垂直双极晶体管的制作方法

文档序号:18093839发布日期:2019-07-06 10:55阅读:296来源:国知局
垂直双极晶体管的制作方法

这里公开的发明构思的一些示例实施例涉及垂直双极晶体管,更具体地,涉及与垂直场效应晶体管制造工艺兼容的垂直双极晶体管。



背景技术:

由于例如垂直场效应晶体管(vtfet)的改善的可缩放性和相对较低的中段工艺(mol)电容,已经广泛研究了vtfet作为鳍式场效应晶体管(finfet)的理想的替代物。然而,就例如应变工程、变化控制和对功率器件的应用而言,vtfet仍有许多问题待解决。

因为vtfet沿垂直方向限定沟道,所以通常使用额外的工艺步骤来提供垂直双极晶体管。因此,需要相对简单结构的双极晶体管,可以在不引入额外的工艺步骤的情况下制造双极晶体管。



技术实现要素:

发明构思的一些示例实施例提供了垂直双极晶体管。

发明构思的一些示例实施例提供了垂直双极晶体管,其可在形成垂直场效应晶体管的同时制造而无需引入额外的工艺步骤。

根据发明构思的示例实施例,一种垂直双极晶体管可以包括:基底,包括第一导电类型的第一阱和第二导电类型的第二阱,第二导电类型与第一导电类型不同,第一阱与第二阱邻接;第一鳍,从第一阱延伸,第一鳍包括位于其顶部的第一导电区,第一导电区具有第二导电类型并且被构造为用作所述垂直双极晶体管的发射极;第二鳍,从第一阱延伸并与第一鳍间隔开,第二鳍包括位于其顶部的第二导电区,第二导电区具有第一导电类型并且被构造为用作所述垂直双极晶体管的基极;以及第三鳍,从第二阱延伸,第三鳍包括位于其顶部的第三导电区,第三导电区具有第二导电类型并且被构造为用作所述垂直双极晶体管的集电极。

根据发明构思的示例实施例,一种垂直双极晶体管可以包括:基底,包括第一导电类型的第一阱和第二导电类型的第二阱,第二导电类型与第一导电类型不同,第一阱与第二阱邻接;第一导电区,位于第一阱中,第一导电区具有第二导电类型,第一导电区被构造为用作所述垂直双极晶体管的发射极;第一鳍,从基底的第一阱延伸,第一鳍与第一导电区横向地间隔开,第一鳍包括位于其顶部的第二导电区,第二导电区具有第一导电类型;第二鳍,从基底的第二阱延伸,第二鳍包括位于其顶部的第三导电区,第三导电区具有第二导电类型;至少一个子基极区,位于第一阱中,所述至少一个子基极区具有第一导电类型,所述至少一个子基极区关于第一鳍对齐并且与第一导电区横向地间隔开,第二导电区和所述至少一个子基极区共同被构造为用作所述垂直双极晶体管的基极;以及至少一个子集电极区,位于第二阱中,所述至少一个子集电极区具有第二导电类型,所述至少一个子集电极区关于第二鳍对齐并且与所述至少一个子基极区横向地间隔开,第三导电区和所述至少一个子集电极区共同被构造为用作所述垂直双极晶体管的集电极。

根据发明构思的示例实施例,一种垂直双极晶体管可以包括:第一鳍和第二鳍,从基底的第一阱延伸,第一阱具有第一导电类型,第一鳍和第二鳍彼此间隔开,第一鳍包括位于其顶部的具有第二导电类型的第一导电区,第二鳍包括位于其顶部的具有第一导电类型的第二导电区,第一导电类型和第二导电类型彼此相反;第三鳍,从基底的第二阱延伸,第二阱具有第二导电类型,第二阱与第一阱邻接,第三鳍包括位于其顶部的具有第二导电类型的第三导电区;所述垂直双极晶体管的发射极区,包括第一导电区和至少一个子发射极区,所述至少一个子发射极区位于第一阱中并且具有第二导电类型,所述至少一个子发射极区关于第一鳍横向地对齐,第一导电区和所述至少一个子发射极区共同被构造为用作所述垂直双极晶体管的发射极;所述垂直双极晶体管的基极区,包括第二导电区和至少一个子基极区,所述至少一个子基极区位于第一阱中并且具有第一导电类型,所述至少一个子基极区关于第二鳍横向地对齐,第二导电区和所述至少一个子基极区共同被构造为用作所述垂直双极晶体管的基极;以及所述垂直双极晶体管的集电极区,包括第三导电区和至少一个子集电极区,所述至少一个子集电极区位于第二阱中并且具有第二导电类型,所述至少一个子集电极区关于第三鳍横向地对齐,第三导电区和所述至少一个子集电极区共同被构造为用作所述垂直双极晶体管的集电极。

附图说明

通过参照附图详细描述发明构思的示例实施例,发明构思的上述和其它目的、特征和效果对于本领域普通技术人员将变得更加明显,在附图中:

图1示出了根据示例实施例的包括发射极e、基极b和集电极c的垂直双极晶体管的概念性平面图;

图2是根据发明构思的示例实施例的沿图1的线ii-ii'截取的垂直pnp双极晶体管的剖视图;

图3是根据发明构思的示例实施例的沿图1的线ii-ii'截取的垂直pnp双极晶体管的剖视图;

图4是根据发明构思的示例实施例的沿图1的线ii-ii'截取的垂直pnp双极晶体管的剖视图;

图5是示出根据发明构思的示例实施例的用于在形成垂直场效应晶体管(vtfet)的同时形成图3中示出的垂直pnp双极晶体管的操作的流程图;

图6、图7、图8、图9、图10、图11a、图12a、图13a、图14a、图15a、图16a、图17a和图18a是示出根据发明构思的示例实施例的形成vtfet的方法的剖视图;以及

图11b、图12b、图13b、图14b、图15b、图16b、图17b和图18b是示出根据发明构思的示例实施例的在形成如图11a、图12a、图13a、图14a、图15a、图16a、图17a和图18a中所示的vtfet的同时形成图3中示出的垂直pnp双极晶体管的方法的剖视图。

具体实施方式

将理解的是,当元件或层被称为“在”另一元件或层“上”、“连接到”或“结合到”另一元件或层时,该元件可以直接在所述另一元件或层上、直接连接到或直接结合到所述另一元件或层,或者可以存在中间元件或中间层。相比之下,当元件被称为“直接在”另一元件或层“上”、“直接连接到”或“直接结合到”另一元件或层时,不存在中间元件或中间层。

如这里所使用的,术语“和/或”包括一个或更多个相关所列项的任意和全部组合。诸如“中的至少一个(种/者)”的表述在位于一列元件之后时,修饰整列元件而不修饰该列中的个别元件。因此,例如,“a、b和c中的至少一个(种/者)”和“a、b和/或c”都表示a、b、c或其任意组合。

除非另外定义,否则这里使用的所有术语(包括技术术语和科学术语)具有与示例实施例所属领域的普通技术人员通常理解的含义相同的含义。还将理解的是,术语(诸如在通用词典中定义的术语)应被解释为具有与其在相关领域的上下文中的含义一致的含义,并且将不以理想化或过于形式化的含义来解释,除非在这里明确地如此定义。

在下文中,将参照附图解释本发明构思的一些示例实施例。将使用垂直pnp双极晶体管作为示例描述本发明构思。然而,示例实施例不限于此。因此,也可以根据本发明构思获得垂直npn双极晶体管。

图1示出了根据示例实施例的包括发射极e、基极b和集电极c的垂直双极晶体管100的概念性平面图。垂直双极晶体管100可以包括位于发射极e与基极b之间的第一隔离区170a和位于基极b与集电极c之间的第二隔离区170b。

如果通过平面工艺形成这种双极晶体管,则该双极晶体管可以在设置在发射极e与基极b之间的结处和基极b与集电极c之间的结处具有相对好的结特性。然而,形成这种平面双极晶体管的方法会与形成垂直(例如,三维)场效应晶体管(例如,vtfet)的方法不兼容,因此会需要额外的工艺。

图2是根据发明构思的示例实施例的沿图1的线ii-ii'截取的垂直pnp双极晶体管200的剖视图。

参照图2,半导体基底210可以是掺杂有p型杂质的半导体基底。在下文中,半导体基底210和p型基底(p-sub,作为示例)在整个公开内容中将可互换地使用。半导体基底210可以是体硅晶圆的一部分。半导体基底210可以是绝缘体上硅(soi)晶圆的硅部分。半导体基底210可以包括除硅之外的材料,包括但不限于ge、sige、sic、gep、gen、ingaas、gaas、insb、inas、gasb和inp。半导体基底210可以指在基体基底上外延生长的半导体层。

p型基底210可以设置有n阱区(nw)220和与n阱区220相邻的p阱区(pw)230。p型基底210可以设置有多个鳍,所述多个鳍包括:第一鳍240、第二鳍250和第三鳍260(统称为鳍)。第一鳍240和第二鳍250可以从n阱区220突出,并且可以彼此间隔开。第三鳍260可以从p阱区230突出。

在一些示例实施例中,可以通过相对于半导体基底210执行光刻工艺和蚀刻工艺来形成第一鳍240、第二鳍250和第三鳍260。在一些其它示例实施例中,可以通过在半导体基底210的选择区域上外延生长半导体层来形成第一鳍240、第二鳍250和第三鳍260。

第一隔离区270a可以设置在半导体基底210的n阱区220中,并且横向地设置在第一鳍240与第二鳍250之间。第一隔离区270a可以在n阱区220内延伸到一定深度,但不会到达n阱区220的底部。

第二隔离区270b可以设置在n阱区220与p阱区230之间的边界中并位于该边界处,并且横向地设置在第二鳍250与第三鳍260之间。第二隔离区270b可以延伸到一定深度,从而不到达n阱区220的底部。第二隔离区270b可以延伸到一定深度,从而不到达p阱区230的底部。第二隔离区270b可以延伸到一定深度,从而不到达n阱区220的底部和p阱区230的底部。

在一些示例实施例中,第一隔离区270a和第二隔离区270b可以延伸到比n阱区220的深度和p阱区230的深度浅的深度。第一隔离区270a和第二隔离区270b可以由绝缘材料形成或包括绝缘材料。第一隔离区270a和第二隔离区270b的形成可以包括在半导体基底210中形成沟槽以及用绝缘材料填充沟槽。

图2示出了示例垂直pnp双极晶体管,其中,第二隔离区270b延伸到比n阱区220的深度和p阱区230的深度中的每个浅的深度。然而,发明构思的示例实施例不限于此。根据一些示例实施例,第二隔离区270b可以延伸到一定深度,所述深度比n阱区220的深度和p阱区230的深度中的至少一个深。

图2示出了示例垂直pnp双极晶体管,其中,设置了第一隔离区270a和第二隔离区270b两者。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以仅设置第一隔离区270a和第二隔离区270b中的一个,或者可以都不设置第一隔离区270a和第二隔离区270b。

参照图2,第一鳍240可以包括第一n掺杂区240a和位于第一n掺杂区240a上的第一p+掺杂区(p+)240b。第一p+掺杂区240b可以具有比p型基底210和p阱区230高的掺杂浓度,并且可以用作pnp双极晶体管200的发射极e。第二鳍250可以包括第二n掺杂区250a和位于第二n掺杂区250a上的n+掺杂区(n+)250b。n+掺杂区250b可以具有比n阱区220高的掺杂浓度,并且可以用作pnp双极晶体管200的基极b。第三鳍260可以包括p掺杂区260a和位于p掺杂区260a上的第二p+掺杂区260b。第二p+掺杂区260b可以具有比p阱区230和p型基底210高的掺杂浓度,并且可以用作pnp双极晶体管200的集电极c。第一p+掺杂区240b的杂质浓度可以具有与第二p+掺杂区260b相同或相似的杂质浓度。可以同时形成第一p+掺杂区240b和第二p+掺杂区260b。

在一些示例实施例中,可以通过图案化半导体基底210来形成第一鳍240、第二鳍250和第三鳍260。因此,第一鳍240、第二鳍250和第三鳍260可以分别具有与阱区220和230的杂质类型和杂质浓度相同或相似的杂质类型和杂质浓度。此外,可以通过用例如硼b掺杂第一鳍240的顶部来形成第一p+掺杂区240b,可以通过用例如磷p掺杂第二鳍250的顶部来形成n+掺杂区250b,可以通过用例如硼b掺杂第三鳍260的顶部来形成第二p+掺杂区260b。

根据一些其它示例实施例,可以通过图案化半导体基底210来形成第一n掺杂区240a、第二n掺杂区250a和p掺杂区260a。因此,第一n掺杂区240a、第二n掺杂区250a和p掺杂区260a可以分别具有与阱区220和230的杂质类型和杂质浓度相同或相似的杂质类型和杂质浓度。然而,本发明构思的示例实施例可以不限于此。在一些示例实施例中,可以分别调整第一n掺杂区240a、第二n掺杂区250a和p掺杂区260a的杂质类型和杂质浓度。

根据一些其它示例实施例,可以通过使用外延生长工艺来形成第一n掺杂区240a、第二n掺杂区250a和p掺杂区260a。可以在第一n掺杂区240a上外延生长第一p+掺杂区240b,可以在第二n掺杂区250a上外延生长n+掺杂区250b,可以在p掺杂区260a上外延生长第二p+掺杂区260b。此外,可以通过用硼b分别对第一n掺杂区240a和p掺杂区260a执行原位外延生长工艺来形成第一p+掺杂区240b和第二p+掺杂区260b。可以通过用磷p或砷as对第二n掺杂区250a执行原位外延生长工艺来形成n+掺杂区250b。可以同时形成第一p+掺杂区240b和第二p+掺杂区260b。

根据前述示例实施例,垂直pnp双极晶体管200的发射极e和基极b之间的结(可选择地,称为e-b结)设置在第一鳍240的中间(例如,在第一n掺杂区240a与第一p+掺杂区240b的边界处)。换言之,垂直pnp双极晶体管200的发射极e和基极b之间的结未设置在半导体基底210(例如,n阱区220)中。

图3是根据发明构思的示例实施例的沿图1中的线ii-ii'截取的垂直pnp双极晶体管300的剖视图。

除了半导体基底310中设置的附加的子发射极区、子基极区和子集电极区之外,图3中示出的垂直pnp双极晶体管300具有与图2中示出的垂直pnp双极晶体管200相同的结构。为了描述简洁,可以通过相似或相同的附图标记来表示之前描述的元件,而不重复其重复的描述。

参照图3,第一鳍340可以包括第一n掺杂区340a和位于第一n掺杂区340a上的第一p+掺杂区340b。第一p+掺杂区340b可以具有比p型基底310和p阱区330高的掺杂浓度。在此示例实施例中,可以在n阱区320中相对于第一鳍340以自对齐的方式附加形成第一子发射极区342和第二子发射极区344。第一子发射极区342和第二子发射极区344可掺杂有p型杂质并具有堪比第一p+掺杂区340b的掺杂浓度的掺杂浓度。第一p+掺杂区340b以及第一子发射极区342和第二子发射极区344可以共同用作垂直pnp双极晶体管300的发射极e。可以通过将第一鳍340用作掩模执行离子注入工艺来形成第一子发射极区342和第二子发射极区344。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以通过使半导体基底310凹进并在其中用适当的杂质(例如,掺杂剂)外延生长半导体结构来形成第一子发射极区342和第二子发射极区344。

参照图3,第二鳍350可以包括第二n掺杂区350a和位于第二n掺杂区350a上的n+掺杂区350b。n+掺杂区350b可以具有比n阱区320高的掺杂浓度。在此示例实施例中,可以在n阱区320中相对于第二鳍350以自对齐的方式附加形成第一子基极区352和第二子基极区354。第一子基极区352和第二子基极区354可以掺杂有n型杂质,并且具有堪比n+掺杂区350b的掺杂浓度的掺杂浓度。n+掺杂区350b以及第一子基极区352和第二子基极区354可以共同用作垂直pnp双极晶体管300的基极b。可以通过使用热扩散工艺或者通过将第二鳍350用作掩模执行离子注入工艺来形成第一子基极区352和第二子基极区354。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以通过使半导体基底310凹进并在其中用适当的杂质(例如,掺杂剂)外延生长半导体结构来形成第一子基极区352和第二子基极区354。

参照图3,第三鳍360可以包括p掺杂区360a和位于p掺杂区360a上的第二p+掺杂区360b。第二p+掺杂区360b可以具有比p型基底310和p阱区330高的掺杂浓度。在此示例实施例中,可以在p阱区330中相对于第三鳍360以自对齐的方式附加形成第一子集电极区362和第二子集电极区364。第一子集电极区362和第二子集电极区364可以掺杂有p型杂质,并且具有堪比第二p+掺杂区360b的掺杂浓度的掺杂浓度。第二p+掺杂区360b以及第一子集电极区362和第二子集电极区364可以共同用作垂直pnp双极晶体管300的集电极c。第二p+掺杂区360b以及第一子集电极区362和第二子集电极区364的杂质浓度可以与第一p+掺杂区340b以及第一子发射极区342和第二子发射极区344的杂质浓度相同或相似。

可以通过将第一鳍340用作掩模执行离子注入工艺来形成第一子发射极区342和第二子发射极区344。可以通过将第二鳍350用作掩模执行离子注入工艺来形成第一子基极区352和第二子基极区354。可以通过将第三鳍360用作掩模使用离子注入工艺来形成第一子集电极区362和第二子集电极区364。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以通过使半导体基底310凹进并在其中用适当的杂质(例如,掺杂剂)外延生长半导体结构来形成第一子发射极区342和第二子发射极区344、第一子基极区352和第二子基极区354以及第一子集电极区362和第二子集电极区364。

在一些示例实施例中,第一p+掺杂区340b可以与第一子发射极区342和第二子发射极区344分开设置,n+掺杂区350b可以与第一子基极区352和第二子基极区354分开设置,第二p+掺杂区360b可以与第一子集电极区362和第二子集电极区364分开设置。例如,可以通过使用离子注入工艺形成第一子发射极区342和第二子发射极区344并可以通过使用外延生长工艺形成第一p+掺杂区340b,可以通过使用离子注入工艺形成第一子基极区352和第二子基极区354并可以通过使用外延生长工艺形成n+掺杂区350b,可以通过使用离子注入工艺形成第一子集电极区362和第二子集电极区364并可以通过使用外延生长工艺形成第二p+掺杂区360b。

与图2相似,图3示出了示例垂直pnp双极晶体管,其中,设置了第一隔离区370a和第二隔离区370b。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以仅设置第一隔离区370a和第二隔离区370b中的一个,或者可以都不设置第一隔离区370a和第二隔离区370b。例如,第二子发射极区344和第一子基极区352可以彼此间隔开一距离。相似地,第二子基极区354和第一子集电极区362可以彼此间隔开一距离。

此外,图3示出了示例垂直pnp双极晶体管,其中,用于发射极e的至少一个子发射极区包括第一子发射极区342和第二子发射极区344。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以仅设置第一子发射极区342和第二子发射极区344中的一个。同样地,可以仅设置第一子基极区352和第二子基极区354中的一个,并且/或者可以仅设置第一子集电极区362和第二子集电极区364中的一个。

根据此示例实施例,垂直pnp双极晶体管300的发射极e和基极b之间的结(可选择地,称为e-b结)设置在第一鳍340的中间(例如,在第一n掺杂区340a与第一p+掺杂区340b的边界处)以及n阱区320中。因此,与如图2中所示的垂直pnp双极晶体管200的e-b结相比,如图3中所示的垂直pnp双极晶体管300的e-b结可以提供更稳定的电特性。

图4是根据发明构思的示例实施例的沿图1的线ii-ii'截取的垂直pnp双极晶体管400的剖视图。除了在设置发射极e的区中不设置鳍且第一p+掺杂区442可以设置在n阱区420中并用作发射极e之外,图4中示出的垂直pnp双极晶体管300具有与图3中示出的垂直pnp双极晶体管300相同的结构。为了描述简洁,可以通过相似或相同的附图标记来表示之前描述的元件,而不重复其重复的描述。

可以通过使用例如离子注入工艺形成第一p+掺杂区442。例如,可以在同一工艺步骤中同时形成第一p+掺杂区442、第二p+掺杂区460b以及第一子集电极区462和第二子集电极区464。在一些示例实施例中,可以通过使半导体基底410凹进并在其中用p型杂质(例如,硼b)外延生长半导体结构来形成第一p+掺杂区442。

在一些示例实施例中,可以在同一工艺中同时形成第一p+掺杂区442以及第一子集电极区462和第二子集电极区464,并且可以在不同的工艺中单独形成第二p+掺杂区460b。例如,可以通过在p掺杂区460a上利用单独的外延生长工艺来形成第二p+掺杂区460b。

与图2和图3相似,图4示出了示例垂直pnp双极晶体管400,其中,设置了第一隔离区470a和第二隔离区470b。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以仅设置第一隔离区470a和第二隔离区470b中的一个,或者可以都不设置第一隔离区470a和第二隔离区470b。例如,第一p+掺杂区442和第一子基极区452可以被第一隔离区470a横向地分开。相似地,第二基极区454和第一子集电极区462可以被第二隔离区470b横向地分开。

图4示出了示例垂直pnp双极晶体管,其中,用于基极b的至少一个子基极区包括第一子基极区452和第二子基极区454。然而,本发明构思的示例实施例不限于此。在一些示例实施例中,可以仅设置子基极区452和454中的一个。同样地,可以仅设置子集电极区462和464中的一个。在一些示例实施例中,可以设置多于两个子基极区。

根据此示例实施例,垂直pnp双极晶体管400的发射极e和基极b之间的e-b结设置在n阱区420中。因此,与如图2中所示的垂直pnp双极晶体管200的e-b结和如图3中所示的垂直pnp双极晶体管300的e-b结相比,如图4中所示的垂直pnp双极晶体管400的e-b结可以提供相对稳定的电特性。

图5是示出根据发明构思的示例实施例的用于在形成垂直场效应晶体管(vtfet)的同时形成图3中示出的垂直pnp双极晶体管的操作的流程图。

参照图5,在操作s10中,可以在半导体基底上形成多个n阱区和多个p阱区。在一些示例实施例中,(1)可以由第一阻挡层图案覆盖第一选择区域,可以使未被第一阻挡层图案覆盖的区域经历p型离子注入以形成多个p阱区,随后(2)可以由第二阻挡层图案覆盖第二选择区域,可以使未被第二阻挡层图案覆盖的区域经历n型离子注入以形成多个n阱区。

在操作s20中,可以在其上已经形成有多个n阱区和多个p阱区的半导体基底上形成多个硬掩模图案。然后,可以使用多个硬掩模图案来蚀刻半导体基底以形成从半导体基底突出的多个鳍。在一些示例实施例中,可以通过使用外延生长在半导体基底上选择性地生长多个鳍而非蚀刻半导体基底。在此操作中,可以在此操作期间同时形成用于垂直双极晶体管的多个鳍和用于vtfet的多个鳍。

在操作s30中,可以在其上已经形成有多个鳍的半导体基底上共形地形成第一绝缘层,其中,所述多个鳍具有位于其上的多个硬掩模图案中的相应的硬掩模图案,并且可以回蚀第一绝缘层以留下多个绝缘侧壁。第一绝缘层可以包括氮化硅。

在操作s40中,可以使用多个硬掩模图案和多个绝缘侧壁作为掩模来蚀刻半导体基底以形成多个凹进。然而,本发明构思的示例实施例不限于此。根据本发明构思的一些示例实施例,可以跳过此操作,因此可以不形成多个凹进。

在操作s50中,可以通过分别在多个凹进中的相应的凹进中外延生长多个n+掺杂的底部源极/漏极(s/d)区和多个p+掺杂的底部s/d区来形成用于vtfet的多个底部s/d区。然而,本发明构思的示例实施例不限于此。根据本发明构思的一些示例实施例,例如,在跳过操作s40的情况下,可以通过使用离子注入工艺形成多个n+掺杂的底部s/d区和多个p+掺杂的底部s/d区。在此操作期间,可以同时形成用于垂直双极晶体管的多个子发射极区、多个子基极区和多个子集电极区。

在操作s60中,可以在半导体基底中设置多个隔离区以在它们之间限定多个有源区。在一些示例实施例中,可以使用浅沟槽隔离(sti)技术形成隔离区。

在操作s70中,可以在半导体基底上形成第二绝缘层。然后,在操作s80中,可以回蚀第二绝缘层以留下剩余结构以用作多个底部间隔物,并且暴露多个鳍的侧表面。第二绝缘层可以包括氮化硅。

在操作s90中,可以分别在多个鳍的侧表面周围形成多个金属栅极结构。在一些示例实施例中,多个金属栅极结构中的每个可以包括栅极绝缘层、功函数金属层和覆盖金属层。

在操作s100中,可以形成氧化物层,使得氧化物层的顶表面位于多个硬掩模图案的顶表面上方,然后可以回蚀氧化物层。通过选择多个硬掩模图案和氧化物层彼此不具有蚀刻选择性,可以在回蚀氧化物层的同时去除多个硬掩模图案。因此,可以暴露多个鳍中的每个的顶表面。

在操作s110中,可以通过分别在多个鳍中的相应的鳍上外延生长多个n+掺杂的顶部源极/漏极(s/d)区和多个p+掺杂的顶部s/d区来形成用于vtfet的多个顶部s/d区。然而,本发明构思的示例实施例不限于此。根据本发明构思的一些示例实施例,例如,可以通过使用离子注入工艺来形成多个n+掺杂的顶部s/d区和多个p+掺杂的顶部s/d区。在此操作期间,可以同时形成用于垂直双极晶体管的多个p+掺杂区和n+掺杂区。

如上参照图5所述,根据本发明构思的一些示例实施例,可以使用用于形成vtfet的工艺(或可选择地,操作)来实现垂直双极晶体管。因此,用于形成vtfet的工艺可用于形成垂直双极晶体管而无需额外的工艺。

在下文中,将参照图6、图7、图8、图9、图10、图11a、图11b、图12a、图12b、图13a、图13b、图14a、图14b、图15a、图15b、图16a、图16b、图17a、图17b、图18a和图18b详细说明图5的操作s10至s110。

图6、图7、图8、图9、图10、图11a、图12a、图13a、图14a、图15a、图16a、图17a和图18a是示出根据发明构思的示例实施例的形成vtfet的方法的剖视图。图11b、图12b、图13b、图14b、图15b、图16b、图17b和图18b是示出根据发明构思的示例实施例的在形成如图11a、图12a、图13a、图14a、图15a、图16a、图17a和图18a中所示的vtfet的同时形成图3中示出的垂直pnp双极晶体管的方法的剖视图。

参照图6,可以在半导体基底610上形成n阱区620和p阱区630。可以通过用第一阻挡层图案blk1覆盖非n阱区,并且将第一阻挡层图案blk1用作注入掩模注入n型杂质(例如,磷p)来形成n阱区620。可以通过用第二阻挡层图案blk2覆盖非p阱区并将第二阻挡层图案blk2用作注入掩模注入p型杂质(例如,硼b)来形成p阱区630。可以在半导体基底610上形成硬掩模层hm以在使用离子注入工艺引入n型和p型杂质的同时减少或防止半导体基底610上的缺陷。硬掩模层hm可以包括稠密的氧化硅材料。图6可以对应于图5的操作s10。

参照图7,可以对硬掩模层hm进行蚀刻以形成多个硬掩模图案hm'。此外,使用多个硬掩模图案hm',可以蚀刻半导体基底610以形成从半导体基底610突出的多个鳍700。在此操作中,可以在此操作期间同时形成多个鳍中的用于垂直双极晶体管的第一子组和多个鳍中的用于vtfet的第二子组。图7可以对应于图5的操作s20。

在一些示例实施例中,可以通过使用外延生长在半导体基底610上选择性地生长多个鳍700而非蚀刻半导体基底610。

参照图8,可以在其上已经形成有多个鳍700的半导体基底610上共形地形成第一绝缘层680,其中,所述多个鳍700具有位于其上的多个硬掩模图案hm'中的相应的硬掩模图案hm'。第一绝缘层680可以包括氮化硅。

然后,如图9中所示,可以回蚀第一绝缘层680以留下多个绝缘侧壁680'。可以通过使用反应离子蚀刻来回蚀第一绝缘层680。图8和图9可以对应于图5的操作s30。

参照图10,可以使用多个硬掩模图案hm'和多个绝缘侧壁680'作为掩模来蚀刻半导体基底610以形成多个凹进r。然而,本发明构思的示例实施例不限于此。根据本发明构思的一些示例实施例,可以跳过此操作,因此可以不形成多个凹进。图10对应于图5的操作s40。可以通过使用反应离子蚀刻将半导体基底610去除到一定深度来形成多个凹进r,其中,与多个硬掩模图案hm'和多个绝缘侧壁680'相比,反应离子蚀刻相对于半导体基底610具有高选择性。图10可以对应于图5的操作s40。

参照图11a,可以通过分别在多个凹进r中的相应的凹进r中外延生长多个n+掺杂的底部源极/漏极(s/d)区752和多个p+掺杂的底部s/d区742来形成用于vtfet的多个底部s/d区742和752。如图11b中所示,可以在此操作期间同时形成用于垂直双极晶体管的多个子发射极区642和644、多个子基极区652和654以及多个子集电极区662和664。图11a和图11b可以对应于图5的操作s50。

根据本发明构思的一些示例实施例,可以不形成多个凹进r。在这种情况下,可以通过使用离子注入工艺形成多个n+掺杂的底部s/d区752和多个p+掺杂的底部s/d区742。多个n+掺杂的底部s/d区752中的每个可以用作nmosvtfet的源极和漏极中的一个,多个p+掺杂的底部s/d区742可以用作pmosvtfet的源极和漏极中的一个。

也可以使用离子注入工艺同时形成用于垂直双极晶体管的多个子发射极区642和644、多个子基极区652和654以及多个子集电极区662和664。在pnp垂直双极晶体管的示例中,多个子发射极区642和644可以是p+掺杂区,多个子基极区652和654可以是n+掺杂区,多个子集电极区662和664可以是p+掺杂区。

参照图12a和图12b,可以在半导体基底中设置多个隔离区770、670a和670b以在其间限定多个有源区。在一些示例实施例中,可以使用浅沟槽隔离(sti)技术形成多个隔离区770、670a和670b。图12a和图12b可以对应于图5的操作s60。

参照图13a和图13b,可以在半导体基底610上形成第二绝缘层690。第二绝缘层690可以包括氮化硅。第二绝缘层690可以对多个硬掩模图案hm'具有高蚀刻选择性。第二绝缘层690可以相对于多个绝缘侧壁680'具有相同或相似的蚀刻特性。第二绝缘层690可以包括氮化硅。多个绝缘侧壁680'和第二绝缘层690可以包括氮化硅。图13a和图13b可以对应于图5的操作s70。

然后,如图14a和图14b中所示,可以回蚀第二绝缘层690以留下剩余结构690'以用作多个底部间隔物,并且暴露多个鳍700的侧表面。可以使用反应离子蚀刻工艺蚀刻第二绝缘层690。图14a和图14b可以对应于图5的操作s80。

参照图15a和图15b,可以分别在多个鳍700的侧表面周围形成多个金属栅极结构780。多个金属栅极结构780中的每个可以包括栅极绝缘层780a、功函数金属层780b和覆盖金属层780c。图15a和图15b可以对应于图5的操作s90。

为了描述简洁,未详细描述用于形成多个金属栅极结构780的工艺。

栅极绝缘层780a可以包括高k材料。

可以在栅极绝缘层780a上形成功函数金属层780b。用于vtfet的功函数金属层780b的功函数可以基于材料特性以及功函数金属层780b的厚度来确定。在一些示例实施例中,功函数金属层可以被实现为根据位置而具有不同的厚度。功函数金属层可以包括tin。

随后可以在功函数金属层780b上形成覆盖金属层780c。覆盖金属层780c可以包括tic、tialc和tial中的至少一种。

参照图16a和图16b,可以形成氧化物层790,使得多个硬掩模图案hm'的顶表面被氧化物层790覆盖。为了简单起见,将氧化物层790示出为具有平顶表面。然而,本发明构思的示例实施例不限于此。根据本发明构思的一些示例实施例,氧化物层790的顶表面可以不是平坦的,并且遵循下面的半导体基底610上的半导体结构的拓扑。

然后,如图17a和图17b中所示,可以回蚀氧化物层790,直到完全去除多个硬掩模图案hm'。通过选择多个硬掩模图案hm'和氧化物层790彼此不具有蚀刻选择性,可以在回蚀氧化物层790的同时去除多个硬掩模图案hm'。因此,可以暴露多个鳍700中的每个的顶表面。图16a、图16b、图17a和图17b可以对应于图5的操作s100。

参照图18a,可以通过分别在多个鳍中的相应的鳍上外延生长多个n+掺杂的顶部源极/漏极(s/d)区852和多个p+掺杂的顶部s/d区842来形成用于vtfet的多个顶部s/d区842和852。多个n+掺杂的顶部s/d区852中的每个可以用作nmosvtfet的源极和漏极中的一个,多个p+掺杂的顶部s/d区842可以用作pmosvtfet的源极和漏极中的一个。然而,本发明构思的示例实施例不限于此。根据本发明构思的一些示例实施例,可以通过使用离子注入工艺来形成用于vtfet的多个顶部源极/漏极(s/d)区842和852。

如图18b中所示,可以在此操作期间同时形成用于例如pnp垂直双极晶体管的第一p+掺杂区640b、n+掺杂区650b和第二p+掺杂区660b。

图18a和图18b可以对应于图5的操作s110。

如上所述参照图5至图10、图11a、图11b、......、图18a和图18b,根据本发明构思的一些示例实施例,可以使用用于形成vtfet的工艺(或可选择地,操作)来实现垂直双极晶体管。因此,用于形成vtfet的工艺可用于形成垂直双极晶体管而无需额外的工艺。

根据一些示例实施例,垂直双极晶体管可以在设置在半导体基底中的阱区中具有(多个)e-b结,从而获得具有相对稳定的电特性的(多个)e-b结。

应理解的是,在这里描述的示例实施例应仅以描述性的含义来理解而不是出于限制的目的。尽管已经具体示出并描述了一些示例实施例,但是本领域普通技术人员将理解的是,在不脱离权利要求的精神和范围的情况下,可以在其中做出形式和细节上的变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1