生的热量。高度有利地,冷却通道、尤其具有至少一个这种冷却通道的冷却板可定向成使其周向表面部分地朝着模块的内部、即朝着包封材料和/或芯片,且部分地朝着模块的外部、即背向包封材料和/或芯片。通过采取该措施,高效地促进了冷却剂与芯片之间的、以及冷却剂和冷却通道与环境之间的热交换,从而获得了很高的冷却效率。

鉴于模块或封装体的极高效的冷却性能,后者可用于车辆中的汽车应用场合。在这种技术环境中(例如在至少部分地电驱动的车辆的逆变器方面),产生显著的热量,且高效的散热能力极为重要。另外,汽车环境提供了使用这种车辆的工作液体(尤其是水)作为待被引导通过所述至少一个冷却通道的冷却剂的机会。

对其他示例性实施例的描述

在下文中,将阐述功率模块、封装体、车辆和方法的其他示例性实施例。

在一个实施例中,所述至少一个冷却通道包括第一冷却通道,所述第一冷却通道热耦接至半导体芯片的第一主表面。因此,能够从半导体芯片的第一主表面高效地散热。

在一个实施例中,所述至少一个冷却通道包括至少一个另外的第一冷却通道,所述至少一个另外的第一冷却通道热耦接至半导体芯片的第一主表面。因此,多个冷却通道可同时从第一主表面散热,从而获得了优秀的冷却性能。

在一个实施例中,第一冷却通道和所述至少一个另外的第一冷却通道形成一体的第一冷却本体、尤其同一冷却板的一部分。所有第一冷却通道可形成第一冷却板的一部分。该第一冷却板可布置在半导体芯片的第一主表面上或布置成平行于半导体芯片的第一主表面。因此,可提供一个一体地形成的本体,其可由高度导热式材料制成,且可容纳多个冷却通道。这种冷却板可以以低成本和低花费来制造,例如通过挤压来制造。冷却剂通过多个第一冷却通道的平行流动可产生高效的散热。

在一个实施例中,该功率模块包括布置在半导体芯片与所述一个或多个第一冷却通道/第一冷却板之间的至少一个间隔体,尤其是至少一个导热式间隔体。通过由高度导热的材料、比如铜制成的大块间隔体,可进一步促进从半导体芯片的相应主表面的散热。间隔体可优选基本上接触半导体芯片的整个主表面,以提供特别显著的散热能力。所述至少一个间隔体同时可抵消模块或封装体的各个部件之间的高度差。

在一个实施例中,所述至少一个冷却通道包括第二冷却通道,所述第二冷却通道热耦接至所述至少一个半导体芯片的第二主表面(其可与第一主表面相反)。因此,功率封装体可配置成用于双面冷却,即一面通过所述至少一个第一冷却通道(尤其形成第一冷却板的一部分)且另一面通过所述至少一个第二冷却通道(尤其形成第二冷却板的一部分)来冷却。这使得功率封装体也适合于一些应用场合,比如汽车应用场合,在这些应用场合中大量的热量产生且需要从功率封装体散除。然而,应当强调,本申请的其他示例性实施例依赖于单面冷却,而非双面冷却。

在一个实施例中,所述至少一个冷却通道包括至少一个另外的第二冷却通道,所述至少一个另外的第二冷却通道热耦接至半导体芯片的第二主表面。因此,在第二主表面上,也可通过邻近于半导体芯片的第二主表面沿着多个冷却通道引导冷却剂来实现平行冷却,以进一步提高冷却效率。

在一个实施例中,第二冷却通道和所述至少一个另外的第二冷却通道形成一体的第二冷却本体、尤其一体的第二冷却板的一部分。所有第二冷却通道可形成第二冷却板的一部分。第二冷却板可布置在半导体芯片的第二主表面上或布置成大致平行于半导体芯片的第二主表面。高度有利地,同一类型的冷却板可用于所述一个或多个电子芯片的两个相反的主表面上。这进一步降低了制造冷却封装体的花费和成本。

在一个实施例中,第一冷却本体(其尤其可以是第一冷却板)和第二冷却本体(其尤其可以是第二冷却板)中的至少一个包括陶瓷体(尤其电介质陶瓷体)或金属体(尤其具有电介质涂层或表面的金属体),或由陶瓷体或金属体组成。尤其具有内通道的挤压成型式陶瓷型材或金属型材可以以低成本来制造。导电冷却本体(比如冷却板)的电隔离涂层使相应的冷却板与所述至少一个半导体芯片或用于电接触所述至少一个半导体芯片的布线结构电隔离,从而防止不期望的短路。

在一个实施例中,第一冷却本体和第二冷却本体中的至少一个包括导电式布线结构,所述导电式布线结构配置成使所述一个或多个半导体芯片与外界电连接。当这种导电式布线结构、例如图案化的金属层结合或沉积在相应冷却本体的电介质涂层上,或者结合或沉积在完全电介质冷却本体上时,在该冷却板与相应半导体芯片之间提供芯片载体是可省去的,因为这种小的布布线结构可实现相同的功能。这使得能够制造高度紧凑且重量轻的功率封装体,而不妨碍对所述至少一个半导体芯片的任何期望的电连接结构进行自由设计。

在一个实施例中,多个冷却通道彼此平行地定向。在一个实施例中,单独的冷却剂流过不同的平行冷却通道。在另一实施例中,相同的冷却剂流过不同的冷却通道,所述不同的冷却通道例如可通过冷却本体、比如冷却板内的曲折通道结构或分叉通道网络而互连。所描述的构造使得能够成本高效地制造冷却板,特别是通过挤压成型或通过模制成型(例如注射成型)来制造,且能够通过调整平行冷却通道的数目来调整可提供的冷却功率。

在一个实施例中,所述包封材料包括模制化合物。对于通过模制进行的包封,可使用塑料或陶瓷材料。包封材料可包括环氧树脂材料。例如用于提高热导率的填料颗粒(例如sio2、al2o3、si3n4、bn、aln、金刚石等)可嵌入包封材料的环氧树脂基的基质中。

在一个实施例中,半导体芯片包括至少一个集成电路元件,所述至少一个集成电路元件来自由以下组成的组:开关、尤其晶体管开关、更特别是绝缘栅双极晶体管,二极管,半桥,和逆变器。然而,其它电子应用也可通过功率封装体的一个或多个半导体芯片来实现。

在一个实施例中,该功率模块包括冷却剂供送单元,该冷却剂供送单元配置成用于驱动冷却剂、尤其液体冷却剂和气体冷却剂中的至少一种流动通过所述至少一个冷却通道。例如,冷却供应单元可通过注射成型以成本高效的方式来制造。当功率封装体应用于汽车应用场合时,可使用汽车中可提供的工作液体,比如水或冷却液体。

在一个实施例中,该功率模块包括芯片载体,所述芯片载体位于半导体芯片的第一主表面与第一冷却板/所述至少一个第一冷却通道之间。相应地,该功率模块可包括另一芯片载体,所述另一芯片载体位于半导体芯片的与第一主表面相反的第二主表面上。所述至少一个半导体芯片可连接至相应的芯片载体,例如使用粘合剂、通过钎焊、通过焊接、以及可选地间接地通过另外的部件(比如间隔体)等来连接。

在一个实施例中,芯片载体和所述另一芯片载体中的至少一个配置成由以下组成的组中的一种:引线框架,金属-电绝缘体和热导体-金属板堆叠,直接铜结合(dcb)衬底,以及直接铝结合(dab)衬底。引线框架可以是芯片封装体内的金属结构,其配置成用于将信号从电子芯片携载到外部,和/或反之亦然。封装体或电子部件内的电子芯片可附接至引线框架,且于是可提供结合线,以将电子芯片的焊盘附接至引线框架的引线。因此,引线框架可模制在塑料盒或任何其他包封材料中。可用于其他实施例的替代性芯片载体可以是任何中介件,比如衬底、陶瓷衬底、层式衬底、dcb(直接铜结合衬底)、ims(绝缘金属衬底)、pcb(印刷电路板)等。

在一个实施例中,电子芯片配置成功率半导体芯片。因此,电子芯片(比如半导体芯片)可用于功率应用场合、例如汽车领域,且可例如具有至少一个集成绝缘栅双极晶体管(igbt)和/或至少一个其他类型的晶体管(比如mosfet、jfet等)和/或至少一个集成二极管。这种集成电路元件可例如以硅技术或者基于宽带隙半导体(比如碳化硅、氮化镓或硅基氮化镓)制成。半导体功率芯片可包括一个或多个场效应晶体管、二极管、逆变器电路、半桥、全桥、驱动器、逻辑电路、其他装置等。

在一个实施例中,电子芯片经历垂直电流流动。根据本申请的示例性实施例的封装体构造特别适合用于高功率应用场合,在高功率应用场合中,垂直电流流动、即沿着与电子芯片的两个相反主表面垂直的方向的电流流动是期望的,所述两个相反主表面中的一个用于将电子芯片安装在载体上。在这种实施例中,双面冷却是非常重要的。

在实施例中,半导体芯片可形成电路,该电路充当半桥、共源共栅电路、由彼此并联连接的场效应晶体管和双极晶体管构成的电路、或功率半导体电路。因此,根据示例性实施例的封装体结构兼容于非常不同的电路概念的要求。

在一个实施例中,功率模块或封装体配置成由以下组成的组中的一个:引线框架连接的功率模块,晶体管外形封装(to)电子部件,方形扁平无引线封装(qfn)电子部件,小外形封装(so)电子部件,小外形封装晶体管(sot)电子部件,和薄小外形封装(tsop)电子部件。因此,根据一个示例性实施例的模块或封装体完全兼容于标准封装概念(尤其完全兼容于标准to封装概念),且外部地显示为传统的模块或封装体,从而对用户来说非常方便。在一个实施例中,封装体配置成功率模块,例如模制而成的功率模块。

可使用形成半导体芯片或电子芯片的基础的衬底或晶圆、半导体衬底,优选硅衬底。替代性地,可提供氧化硅或其他绝缘衬底。也可实现锗衬底或iii-v-半导体材料。例如,示例性实施例可以以gan或sic技术来实现。

另外,示例性实施例可利用标准半导体处理技术,比如合适的蚀刻技术(包括各向同性和各向异性蚀刻技术,特别是等离子体蚀刻、干蚀刻、湿蚀刻)、图案化技术(其可涉及光刻掩膜)、沉积技术(比如化学气相沉积(cvd)、等离子体增强化学气相沉积(pecvd)、原子层沉积(ald)、溅射等)。

本申请的上述和其它目的、特征和优点将结合附图从说明书和权利要求中体现,在附图中,相同的部件或元件用相同的附图标记表示。

附图说明

附图示出了示例性实施例,附图用于提供对示例性实施例的进一步理解且构成说明书的一部分。

在附图中:

图1示出了根据一个示例性实施例的功率模块。

图2-图4示出了在实施制造功率模块的方法的过程中,根据一个示例性实施例,不同状态下的功率模块的预成形品的三维视图。

图5和图6示出了在实施制造功率模块的方法的过程中,根据另一示例性实施例,不同状态下的功率模块的预成形品的三维视图。

图7示意性地示出了包括根据本申请的一个示例性实施例的功率封装体的车辆。

具体实施方式

附图的表示是示意性的。

在进一步详细描述其他示例性实施例之前,将基于发展对功率模块提供成本高效冷却的示例性实施例来总结本申请的一些基本考虑。

根据本申请的一个示例性实施例,提供了高效冷却的封装体或功率模块(尤其从双面冷却,即提供双面冷却性能)。然而,其他实施例提供了高效的单面冷却构造。

模制功率模块在功率密度上的增加要求针对散热的新解决方案。尤其对于产生大量热量的应用场合、比如汽车应用场合而言,传统的概念达到了它们的极限。

鉴于这些考虑,本申请的一个实施例提供了一种模块(尤其是具有双面冷却配置的模块),其中,一个或多个冷却通道(尤其集成于一个或多个冷却板中)直接嵌入或集成至模块或封装体中。冷却剂、比如冷却流体可流动通过所述一个或多个冷却通道,以便提供直接冷却性能。因此,可获得具有优秀散热能力的高度复杂的系统。

高度有利地,集成的或嵌入的冷却通道可部分地暴露于环境,从而,除了通过流动的冷却剂散热之外,可经由冷却通道或冷却板的暴露式表面通过热传导、热对流和/或热辐射来实现附加的散热贡献。尤其地,模块或封装体的外表面的一部分可由冷却通道或冷却板的表面来构成。然而,冷却通道或冷却板的表面的外表面的另一部分可接触或朝向模块或封装体的包封材料、半导体芯片、一个或更多个芯片载体、一个或更多个间隔体等。冷却板和冷却通道具有外周(未暴露于冷却剂)。该外周的一部分可与包封材料、芯片和/或其他封装体材料接触,而该外周的另一部分可暴露于封装体或模块的环境。这附加地促进了从被加热的冷却剂/冷却板/冷却通道经由其外部暴露的表面到环境的散热。

根据本申请的一个示例性实施例,一个或多个半导体芯片的双面冷却性能可通过将微小流体导管直接实施到模制封装体中且表面暴露来实现,所述微小流体导管例如可由陶瓷或其他导热式材料(例如电介质涂覆的金属)制成。在本文中,所述一个或多个半导体芯片(其可在一个主表面或两个相反的主表面上具有焊盘,其中,导热式间隔体可附加地设置在一个或两个主表面上)可与冷却通道的表面直接连接,或可通过附加的安装板或芯片载体连接至冷却通道,所述附加的安装板或芯片载体于是可转而与冷却通道连接。在双面冷却构造方面,在两组相反的冷却通道或冷却板之间的空隙容积可用包封材料、例如模制化合物填充。

图1示出了根据一个示例性实施例的封装体或功率模块100的剖视图。

功率模块100包括安装在下冷却板120(图1仅示出了其剖视图,但是可参考图2-图6)上的两个半导体芯片102。尽管未示出,但是功率半导体芯片102可分别包括在其中形成的一个或多个集成电路元件,例如晶体管开关、二极管等。半导体芯片102在其上主表面上和/或下主表面上可具有焊盘141。下冷却板120配有彼此平行延伸的多个冷却通道104(图1未示出,仅下冷却板120中的一个冷却通道104是可见的)。在每个冷却通道104的内部,限定出了相应的空心管腔133,所述空心管腔133用于在工作过程中容纳冷却剂。冷却剂的流动方向由箭头157表示。下冷却板120热耦接至半导体芯片102。冷却剂(比如液体,如水)能够被引导通过冷却通道104,以在功率模块100的工作过程中主动地冷却半导体芯片102。另外,提供了模制型包封材料108,其完全地包封半导体芯片102,且仅部分地包封冷却通道104的内表面部分,同时使冷却通道104的外表面部分暴露于功率封装体100外部的环境。

因此,用于冷却半导体芯片102的下主表面的下冷却板120的下主表面形成功率模块100的外表面的一部分。因此,冷却通道104在下冷却板120中的模块内区段在周向方向上部分地由包封材料108覆盖且部分地从包封材料108暴露。因此,一方面,功率模块100的冷却功能基于流动的冷却剂所带来的冷却,所述流动的冷却剂在工作过程中将热量从半导体芯片102带走。另一方面,功率封装体100的下表面部分地由下冷却板120的冷却通道104的导热式材料形成的情况也使得另外的热量能够通过冷却板120的暴露的高度导热式材料散除,所述暴露的高度导热式材料与包封材料108的材料相比通常具有明显更高的热导率。

相应的导热式间隔体130、例如铜块布置在半导体芯片102中的每个的上主表面上,以进一步促进工作过程中从半导体芯片102的散热。间隔体130的上表面与上导热式冷却板122直接导热式连接,所述上导热式冷却板122可与下冷却板120以相同的方式配置。换言之,冷却板122也具有多个平行定向的冷却通道104,并由陶瓷材料制成。

因此,通过导热式间隔体130来冷却半导体芯片102的上主表面的上冷却板122的上主表面也形成功率模块100的外表面的一部分。因此,冷却通道104在上冷却板122中的模块内区段也在周向方向上部分地由包封材料108覆盖且部分地从包封材料108暴露。连同上述下冷却板120的特性,上冷却板122提供了半导体芯片102的双面冷却。

从图1的放大图145可知,第一冷却板120的上主表面(附加地或替代性地,第二冷却板122的下主表面)可包括导电式布线结构143,所述导电式布线结构143配置成用于使半导体芯片102的一个或多个焊盘与外界电连接。因此,例如通过附接和图案化相应冷却板120、122上的金属箔或通过沉积和图案化相应冷却板120、122上的导电层,可实现任何期望的电接触配置,从而构成导电式布线结构143。

半导体芯片102的平坦的上和下主表面以及冷却板120、122的平坦的上和下主表面可彼此平行地(根据图1,水平地)定向。冷却板120、122的冷却通道104可在与图1的图面垂直的水平平面内彼此平行地定向。因此,可获得具有优秀冷却性能的扁平且很紧凑的配置。

在操作功率模块100(其可用于汽车应用场合,例如作为电驱动车辆中的逆变器)之前,冷却剂供送单元126可流体地连接至冷却通道104,以便引导冷却剂(例如水)通过冷却通道104,以用于冷却半导体芯片102。冷却剂供送单元126可通过管式结构156与冷却通道104流体地联接,管式结构156在所示的实施例中配置成柔性的。冷却剂供送单元126配置成用于泵送冷却剂,以使冷却剂沿着图1中示意性示出的闭合回路而流动通过冷却通道104。根据图1,两个冷却板120、122中的冷却通道104都仅部分地包封在包封材料108内,从而使得散热更高效。

为了制造图1所示的功率模块100,将半导体芯片102例如通过钎焊安装在下冷却板120上,并通过间隔体130连接至上冷却板122,所述间隔体130可实施成高度导热式长方体。后一连接也可通过钎焊来完成。高度导热式间隔体130额外提高了功率模块100的散热能力,且有助于主动冷却性能。间隔体130可由铜、铝基质中的碳化硅、钼等制成。冷却板120、122之间的空隙区域于是可填充以模制化合物,比如包封材料108。例如,冷却板120、122可实施为陶瓷体,所述陶瓷体具有由冷却通道104限定的各个管腔133。冷却剂(例如水、空气、氮或挥发性/易蒸发性液体)可被引导通过冷却通道104,以在功率模块100的工作过程中促进散热。如图1所示,导电式布线结构143可夹在半导体芯片102与下冷却板120之间,以提供半导体芯片102关于功率模块100的电子外围的电连接。

图2-图4示出了在实施制造功率模块100的方法的过程中,根据一个示例性实施例,不同状态下的功率模块100的预成形品的三维视图。

参照图2,示出了由陶瓷材料(比如氮化铝)制成的下冷却板120,直接铜结合(dcb)衬底作为下芯片载体128安装在下冷却板120上。替代性地,下芯片载体128可以是引线框架等。冷却板120可通过挤压成型以低花费来制造。随后,半导体芯片102例如通过钎焊安装在芯片载体128上。替代性地,可将机械布线结构(未示出)施加在下冷却板120上,以便电接触半导体芯片102。在这种情况下,可省去下芯片载体128。

参照图3,可选的间隔体130(图3中不可见)可安装在半导体芯片102上,且可由第二芯片载体134覆盖,第二芯片载体134可实施为另一直接铜结合(dcb)衬底。替代性地,上芯片载体134可以是引线框架或类似物。下芯片载体128(其也可表示为下安装板)可通过引线框架140连接,从而形成模块外引线。作为上芯片载体134的替代,也可在另一冷却板122朝着半导体芯片102的主表面上提供导电式布线结构。

用于提供与冷却剂供送单元126(图3中未示出)的流体连通的(在此是刚性的)管式结构156的第一部分附接至下冷却板120。从而,管式结构156的流体管道流体地联接至下冷却板120的冷却通道104。管式结构156可随后形成易制造的功率封装体100的一部分。

参照图4,上芯片载体134可由上冷却板122覆盖且热连接至上冷却板122,上冷却板122可以是另一陶瓷冷却本体。用于提供与冷却剂供送单元126(图4中未示出)的流体连通的(在此是刚性的)管式结构156的第二部分附接至上冷却板122。从而,管式结构156的另外的流体管道流体地联接至上冷却板122的冷却通道104。

尽管图4中未示出,但是,上和下冷却板120、122之间的空隙区域随后由包封材料108包封,包封材料108可实施为模制化合物。冷却板120、122可通过管式结构156与冷却剂流体地联接。为该目的,冷却剂可通过管式结构156的冷却剂入口171供送,并可通过管式结构156的冷却剂出口173排出。

图5和图6示出了在实施制造功率模块100的方法的过程中,根据另一示例性实施例,不同状态下的功率模块100的预成形品的三维视图。

参照图5,示出了根据图1-图4的陶瓷型冷却板120、122的替代。根据图5,冷却板120实施为金属型材(例如由铝制成),所述金属型材可涂覆电隔离层(以防止不期望的电短路)。这保证了冷却板120、122与功率半导体芯片102之间的电去耦。这种涂层例如可通过将电介质层印刷在金属型材上、或通过氧化金属表面(比如铝)以形成电隔离表面(比如氧化铝)来形成。有利地,这种涂层可实施成:使得击穿电压(electricbreakthroughvoltage)在1kv-10kv的范围内。这种涂层可通过物理气相沉积(pvd)、化学气相沉积(cvd)、电镀等来形成。

可将导电式布线结构(比如图案化的铜层)施加于电介质层上,以使得下芯片载体128(见图6)是可省去的。

替代性地,可将金属型材用作冷却板120,而无需电介质涂层。

参照图6,下芯片载体128(比如dcb衬底)可附接至金属型材。在这种情况下,例如可省去冷却板120的电介质涂层。

图7示意性地示出了包括根据本申请的一个示例性实施例的功率封装体100的车辆150。更特别地,功率封装体100可形成用于控制发动机/电池块154的工作的控制块152的一部分。因此,根据本申请的一个示例性实施例,封装体或功率模块100可用于汽车应用场合。这种功率封装体100的一个优选应用场合是:实施为用于车辆150的逆变器电路或逆整流器,所述车辆150可以是电驱动车辆或可以是混合动力车辆。这种逆变器可将电池的直流电流(dc)转换为交流电流(ac),以驱动车辆150的电动发动机。在混合动力车辆中,可至少部分地回收机械能,并通过逆变器将其转成电能,以用于对电池充电。在这种汽车逆变器应用场合,在功率模块100的工作过程中产生极大量的热量。该热量可通过根据图1-图6的双面冷却概念而高效地散除。然而,应当注意,在其他实施例中,单面冷却也是足够的。

应当理解,术语“包括”并不排除其他元素或特征,且“一”、“一个”并不排除多个。连同不同的实施例所描述的元素也可组合起来。还应当注意,附图标记不应解读为限制权利要求的范围。此外,本申请的范围不限于说明书中所描述的过程、机械、制造产品、物质组成、手段、方法和步骤的特定实施例。相应地,权利要求意图在其范围内包括这些过程、机械、制造产品、物质组成、手段、方法和步骤。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1