摄像头模组及其装配方法

文档序号:9454580阅读:1546来源:国知局
摄像头模组及其装配方法
【技术领域】
[0001]本发明涉及半导体制造领域,尤其涉及一种摄像头模组的装配方法。
【背景技术】
[0002]目前,主流的图像传感器(CIS:CM0S Image Sensor)的封装方法包括:芯片级封装(Chip Scale Package,CSP)、板上集成封装(Chip On Board, COB)及倒装芯片封装(Flip
Chip,FC)o
[0003]CIS CSP是一种目前普遍应用在中低端、低像素(2M像素或以下)图像传感器的封装技术,可采用Die level(芯片级)或Wafer level (晶圆级)封装技术。该封装技术通常使用晶圆级玻璃与晶圆bonding并在晶圆的图像传感器芯片之间使用围堰隔开,然后在研磨后的晶圆的焊盘区域通过制作焊盘表面或焊盘面内孔侧面环金属连接的硅穿孔技术(TSV:Through Silicon Via)或切割后焊盘侧面的T型金属接触芯片尺寸封装技术,并在晶圆背面延伸线路后制作焊球栅阵列(BGA:Ball Grid Array),然后切割后形成单个密封空腔的图像传感器单元。后端通过SMT的方法形成模块组装结构。但是,CSP封装具有如下明显的问题影响产品性能:厚的支撑玻璃对光的吸收、折射、反射及散射对图像传感器尤其是小像素尺寸产品的性能具有很大的影响;2可靠性问题:封装结构中的构件之间的热膨胀系数差异及空腔内密封气体在后面的SMT工艺或产品使用环境的变化中出现可靠性问题;3投资规模大、环境污染控制要求大,生产周期较长,单位芯片成本较高尤其对于高像素大尺寸图像传感器产品。
CIS COB封装是一种目前普遍应用在高端、高像素产品(5M像素或以上)图像传感器的Die Level (芯片级)封装技术。该封装技术把经研磨切割后的芯片背面bonding在PCB板的焊盘上使用键合金属导线,装上具有IR玻璃片的支架和镜头,形成组装模块结构。但是,COB封装如下明显的问题:1、微尘控制非常困难,需要超高的洁净室等级,制造维持成本高;2、产品设计定制化、周期长、灵活度不够;3不容易规模化生产;
CIS FC封装最近兴起的高端、高像素(5M像素或以上)图像传感器的Die Level (芯片级)封装技术。该封装技术把在焊盘做好金素凸块经研磨切割的芯片焊盘直接与PCB的焊盘通过热超声的作用一次性所有接触凸块与焊盘进行连接,形成封装结构。后端通过PCB外侧的焊盘或锡球采用SMT的方法形成模块组装结构。但是,FC封装如下明显的问题:I该封装对PCB基板要求很高,与Si具有相近的热膨胀系数,成本很高;2制造可靠性难度很大,热超声所有凸块与焊盘连接的一致性要求非常高,凸块与焊盘硬连接,延展性不好;3微尘控制难度大、工艺环境要求高,成本很高;
此外,以往的CIS模组的装配方法是:
步骤1,将图像传感器芯片焊接到电路板上,形成第一个部件;
步骤2,将镜头模块与套筒模块组装,形成第二个部件;
步骤3,将第一个部件和第二个部件组装,从而形成一个完整的摄像头模组。
[0004]此种摄像头模组的装配方法有如下缺点:对于摄像头模组而言,需要使用高精密的安装设备才能进行上述步骤3的精确安装,否则将影响到摄像头模组的成像效果,进而装配而成的摄像头模组的成品合格率不高;尤其是对于高像素的摄像头模组,使用普通的安装设备很难较好地完成上述步骤3的精确安装,使得高像素的摄像头模组的成像效果受到较大影响,所成图像的成像质量较差,尤其是图像四周的成像质量明显不好。
[0005]并且,在采用金属导线键合的图像传感器芯片封装工艺中,通常先将图像传感器芯片固晶(例如粘附)到转接板(柔性电路板)上,然后进行键合焊线,将金属导线的第一端连接于图像传感器芯片的焊盘上,第二端连接于转接板上,由此实现图像传感器芯片和转接板的电气连接,然后再将封装后的图像传感器芯片通过转接板上的引线或锡球连接到电路板上。
[0006]现有导线键合方法容易造成封装后的结构灵活性较差,摄像头模组的后续装配精度要求高,镜头和图像传感器芯片的相对位置难以控制影响摄像头模组的性能;而且由于现有方法的流程较长,封装效率较低,导致图像传感器芯片较长时间暴露于空气中,需要多次的检测和清洗,降低良品率,增加摄像头模组的成本。尤其是,对于一些金属导线第二端采用其他工艺进行连接的图像传感器芯片,需要一种新的键合方法和装置,以使导线的第一端连接于图像传感器芯片的焊盘,第二端悬空于图像传感器芯片之外。
[0007]综上所述,亟需一种实现高像素、大芯片尺寸图像传感器的低成本、高性能、高可靠性、超薄的封装结构技术。

【发明内容】

[0008]基于以上考虑,提出一种摄像头模组的装配方法,包括以下步骤:
提供具有悬空金属导线的图像传感器芯片,所述金属导线的第一端键合于所述图像传感器芯片的焊盘,第二端悬空于所述图像传感器芯片;
将所述图像传感器芯片与镜头模块装配形成标准件,然后通过所述金属导线的第二端将所述标准件与电路板装配形成摄像头模组。
[0009]优选的,所述金属导线形成弹性结构,且所述金属导线的第二端低于所述图像传感器芯片下表面5微米至300微米。
[0010]优选的,于所述标准件的电性测试过程中,所述金属导线的弹性结构发生弹性形变以提供接触压力,提高金属导线与测试装置的连接性能;于所述标准件与电路板的装配过程中,所述金属导线的弹性结构发生弹性形变以提供接触压力,提高金属导线与电路板的连接性能。
[0011]优选的,将所述标准件与电路板装配的步骤包括:通过压合接触方式、快速焊接方式、导电胶粘合方式或非导电胶粘合方式将所述金属导线的第二端与所述电路板电学连接。
[0012]本发明还提供一种摄像头模组,包括:
图像传感器芯片,所述图像传感器芯片电学连接有悬空的金属导线,所述金属导线的第一端键合于所述图像传感器芯片的焊盘,第二端悬空于所述图像传感器芯片;
镜头模块,所述镜头模块与所述图像传感器芯片装配形成标准件;
电路板,所述电路板与所述标准件通过所述金属导线的第二端连接。
[0013]优选的,所述金属导线形成弹性结构且所述金属导线的第二端低于所述图像传感器芯片下表面5微米至300微米。
[0014]优选的,所述金属导线的第二端与所述电路板通过压合接触方式、快速焊接方式、导电胶粘合方式或非导电胶粘合方式的方式连接。
[0015]本发明的摄像头模组的装配方法使用普通的安装设备就能精确地对摄像头模组进行组装,克服了现有技术中摄像头模组的装配方法需要采用高精度的安装设备的不足,本发明的装配方法简单易行,易于调整图像传感器芯片至镜头的焦平面,易于矫正镜头和图像传感器芯片的倾斜度,以保证摄像头模组装配完成后的光学性能,本发明的装配步骤使得所述摄像头模组具有高质量的成像效果,尤其是对于高像素的摄像头模组,能够使其图像四周的成像质量显著提高。
[0016]本发明通过将图像传感器的芯片切割后通过键合金属导线形成悬空的金属导线,并且进一步将镜头模组组装至图像传感器芯片上,再通过金属导线的悬空端与电路板进行电学连接,并且金属导线为弹性结构,能发生弹性形变,能更好的提高电学性能,比传统CSP的焊盘、BGA及焊锡三者SMT连接更具有工艺优势
本发明使用金线直接连接芯片与PCB基板焊盘,金线延展性能好,环境适应性强,可靠性佳。本发明的镜筒框架可与图像传感器芯片形成开放结构,有效的减少光线在摄像头模组中的杂散光,提供模组性能。。
[0017]本发明的各个方面将通过下文中的具体实施例的说明而更加清晰。
【附图说明】
[0018]通过参照附图阅读以下所作的对非限制性实施例的详细描述,本发明的其它特征、目的和优点将会变得更明显。
[0019]图1为依据本发明实施例的具有悬空金属导线的图像传感器芯片的示意图;
图2为依据本发明实施例的标准件的示意图;
图3为依据本发明实施例的摄像头模组的装配初始状态示意图;
图4为依据本发明实施例的摄像头模组的装配完成状态示意图;
图5为依据本发明的摄像头模组的装配方法的流程图。
[0020]在图中,贯穿不同的示图,相同或类似的附图标记表示相同或相似的装置(模块)或步骤。
【具体实施方式】
[0021]在以下优选的实施例的具体描述中,将参考构成本发明一部分的所附的附图。所附的附图通过示例的方式示出了能够实现本发明的特定的实施例。示例的实施例并不旨在穷尽根据本发明的所有实施例。可以理解,在不偏离本发明的范围的前提下,可以利用其他实施例,也可以进行结构性或者逻辑性的修改。因此,以下的具体描述并非限制性的,且本发明的范围由所附的权利要求所限定。
[0022]为了更清晰地阐述本发明的封装方法,在下面的实施例中,采用玻璃作为基板。本领域技术人员能够理解的是,基板也可以由其它透明的材质构成。
[0023]图1为依据本发明实施例的具有悬空金属导线的图像传感器芯片的示意图;图2为依据本发明实施例的标准件的示意图;图3为依据本发明实施例的摄像头模组的装配初始状态示意图;图4为依据本发明实施例的摄像头模组的装配完成状态示意图;图5为依据本发明实施例的摄像头模组的装配方法的流程图。
[0024]如图5所示,并请同时参考图1至图4该封装方法包括以下步骤:
首先,执行步骤Sll:提供具有悬空金属导线120的图像传感器芯片110,所述金属导线120的第一端121键合于所述图像传感器芯片的焊盘111,第二端122悬空于所述图像传感器芯片110。
[0025]在该步骤中,图像传感器芯片110的正面有图像感应区112,以及环绕图像感应区112的焊盘区域113,焊盘区域113包含有若干焊盘111。本步骤中金属导
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1