IBC太阳能电池及其制备方法与流程

文档序号:17881697发布日期:2019-06-13 10:46阅读:475来源:国知局
IBC太阳能电池及其制备方法与流程

本发明属于太阳能电池技术领域,更具体地说,是涉及一种IBC太阳能电池及其制备方法。



背景技术:

IBC太阳能电池:IBC(Interdigitated back contact),全背电极接触晶硅太阳电池,简称“IBC电池”,一种背接触太阳能电池,正负金属电极都在电池非受光面呈指状交叉排布。

N型太阳能电池:太阳能电池硅片基底为掺杂硼元素的硅片。

发射极:即pn结,通过高温扩散在硅片基底上形成一个pn结,在N型电池上发射极扩散磷元素。

SiNx:氮化硅,一般通过PECVD(等离子增强气相化学沉积法)在硅片表面形成氮化硅层,将硅片表面悬挂键通过氢原子填满,起到钝化的作用,同时也能起到保护作用和增透作用。

双面发电电池:电池正面、背面都采用主栅、细栅设计,使得电池背面也能吸收光线,提高光线利用率。

太阳能发电技术是新能源发展的一个重要领域,提高太阳能电池板的单位面积输出功率是太阳能电池技术进步的最终目标。决定太阳能电池片转换效率的主要电学参数有短路电流、开路电压和填充因子。IBC电池在电池受光面没有金属电极,能够完全消除正面的光学损失,增大短路电流,所有的电极在电池背面呈交叉指状的分布,较大的金属化面积提升了电池填充因子,而良好的钝化工艺能够提升电池的开路电压。

在将电池片串联制造成组件后,最终能得到一块完整的太阳能电池面板。因为在电池片串联的过程中需要用焊带将电池片连接起来,焊带本身的电阻(R)会带来一部分电性能的损失,在相同的焊接条件下,电池串组电压越大,电流越小,焊带所带来的损失(I2R)就会越小,因此在常规太阳能电池工艺中就已经出现了半片工艺,即对普通电池片采用激光切割技术,切成两片大小一样的电池片,进行串联,从而使得一片电池片变为两片串联的半片电池片,使得开路电压提升一倍,短路电流降低一半,再用若干切割好的电池片封装成组件可以实现高电压,低电流的输出从而降低焊带等带来的电阻损失。但此种技术需要额外的激光设备进行切片,增加了额外的工艺、设备提升成本,并且激光切割工艺本身也会给电池片带来额外的损伤,降低电池的电性能。



技术实现要素:

本发明的目的在于提供一种IBC太阳能电池,以提高电池开路电压、降低短路电流、同时保持电池转换效率不变,从而达到组件封装过程中的增大开压、减小短路电流进而降低封装损失的目的。

为实现上述目的,本发明采用的技术方案是:提供一种IBC太阳能电池,包括IBC电池片,所述IBC电池片包括间隔排布的P型区和N型区,所述P型区上设置有P型金属化栅线,所述N型区上设置有N型金属化栅线,其特征在于:所述IBC电池片均分为偶数个相同的电池单元,相邻所述电池单元之间绝缘设置;

所述P型金属化栅线和所述N型金属化栅线上均印刷有等间距分布的绝缘浆料,同一所述电池单元中,相邻的所述P型金属化栅线和所述N型金属化栅线上的所述绝缘浆料错位设置,相邻的所述电池单元中,相邻的所述P型金属化栅线和所述N型金属化栅线上的所述绝缘浆料对应设置;

沿竖直方向成列分布的每一列所述绝缘浆料若通过焊带相连,每根所述焊带在竖直方向上分别连接相邻的所述电池单元的正极和负极。

进一步地,所述P型区的宽度为0.51mm-2mm,所述N型区的宽度为0.5mm-2mm。

进一步地,形成所述P型金属化栅线和所述N型金属化栅线的金属化浆料均为贯穿所述P型区和N型区的连续的栅线。

进一步地,所述金属化浆料与所述P型区和N型区形成欧姆接触。

进一步地,通过激光划线将所述IBC电池片均分成偶数个绝缘设置的电池单元,所述激光划线采用的激光器为固体脉冲激光器。

本发明提供的IBC太阳能电池的有益效果在于:

本发明提供的IBC太阳能电池,沿将来焊带连接位置进行绝缘浆料的印刷,使得若干根焊带在水平方向上,依次间隔连接P型金属化栅线和N型金属化栅线,若干根焊带中的每根焊带在竖直方向上分别连接相邻电池单元的正极和负极,从而可以使得一条连续的焊带将各个电池单元串联。从而在不改变电池、组件设备、工艺的条件下,获得开压提升、短路电流降低的效果,从而在组件封装过程中增大开路电压、减小短路电流,从而降低因电流、电阻造成的封装损失。

本发明还公开了一种IBC太阳能电池的制备方法,用于制备上述的IBC太阳能电池,包括:

制备IBC电池片;

将所述IBC电池片均分成偶数个相同的电池单元,相邻的所述电池单元之间绝缘设置;

对IBC电池片进行绝缘浆料的印刷、烘干;所述绝缘浆料按以下规则分布:P型金属化栅线和N型金属化栅线上均印刷有等间距分布的绝缘浆料,同一所述电池单元中,相邻的所述P型金属化栅线和所述N型金属化栅线上的所述绝缘浆料错位设置,相邻的所述电池单元中,相邻的所述P型金属化栅线和所述N型金属化栅线上的所述绝缘浆料对应设置;

沿竖直方向成列分布的每一列所述绝缘浆料若通过焊带相连,每根所述焊带在竖直方向上分别连接相邻的所述电池单元的正极和负极。

进一步地,所述制备IBC电池片包括:

在硅片非受光面制备指状交替的P型区和N型区;

在形成的所述P型区和N型区进行湿化学表面清洁及硅片两面沉积SiNx膜;

对沉积了所述SiNx膜的硅片进行丝网印刷、烧结,同时形成P型区和N型区的金属化栅线,形成所述IBC电池片。

进一步地,所述P型区和N型区通过扩散工艺形成,所述扩散工艺中硅片采用单面扩散工艺。

进一步地,经PECVD工艺进行SiNx沉积钝化,形成的所述SiNx膜的厚度为30nm-300nm。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为现有技术中IBC太阳能电池的结构示意图;

图2为本发明实施例提供的IBC太阳能电池的结构示意图;

图3为本发明实施例提供的IBC太阳能电池的串联结构示意图。

其中,图中各附图标记:

1-IBC电池片;11-电池单元;2-P型金属化栅线;3-N型金属化栅线;4-激光划线;5-绝缘浆料;6-焊带。

具体实施方式

为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”、“若干个”的含义是两个或两个以上,除非另有明确具体的限定。

请一并参阅图1及图2,现对本发明提供的IBC太阳能电池进行说明。IBC太阳能电池,包括IBC电池片1,IBC电池片1包括间隔排布的P型区和N型区,P型区上设置有P型金属化栅线2,N型区上设置有N型金属化栅线3;IBC电池片均分为偶数个相同的电池单元11,相邻电池单元11之间绝缘设置。

P型金属化栅线2和N型金属化栅线3上均印刷有等间距分布的绝缘浆料5,同一电池单元11中,相邻的P型金属化栅线2和N型金属化栅线3上的绝缘浆料5错位设置,相邻的电池单元中,相邻的P型金属化栅线2和N型金属化栅线3上的绝缘浆料5对应设置。即在水平方向上,相邻电池单元11之间:P型金属化栅线2上的绝缘浆料5位于N型金属化栅线3上的绝缘浆料5之间和N型金属化栅线3上的绝缘浆料5位于P型金属化栅线2上的绝缘浆料5之间间隔排布;竖直方向上,P型金属化栅线2上的绝缘浆料5和N型金属化栅线3上的绝缘浆料5均成列分布;

若在竖直方向沿着成列分布的绝缘浆料5焊接若干根焊带6,若干根焊带6在水平方向上,依次间隔连接P型金属化栅线2和N型金属化栅线3,若干根焊带6中的每根焊带6在竖直方向上分别连接相邻电池单元11的正极和负极。

本发明提供的IBC太阳能电池,沿将来焊带6连接位置进行绝缘浆料5的印刷,使得若干根焊带6在水平方向上,依次间隔连接P型金属化栅线2和N型金属化栅线3,若干根焊带6中的每根焊带6在竖直方向上分别连接相邻电池单元11的正极和负极,从而可以使得一条连续的焊带6将各个电池单元11串联。如图三所示,两片电池沿相同方放置,只需要7根连续的焊带6就可以获得8片电池单元11的串联结构,从而在不改变电池、组件设备、工艺的条件下,获得开压提升、短路电流降低的效果,从而在组件封装过程中增大开路电压、减小短路电流,从而降低因电流、电阻造成的封装损失。

进一步地,作为本发明提供的IBC太阳能电池的一种具体实施方式,P型区的宽度为0.51mm-2mm,N型区的宽度为0.5mm-2mm。

进一步地,请参阅图2,作为本发明提供的IBC太阳能电池的一种具体实施方式,形成P型金属化栅线2和N型金属化栅线3的金属化浆料均为贯穿P型区和N型区的连续的栅线。金属化细栅分别独立的连续覆盖于P型区和N型区之上,使得单独整条的P型区和N型区的少数载流子能够完整地被整条细栅收集,减小了独立分布的P型区和N型区之间的间隔对少数载流子收集带来的不利影响。

进一步地,作为本发明提供的IBC太阳能电池的一种具体实施方式,金属化浆料与P型区和N型区形成良好的欧姆接触。

进一步地,作为本发明提供的IBC太阳能电池的一种具体实施方式,通过激光划线4将IBC电池片1均分成偶数个绝缘设置的电池单元11;激光划线4采用的激光器为固体脉冲激光器。具体地,固体脉冲激光器的波长为532nm,功率为15W-50W。

本发明还提供了一种IBC太阳能电池的制备方法,用于制备上述的IBC太阳能电池,包括以下步骤:

步骤一:制备IBC电池片;

步骤二:通过激光划线4将IBC电池片1均分成偶数个绝缘设置的电池单元11;具体地,采用激光进行IBC电池片1划线边绝缘,并同时按照平行细栅方向均分单元电池交界区域进行划线绝缘。如图二所示,将完整IBC电池片1沿平行于细栅方向均分为4个相同个的电池单元11,且相邻单元之间采用激光绝缘。

步骤三:对步骤二中制备完成的太阳能电池片进行绝缘浆料5的印刷、烘干;绝缘浆料5按以下规则分布:若在竖直方向沿着成列分布的绝缘浆料5焊接若干根焊带6,若干根焊带6在水平方向上,依次间隔连接P型金属化栅线2和N型金属化栅线3,若干根焊带6中的每根焊带6在竖直方向上分别连接相邻电池单元11的正极和负极。

进一步地,步骤一包括:

在硅片非受光面制备指状交替的P型区和N型区。具体地,IBC电池的正负电池均在背面,且呈现指状交叉的分布,通过采用腐蚀浆料或者激光消融的方法去除制定区域的一定深度的P型掺杂区,使得此区域内的氧化硅掩膜及P-N结完全去除,同时保留硅片非掺杂面及P型掺杂区域上的氧化硅掩膜,能够在后续磷扩散工艺中在开槽区域制备磷掺杂区域,从而形成指状交叉分布的P型区和N型区。由于掩膜的存在,只会在去除掩膜区域进行扩散,从而形成了与P型区指状交叉的N型区,并且电池形成上下两部分相互独立且相对的P型区N型区交叉扩散区域,如图一所示。

在步骤一中形成的P型区和N型区进行湿化学表面清洁及硅片两面沉积SiNx膜。即硅片背面交叉分布的P型区和N型区制备完成后,需要利用沉积的氮化硅薄膜来对硅片进行钝化和光学曾透。

对沉积了SiNx膜的硅片进行一步丝网印刷、烧结,同时形成P型区和N型区的金属化栅线,形成IBC太阳能电池片。

进一步地,作为本发明提供的IBC太阳能电池的制备方法的一种具体实施方式,P型区和N型区通过扩散工艺形成,扩散工艺中硅片采用单面扩散工艺。

进一步地,作为本发明提供的IBC太阳能电池的制备方法的一种具体实施方式,经PECVD工艺进行SiNx沉积钝化,形成的SiNx膜的厚度为30nm-300nm。

综上所述,本实施例提供的一种IBC太阳能电池的制备方法中,通过利用氧化硅掩膜及腐蚀浆料开槽,配合单面硼扩散、单面磷扩散工艺,匹配P型硅、N型硅通用的金属化浆料、及激光绝缘技术和绝缘浆料5,能够在一片电池中形成若干单独隔离的串联结构的IBC电池片1,从而提升了单片电池的开压、降低了单片电池的短路电流,同时保持电池的转换效率不变,从而使得组件封装过程因电流、电阻造成的损失得到了降低。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1