混合动力车辆的电动机控制器的制作方法

文档序号:18319122发布日期:2019-08-03 10:17阅读:255来源:国知局
混合动力车辆的电动机控制器的制作方法

本发明涉及搭载内燃机和电动机作为动力源的混合动力车辆的电动机控制器。



背景技术:

按照常规,在搭载内燃机和电动机作为行驶动力源的混合动力车辆中,通过在两种或更多种电动机控制模式(例如包括正弦脉宽调制(PWM)控制模式、过调制PWM控制模式和矩形波控制模式)之间切换,来进行驱动控制。

例如,JP 2007-306658A(下面称为“专利文献1”)公开一种电动机驱动系统,其中从电池供给的DC电压由升压变换器升压并被输入逆变器,所述逆变器把DC电压变换成AC电压并把AC电压施加于电动机,以便驱动电动机。在这种电动机驱动系统中,对于电动机的相同工作点,通过降低由升压变换器升压的升压电压,可把电动机控制模式从正弦PWM控制模式切换成矩形波控制模式。结果,能够改善系统效率,从而进一步提升车辆的燃料效率。

[引文列表]

[专利文献]

[PTL 1]JP 2007-306658 A



技术实现要素:

当按矩形波控制模式驱动电动机时,与当电动机按正弦PWM控制模式运转时相比,更多的高阶谐波分量被叠加于流入电动机的电流。于是,更易发生由谐波分量引起的电流脉动(current ripple),有时在车辆的行驶期间引起更大的高频噪声。

于是,成问题的是当如在专利文献1中所述,通过降低由升压变换器升压的升压电压来按矩形波控制模式驱动电动机,并且例如驾驶员通过操纵开关等选择电动机行驶模式以求静音行驶时,不能避免矩形波控制模式中的高频噪声的发生。

本发明的目的是在混合动力车辆中,当在向变换器施加升压限制的情况下选择电动机行驶模式时,抑制电动机的矩形波控制中噪声的发生。

本发明提供一种搭载内燃机和电动机作为动力源的混合动力车辆的电动机控制器,所述电动机控制器包括:能够使从电源设备供给的电压升压的变换器;把变换器的输出电压变换成AC电压并把所述AC电压施加于电动机的逆变器;和控制逆变器以通过在多种控制模式之间切换而驱动电动机的控制单元;其中当在向变换器的输出电压施加升压限制的情况下选择仅通过电动机动力驱动车辆的行驶模式时,并且当电动机处于矩形波控制模式或过调制PWM控制模式时,控制单元把变换器的输出电压升高到高于升压限制值,并控制逆变器,以致控制模式被切换,以按正弦PWM控制模式驱动电动机。

按照这种结构,当在变换器可施加进一步升压的情况下选择电动机行驶模式时,变换器的输出电压(即,逆变器的输入电压)被升高到高于升压限制值,电动机的控制模式从矩形波控制模式或过调制PWM控制模式被切换到正弦PWM控制模式。这样,由于能够抑制电动机电流中的脉动的发生,因此能够相应地抑制高频噪声。

在按照本发明的电动机控制器中,优选当车速低于预定阈值时,把变换器的输出电压升高到高于升压限制值。按照这种结构,在其中由于轮胎噪声较小,因此车辆内外变得更安静的低速行驶期间,能够抑制高频噪声。

此外,在按照本发明的电动机控制器中,控制单元可设定变换器的输出电压,以致按在正弦PWM控制模式下可施加的下限电压驱动电动机。按照这种结构,能够使由变换器升压损失引起的燃料效率的恶化降至最小。

此外,在按照本发明的电动机控制器中,控制单元可改变在正弦PWM控制模式下使用的载频,以致当电动机的转速较低时,载频变低;而当载频属于预定的高载频区域时,变换器的输出电压被升高到高于升压限制值;然后按正弦PWM控制模式进行控制。

如果当归因于变换器使用的低载频而切换周期较长时变换器输入电压被增大,那么与高载频时相比,切换控制周期内的电流变化变大,导致更大的电流脉动和增大的噪声。于是,按照这种结构,通过借助在载频属于相对高频区域时设定升压电压高于升压限制值而切换到正弦PWM控制,能够限制噪声增大。

按照本发明,在混合动力车辆中,当在变换器处于升压限制状态的情况下选择电动机行驶模式时,能够抑制电动机的矩形波控制中噪声的发生。

附图说明

图1是表示包括电动机控制器的混合动力车辆的示意结构的示图。

图2是表示当图1中所示的控制单元控制逆变器时的控制模式的表格。

图3是表示图1的控制单元如何设定控制模式的示图。

图4是表示由变换器升压的升压电压和图3中所示的控制模式之间的关系的示图。

图5是用于确定对于负荷的升压电压的映射图。

图6是表示图1中所示的控制单元的结构的功能方框图。

图7是表示控制单元进行的升压限制处理的流程图。

图8是表示控制单元进行的升压限制解除处理的一个例子的流程图。

图9是表示控制单元进行的升压限制解除处理的又一个例子的流程图。

图10是表示控制单元进行的升压限制解除处理的另一个例子的流程图。

具体实施方式

下面参考附图,详细说明按照本发明的实施例。在所述说明中,具体的形状、材料、数值、方向等仅仅是作为例子提供的,并可按照用途、目的、规范等被适当更改。此外,当下面包括两个或更多的实施例或变形例时,可以预期其特征的任何适当组合。

此外,尽管下面举例说明搭载内燃机和单台电动机的混合动力车辆,不过,本发明并不限于该例子。本发明也适用于搭载两台或更多台电动机(或电动发电机)的混合动力车辆。在这种情况下,至少一台电动机主要充当驱动电动机,至少一台其它的电动机主要充当发电机。

图1是表示包括按照本发明的实施例的电动机控制器10的混合动力车辆100的整个结构的示图。如图1中所示,混合动力车辆100包括发动机E,DC电源B,电压传感器11、17,系统继电器SR1、SR2,平滑电容器C1、C2,电流传感器15,电动机M和电动机控制器10。电动机控制器10包括变换器20、逆变器30和控制单元40。

发动机E是输出车辆的行驶动力的内燃机。发动机E的输出轴通过传动装置52和车轴54与驱动轮56耦接。从而,通过把发动机E的输出传送给驱动轮56,混合动力汽车100能够行驶。

电动机M是用于输出车辆的行驶动力的驱动电动机。电动机M可被配置成还充当由发动机E驱动的发电机。此外,电动机M可被配置成充当发动机E的电动机,以便能够启动发动机。此外,可以设置两对或更多对的电动机M和逆变器30,并与公共变换器20并联连接。

DC电源B是包含二次电池的电源设备,所述二次电池包括氢化镍电池或锂离子电池等。作为电源设备,除二次电池外,可以使用诸如电容器之类的储能设备,或者可以和二次电池一起使用燃料电池。从DC电源B输出的DC电压Vb由电压传感器11感测,感测值被发送给控制单元40。

系统继电器SR1连接在DC电源B的正极端子和电力线12之间。系统继电器SR2连接在DC电源B的负极端子和接地线13之间。系统继电器SR1、SR2由来自控制单元40的信号SE接通和切断。

变换器20包括电抗器L1,电力半导体开关器件Q1、Q2,和二极管D1、D2。电力半导体开关器件Q1、Q2串联连接在电力线14和接地线13之间。

按照来自控制单元40的开关控制信号S1、S2控制电力半导体开关器件Q1、Q2接通或断开。此外,二极管D1、D2分别反并联地连接到电力半导体开关器件Q1、Q2。

电抗器L1连接在电力半导体开关器件Q1、Q2的连接节点和电力线12之间。此外,平滑电容器C2连接在电力线14和接地线13之间。

逆变器30包括并联连接在电力线14和接地线13之间的U相臂32、V相臂34和W相臂36。各个相臂包括串联连接在电力线14和接地线13之间的开关器件。例如,U相臂32可包括开关器件Q3、Q4;V相臂34可包括开关器件Q5、Q6;W相臂36可包括开关器件Q7、Q8。此外,反并联二极管D3-D8分别连接到开关器件Q3-Q8。按照来自控制单元40的控制信号S3控制开关器件Q3-Q8接通或断开。

各个相臂的中间点连接到电动机M的各个相位线圈的一端。电动机M是三相永磁同步电动机。3个相位(U、V和W)线圈在一端连接到公共的中性点。此外,各个相位线圈的另一端连接到相应相臂32-36的开关器件的中间点。

在升压操作中,变换器20能够升压或者不升压地把从DC电源B供给的DC电压传送给逆变器30。下面,来自变换器20的输出电压也被称为“逆变器输入电压”或“系统电压VH”。变换器20升压DC电压,以致响应来自控制单元40的开关控制信号S1、S2,上臂开关器件Q1和下臂开关器件Q2被交替接通;升压比与开关器件Q1、Q2的接通时期的比率一致。

在降压(bucking)操作中,变换器20对经平滑电容器C2从逆变器30供给的DC电压降压,并对DC电源B充电。更具体地,响应来自控制单元40的开关控制信号S1、S2,交替设置其中只有开关器件Q1被接通的时期和其中开关器件Q1、Q2都被断开的时期;降压比与开关器件Q1的所述接通时期的占空比一致。

平滑电容器C2平滑来自变换器20的DC电压,并把平滑后的DC电压提供给逆变器30。电压传感器17感测在平滑电容器C2两端的电压;即,系统电压VH,并把感测值输出给控制单元40。

在车辆的动力行驶时,如果电动机M的转矩命令值为正(Tqcom>0),那么当从平滑电容器C2供给DC电压时,通过利用与来自控制单元40的开关控制信号S3-S8一致的开关器件Q3-Q8的开关操作,把所述DC电压变换成AC电压,逆变器30驱动电动机M输出正转矩。如果电动机的转矩命令值为0(Tqcom=0),那么通过利用响应开关控制信号S3-S8的开关操作,把所述DC电压变换成AC电压,逆变器30驱动电动机M输出0转矩。这样,驱动电动机M以输出如用转矩命令值Tqcom命令的0转矩或正转矩。

此外,在车辆的再生制动时,电动机M的转矩命令值Tqcom被设定为负值(Tqcom<0)。这种情况下,通过利用响应开关控制信号S3-S8的开关操作,逆变器30把电动机M生成的AC电压变换成DC电压,并经平滑电容器C2把变换后的DC电压(系统电压)提供给变换器20。应注意,再生制动不仅包括在不操作足刹的情况下,通过在行驶期间释放油门踏板,再生发电之际的车辆的减速(或者停止加速),而且包括驾驶员通过操作足刹的制动。

电流传感器15感测流过电动机M的电动机电流,并把感测的电动机电流输出给控制单元40。应注意由于三相电流iu、iv、iw的瞬时值之和为0,因此只需要布置电流传感器15以感测两相电动机电流(例如,V相电流iv和W相电流iw),如图1中所示。

旋转角传感器(旋转变压器)16感测电动机M的转子旋转角θ,并把感测的旋转角θ发送给控制单元40。根据旋转角θ,控制单元40能够计算电动机M的转速N和混合动力车辆100的车速V。

控制单元40可由包括中央处理器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)的微计算机形成。ROM预先保存下面说明的变换器20和逆变器30的控制程序和为控制所需的数据。CPU用于读出并执行保存在ROM中的程序。RAM用于临时保存从ROM读出的控制程序和为控制所需的数据。

控制单元40根据从外部电子控制单元输入的转矩命令值Tqcom,电压传感器11感测的电池电压Vb,电压传感器17感测的系统电压VH,来自电流传感器15的电动机电流iv、iw,和来自旋转角传感器16的旋转角θ,控制变换器20和逆变器30的操作。换句话说,控制单元40生成开关控制信号S1-S8,并输出给变换器20和逆变器30,以如上所述控制变换器20和逆变器30。

当变换器20在升压操作中时,控制单元40生成开关控制信号S1、S2,以致作为由电压传感器17感测的变换器输出电压的系统电压VH等于反馈控制的系统电压命令值VH#。

此外,当从外部ECU收到指示混合动力或电动车辆已进入再生制动模式的信号REG时,控制单元40生成开关控制信号S3-S8并输出给逆变器30,以便把电动机M生成的AC电压变换成DC电压。随后,逆变器30把电动机M生成的AC电压变换成DC电压,并把所述DC电压提供给变换器20。当从外部ECU收到指示车辆已进入再生制动模式的信号REG时,控制单元40还生成开关控制信号S1、S2并输出给变换器20,以对从逆变器30供给的DC电压降压。从而,电动机M生成的AC电压被变换成DC电压、被降压并提供给DC电源B。

控制单元40还生成信号SE并输出给系统继电器SR1、SR2,以接通和断开系统继电器SR1、SR2。

控制单元40与节能(eco)开关62和EV开关64连接。节能开关62是当驾驶员希望优先考虑燃料效率而不是车辆的驾驶性能时被接通的输入开关。EV开关64是当在比预定速度低的速度下驾驶员接通EV开关64时,用于选择其中车辆只靠来自电动机M的动力行驶而发动机E被停止的行驶模式的输入开关。开关62、4都被布置在驾驶员的座位附近,以致驾驶员或乘客能够容易地操作所述开关。应注意,这些开关62、64可由各种开关形成,比如按钮式开关、旋转式开关、控制杆式开关、触摸面板式开关和语音识别式开关。

下面参考图2,说明控制单元40控制的逆变器30的电力变换。图2是表示控制单元40控制逆变器30的控制模式的表格。

在按照本实施例的电动机控制器10中,通过在3种控制模式之间切换,进行在逆变器30处的电力变换,所述3种控制模式是正弦PWM控制模式、过调制PWM控制模式和矩形波控制模式。

PWM控制中常用正弦PWM控制模式。按照正弦电压命令值和载波(代表性地,三角波)之间的电压差,控制在各个相臂的开关器件接通或断开。结果,占空比被控制,以致对于与上臂器件的接通时期对应的高电平时期和与下臂器件的接通时期对应的低电平时期的集合,在预定时期内,基波分量会变成正弦波。这样,如常规已知的那样,在一般的正弦PWM控制模式下,表示基波分量的振幅与系统电压VH;即,逆变器的输入电压之比的调制度K可被增大到0.61。此外,在2相调制方法或3阶谐波叠加中的正弦PWM控制模式下,调制度K可被增大到约0.7。

在矩形波控制模式下,在上述预定时期内,向AC电动机施加其中高电平时期和低电平时期之比为1:1的矩形波的一个脉冲。这样,调制度K可被增大到0.78。在矩形波控制模式下,调制度K恒定在0.78。

在过调制PWM控制模式下,在载波被扭曲以降低载波的振幅时,进行和上述正弦PWM控制模式中使用的PWM控制相同的PWM控制。从而,基波分量的振幅可被增大,导致调制度K增大到0.61-0.78的范围。

如上所述,通过把电动机M的线电压振幅除以系统电压VH(或系统电压命令值VH*),可获得调制度K。通过控制变换器20,可以改变系统电压VH。于是,通过调整开关控制信号S1、S2以改变升压后的系统电压VH,控制单元40能够增大或减小调制度K,从而设定电动机控制模式。

具体地,如上所述,对于最多到0.61的调制度K(K≤0.61),可选择正弦PWM控制模式;对于大于0.61到小于0.78的调制度K(0.61<K<0.78),可选择过调制PWM控制模式;对于等于或大于0.78的调制度K(K≥0.78),可选择矩形波控制模式。

图3表示图1的控制单元40如何设定控制模式。如图3中所示,在低转速范围A1中,使用正弦PWM控制模式;在中转速范围A2中,使用过调制PWM控制模式;而在高转速范围A3中,使用矩形波控制模式。与各个系统电压VH对应的表示转速和转矩之间的这种关系的“图”被保存在控制单元40的ROM中。从而,通过参照与此时的系统电压VH对应的图,在如上所述的调制度的可能范围中,确定使用图2中的控制模式中的哪种控制模式。

图4表示由变换器20升压的升压电压和图3中的控制模式之间的关系。

在其中允许由变换器20升压的升压电压达到考虑到开关器件Q1-Q8的耐压性能和其它因素而设定的系统电压最大值VHmax的正常模式下,参照图4中用实线表示的图M1。正常模式下的系统电压最大值VHmax可被设定在例如600V。

相反,在其中由变换器20升压的升压电压VH被限制成等于或小于升压限制值VHlim(它小于系统电压最大值VHmax)的升压限制模式下,参照图M2。升压限制值VHlim可被设定成例如400V。

如图4中所示,即使当电动机M的工作点的转速和转矩属于相同区域时,取决于来自变换器20的输出电压VH是否受到限制,待应用的控制模式也可能不同。例如,对于在10-15模式燃料效率测量中常用的区域Y,在正常模式下,在区域A1中应用正弦PWM控制模式,而在升压限制模式下,应用矩形波控制模式,因为工作点属于区域B3。

图5表示用于确定对于负荷的升压电压的图。水平轴所示的负荷与在一定转数下电动机M的转矩和转速之积成比例。在其中选择图M1的正常模式下,如图5中用实线所示,由变换器20升压的升压电压VH允许达到系统电压最大值VHmax。

相反,在其中选择图M2的升压限制模式(也称为节能模式)下,如图5中用点划线所示,升压电压VH被限制成比在正常模式下小。具体地,尽管启动升压的负荷在正常模式下为P1,但在升压限制模式下,启动升压的负荷为P2(>P1),结果产生更大的升压启动阈值。此外,升压限制值VHlim被限制成小于系统电压最大值VHmax。换句话说,当变换器20处于升压限制状态下时,不与在正常模式下一般多地进行借助升压器20的升压。

当在负荷大于P1的区域中,模式从升压限制模式被切换成正常模式时,升压电压VH被设定成比在前一模式下高,在负荷大于P3的区域中,升压电压VH被设定成高于升压限制值VHlim。应注意尽管在图5中P3<P2,不过,该关系可以相反,即,P3>P2。

从而,通过对变换器20应用升压限制,可力图通过限制在变换器20处的开关损失和更多地利用矩形波控制模式来限制在逆变器30处的开关损失,而提高车辆的燃料效率。

图6是按照本实施例的电动机控制器10的控制单元40的功能方框图。控制单元40包括控制模式设定单元41、PM控制块42、矩形波控制块43、燃料效率优先命令接收单元44、升压限制设定单元45、EV行驶命令接收单元46、车辆状态确定单元47和调制度比较设定单元48。组件41-48中的每个都可用由控制单元40执行的软件实现。不过,不些组件不局限于软件。一些组件可以用硬件实现。应注意,图6中在虚线框中所示的载频设定单元49在下面详细说明。

如上所述,控制模式设定单元41用于按照调制度K,从正弦PWM控制模式、过调制PWM控制模式和矩形波控制模式中,选择并设定电动机M的控制模式。

PWM控制块42用于控制逆变器30的操作,以按正弦PWM控制模式或过调制PWM控制模式驱动电动机M。具体地,通过反馈控制电动机电流,PWM控制块42生成分别对于逆变器30的开关器件Q3-Q8的开关控制信号S3-S8,以致按照从外部输入的转矩命令Tqcom,在电动机M输出转矩。应注意,在过调制PWM控制模式下,用于生成开关控制信号S3-S8的载波变化自在正弦PWM控制模式下使用的一般载波。

矩形波控制块43用于控制逆变器30的操作,以按矩形波控制模式驱动电动机M。具体地,通过反馈控制基于电动机电流预期的转矩,矩形波控制块43生成分别对于逆变器30的开关器件Q3-Q8的开关控制信号S3-S8,以致按照从外部输入的转矩命令Tqcom,在电动机M输出转矩。

燃料效率优先命令接收单元44用于检测节能开关62(参见图1)已被接通。升压限制设定单元45用于根据燃料效率优先命令接收单元44的检测结果,限制由变换器20升压的升压电压VH。具体地,燃料效率优先命令接收单元44和升压限制设定单元45通过执行图7中所示的处理,把变换器20的升压电压VH的上限值限制成比升压电压最大值VHmax小的升压限制值VHlim。

如图7中所示,首先在步骤S10,确定节能开关62是否被接通。这是作为燃料效率优先命令接收单元44的功能确定的。所述确定是按照当节能开关62被接通时输入到控制单元40的信号S9的有无进行的。如果确定节能开关62未被接通(S10中“否”),那么选择图M1(参见图4)来确定电动机M的控制模式,正常模式(参见图5)被设定为变换器20的升压电压图。即,变换器20处于升压限制解除状态。

相反,如果在上述步骤S10,确定节能开关62被接通(S10中“是”),那么选择图M2(参见图4)来确定电动机M的控制模式,升压限制模式(参见图5)被设定为变换器20的升压电压图。即,变换器20处于升压限制状态。借助例如发光或者显示,向驾驶员告知EV开关64接通。

EV行驶命令接收单元46用于检测EV开关64(参见图1)已被接通。这种检测是按照当EV开关64被接通时输入到控制单元40的信号S10进行的。借助例如发光或显示,向驾驶员告知EV开关64接通。响应收到上述信号S10,控制单元40把模式切换成其中如上所述,只借助电动机M的动力进行行驶的电动机行驶模式,只要电动机M的工作点属于其中转矩和转速低于预定值的区域。

车辆状态确定单元47用于确定混合动力车辆100的状态。具体地,车辆状态确定单元47根据电动机M的转速N计算车速V,并且根据计算的车速V,车辆状态确定单元47能够确定车辆是否处于低速行驶模式。

调制度比较设定单元48用于根据电动机M的线电压振幅和输入到控制单元40的系统电压命令值VH#,计算调制度K;并比较计算的调制度K和预定阈值Kth。这样,能够确定电动机M的控制模式是矩形波控制模式还是过调制PWM控制模式。

如上所述,在搭载按照本实施例的电动机控制器10的混合动力车辆100中,当优先考虑燃料效率的驾驶员打开节能开关62时,力图通过向变换器20施加升压限制以抑制开关损失,来提高燃料效率。此外,当在例如深夜行驶在住宅区的时候驾驶员关注噪声的情况下,驾驶员打开EV开关64时,模式被切换成发动机E的运转停止的电动机行驶模式。这样,由于不会从混合动力车辆100产生发动机E的运转噪声,因此能够实现安静行驶。

特别地,当在变换器30处于升压限制模式,并且车辆以较低的速度行驶的时候,选择电动机行驶模式时,由于当发动机E被停止时不存在运转声音,并且到达车内的轮胎噪声减小,因此在矩形波控制模式下产生的高频噪声变得显著。

当在如上所述,车辆处于安静状态的情况下,按矩形波控制模式驱动电动机M时,由于与在正弦PWM控制模式下相比,更多的高阶谐波分量被叠加于在电动机中流动的电流上,因此更易产生由谐波分量引起的电流脉动,从而车辆行驶时的高频噪声可能更大。在这种情况下,即使驾驶员通过打开EV开关64而选择电动机行驶模式以获得安静行驶,由于按矩形波控制模式驱动电动机M,也会产生高频噪声。特别地,当在以较低的速度行驶的时候选择电动机行驶模式时,由于当发动机E停止时不存在运转声音,并且到达车内的轮胎噪声被降低,因此在矩形波控制模式下产生的高频噪声变得更显著。

于是,在按照本实施例的电动机控制器10中,进行以下解除升压限制的步骤,以便抑制当在变换器20处于升压限制模式的情况下,选择电动机行驶模式时,由电动机M的矩形波控制引起的噪声的发生。

图8是表示由控制单元40进行的升压限制解除处理的一个例子的流程图。在选择图M2并且变换器20处于升压限制模式下时,每隔预定时间间隔进行图8中所示的处理。

如图8中所示,首先在步骤S20,确定EV开关64是否被接通。这是作为上面说明的EV行驶命令接收单元46的功能确定的。如果确定“否”,那么处理结束,而不改变升压限制模式。即,继续变换器20的升压限制模式。

相反,如果在上述步骤S20中确定“是”,那么在随后的步骤S22中,进一步确定车速V是否小于预定阈值Vth。该确定是作为上面说明的车辆状态确定单元47的功能进行的。上述阈值Vth可被设定为例如30km/h。如果确定“否”,那么处理结束,而不改变升压限制模式。即,在这种情况下,不进行变换器20的升压限制解除。这是因为即使当电动机M处于矩形波控制模式并且产生谐波噪声时,该噪声也被认为不是过于令人讨厌,因为该噪声会被轮胎噪声或其它噪声掩盖。

相反,如果在上述步骤S22中,确定“是”,那么在随后的步骤S24,进一步确定调制度K是否高于例如0.7。该确定是作为调制度比较设定单元48的功能进行的。应注意待与调制度K比较的阈值被设定为0.7,以便可靠地确定电动机M处于矩形波控制模式(K≥0.78)。不过,上述阈值不限于0.7。所述阈值可被适当地设定为在大于0.61到等于或小于0.78之间的值,不过优选带一定余量地设定所述阈值,因为如果阈值被设定为接近0.78的值,那么可能发生在升压限制的应用和解除之间的摆动(hunting)。

如果在上述步骤S24,确定“是”(指示电动机M是按过调制PWM控制模式或矩形波控制模式驱动的),那么在随后的步骤S26中,选择正常模式的图M1,以解除升压限制。从而,由变换器20升压的升压电压VH被设定成比在正常模式下更高。这种情况下,如果当被切换到正常模式时,升压电压VH等于或小于升压限制值VHlim(在图5中的负荷P1和P3之间),那么升压电压VH可被设定成至少高于升压限制值VHlim;例如,设定在VHmax。

如上所述,在按照本实施例的电动机控制器10中,当在变换器20可施加进一步升压的情况下选择电动机行驶模式时,变换器20的升压限制被解除,以便把变换器输出电压VH设定成高于升压限制值VHlim,以致电动机M的控制模式从矩形波控制模式或过调制PWM控制模式被切换到正弦PWM控制模式。这样,由于能够抑制电动机电流中的脉动,因此能够抑制高频噪声。

下面参考图9,说明由控制单元40进行的升压限制解除处理的另一个例子。这里,仅仅主要说明与上面参考图8说明的升压限制解除的不同之处。

在图9中,步骤S20-S26与图8中的升压限制解除中的步骤相同。在最后的步骤S28中,设定系统电压VH;即,变换器输出电压,以致对于正弦PWM控制模式,在下限电压处驱动电动机M。具体地,在维持升压电压VH尽可能低时,设定正弦PWM控制模式的目标调制度Ktag(例如,设定在0.6),并调整对于变换器20的开关控制信号S1、S2,以致实际调制度K变得等于目标调制度Ktag。这样,可使由增大的开关损失引起的燃料效率恶化降至最小,所述增大的开关损失是因回避矩形波控制模式而造成的。

下面参考图6和10,说明由控制单元40进行的升压限制解除处理的另一个例子。这里参考图10,只说明与上面参考图8和9说明的升压限制解除处理的不同之处。

在图6中,控制单元40包括载频设定单元49。载频设定单元49用于按照电动机M的转速,改变在逆变器30的PWM控制中使用的载波频率F。具体地,载频设定单元49可切换载频F,以致当电动机的转速较低时,载频F变得较低。例如,按照电动机速度N的预定范围,两步或更多步地进行载频的切换。

随后,在图10中,步骤S20、S22、S24和S26中所示的处理与图8中所示的升压限制解除相同;并且步骤S20、S22、S24、S26和S28与图9中所示的升压限制解除相同。于是,唯一不同的步骤是步骤S25。在图10中,步骤S28是用虚线表示的,因为步骤S28可被省略。

当在步骤S24中,确定调制度K大于0.7时,在随后的步骤S25中,确定载频F是否属于高载频区域。如图4中的区域Z所示,在施加升压限制情况下的高载频区域指示电动机M的工作点属于高转速区域中的过调制PWM控制区域B2和矩形波控制区域B3。

当逆变器30使用的载频F被设定为较低值时,切换周期变长。因而,当在低载频区域中解除升压限制并且系统电压VH被增大时,切换控制周期中的电流变化变得比在高载频F下大,结果产生更大的电流脉动和增大的噪声。

于是,在图10中的升压限制解除中,当载频F属于较高区域时,进行升压限制解除和到正弦PWM控制的切换。换句话说,如果在步骤S25中,由于载频F属于低载波区域,因而确定“否”时,处理结束,而不解除升压限制。

相反,如果在步骤S25中确定“是”,那么在随后的步骤S26中,选择图M1,并解除升压限制。这样,能够抑制在电动机M的控制模式被切换成正弦PWM控制模式之后的噪声的增大。

应注意,按照本发明的电动机控制器不限于上面说明的实施例和变形例中的结构。在本申请的权利要求书中记载的内容内和等同范围中,各种改进都是可能的。

尽管上面说明的是当在向变换器的输出电压施加升压限制的情况下,选择仅仅利用电动机动力驱动车辆的行驶模式时,只有当车速变得小于预定阈值时,才解除变换器的升压限制,不过,本发明不限于该实施例。例如,通过经由麦克风等收集来自逆变器和电动机的噪声,当收集的噪声中的高频声音高于预定水平时,可解除变换器的升压限制。

[附图标记列表]

10 电动机控制器,11、17 电压传感器,12、14 电力线,13 接地线,15 电流传感器,16 旋转角传感器,20 变换器,30 逆变器,32 U相臂,34 V相臂,36 W相臂,40 控制单元,41 控制模式设定单元,42 PWM控制块,43 矩形波控制块,44 燃料效率优先命令接收单元,45 升压限制设定单元,46 EV行驶命令接收单元,47 车辆状态确定单元,48 调制度比较设定单元,49 载频设定单元,52 传动装置,54 车轴,56 驱动轮,62 节能开关,64 EV开关,100 混合动力车辆,B DC电源,C1、C2 平滑电容器,Dl-D8 二极管,E 发动机,K 调制度,Ktag 目标调制度,第K个调制阈值,L1 电抗器,M 电动机,Ml、M2 图,N 转速,Ql-Q8 开关器件,SR1、SR2 系统继电器,θ 转子旋转角。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1