一种滤波检测管道式液体散热装置的制造方法

文档序号:10861299
一种滤波检测管道式液体散热装置的制造方法
【专利摘要】本实用新型涉及一种滤波检测管道式液体散热装置,采用全新设计结构,设计外管(1)、内管(2)彼此相嵌套式结构,基于内管(2)中所设计液体的流动,产生外管(1)、内管(2)之间间隙环境与外管(1)所设待散热区域之间的温度差,经外管(1)表面的通气孔(9),实现外管(1)所设待散热区域空气与外管(1)内管(2)之间间隙环境空气之间的对流;同时经滤波电路(10)获得来自温度传感器(5)针对外管(1)所设待散热区域的温度检测结果,控制设计位于外管(1)敞开端的风扇(6)工作,针对外管(1)与内管(2)之间间隙环境中空气的流动进行准确引导,有效保证了本实用新型所设计滤波检测管道式液体散热装置在实际应用过程中的散热工作效率。
【专利说明】
一种滤波检测管道式液体散热装置
技术领域
[0001]本实用新型涉及一种滤波检测管道式液体散热装置,属于电子设备散热技术领域。
【背景技术】
[0002]随着电子技术的不断发展,各类电子产品正不断走进我们的日常生活中,大到冰箱彩电等大型家电,小到电脑开关插座面板,无一不是电子科技发展的产物,随着电子设备的不断发展,电子设备工作时所产生的热量逐渐被人们所重视,人们发现过热的环境会影响到电子产品的工作性能,对此各式散热装置应运而生,并且也正进行着不断的改进与创新,诸如专利申请号:201310622519.9,公开了一种散热器,包括一本体及若干波导管,所述本体上设有若干贯穿所述本体下表面及上表面的散热孔,任意三个相邻散热孔的中心呈正三角形,所述散热孔的数量与所述波导管的数量相同,每一波导管均为一金属材质制成的中空管体,这些波导管垂直设于所述本体的上表面且与所述散热孔一一对应,所述波导管之间相互平行,所述波导管的管壁厚度与任意相邻两个波导管之间的距离相等。上述技术方案所设计的散热器既可屏蔽电磁波,又可以有效降低所述电子组件产生的热量。同时当主板上的风扇工作时,风扇工作的风流可对同排波导管之间的风扇散热盲区进行散热。
[0003]还有专利申请号:201410582140.4,公开一种散热器,包括圆筒形散热器本体、设置在散热器本体上的多个散热孔、与散热器本体紧贴设置的挡片以及连接在挡片与散热器本体之间的驱动器;挡片包括挡片本体、与挡片本体连接的挡条以及设置于挡片本体上的第一连接部;散热器本体设置有与第一连接部相匹配的第二连接部,驱动器连接于第一连接部与第二连接部之间;驱动器由形状记忆合金材料制成,驱动器受热达到预设温度值时会产生沿散热器本体圆周方向的形变。上述技术方案所设计的散热器,在常温下,挡片可将散热孔封闭,使散热器处于封闭的状态,当散热器受热后,由形状记忆合金制成的驱动器会产生沿散热器本体圆周方向的伸缩或弯曲的形变,从而驱动挡片转动使散热孔打开,提高散热效率。
[0004]不仅如此,专利申请号:201510057241.4,公开了一种散热器,包括第一连接板以及与第一连接板连接且相对设置的第二连接板;第一连接板与第二连接板之间存在隔空层;第二连接板远离第一连接板一面连接有多片散热片,散热片与第二连接板成锐角的夹角;第二连接板与散热片连接处设有传热轴,传热轴中间插设有热管,热管远离传热轴一端与第一连接板连接;散热片与传热轴可转动连接;第二连接板在与散热片成锐角的夹角处设有通气孔,散热片远离连接环一端与第二连接板之间连接有弹簧。上述技术方案所设计的散热器,散热片可以用于散热的同时还可以引导流动的空气通过通气孔进入隔空层中,可提高散热效率。散热片末端通过弹簧与第二连接板连接,弹簧可以对散热片和散热器起到保护作用。
[0005]通过上述现有技术可见,现有的散热装置均是从结构和功能上进行改进与创新,用以针对电子设备所产生的热量实现散热,保证电子产品的工作效率,但是随着散热装置的不断发展,可以发现,现有的散热装置依旧存在着不尽如人意的地方,现有的散热器大多设置于热量区域,通过设计结构直接将热量传导至外部环境中,这是针对热量实现了散热作用,但是这样散至外部环境中的热量会影响到外部环境,而且现有的散热方式较为普通,即基于导热材料和风机实现热量传导,实际的散热工作效率比较低。
【实用新型内容】
[0006]本实用新型所要解决的技术问题是提供一种滤波检测管道式液体散热装置,设计外管、内管相嵌套结构,并结合液体流动与风扇的主动降温技术,有效提高了实际的散热工作效率。
[0007]本实用新型为了解决上述技术问题采用以下技术方案:本实用新型设计了一种滤波检测管道式液体散热装置,包括外管、内管、温度传感器、控制模块,以及分别与控制模块相连接的电源、风扇、滤波电路;温度传感器经滤波电路与控制模块相连接;其中,电源经过控制模块为风扇进行供电,同时,电源依次经过控制模块、滤波电路为温度传感器进行供电;滤波电路包括运放器Al、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一电容Cl和第二电容C2;其中,滤波电路输入端依次串联第一电阻R1、第二电阻R2、运放器Al的同向输入端,同时,滤波电路输入端连接温度传感器;运放器Al的输出端连接滤波电路输出端,同时,滤波电路输出端连接控制模块;第一电容Cl的其中一端与第一电阻Rl、第二电阻R2之间的导线相连接,另一端与运放器Al的输出端相连接;第二电容C2的其中一端与运放器Al的同向输入端相连接,另一端接地;运放器Al的反向输入端串联第三电阻R3,并接地;第四电阻R4串联在运放器Al的反向输入端与输出端之间;外管采用隔热材料制成,内管采用导热材料制成;外管的其中一端封闭,另一端敞开,外管上封闭端的表面设置第一通孔,外管上位于敞开端的侧面设置第二通孔,第一通孔的内径和第二通孔的内径均与内管的外径相适应;内管的外径小于外管的内径,内管的其中一端连接供水管道,内管的另一端由外管外部穿过外管封闭端表面上的第一通孔,进入外管内部,并沿外管内部路径穿过外管上的第二通孔延伸出至外管外部与集水池相连接,且内管上位于外管内部的部分的中轴线与外管的中轴线相重合;外管表面设置至少一个通气孔,各个通气孔分别连接外管内部与外部;温度传感器设置于外管的外表面;风扇叶片的外径与外管的内径相适应,风扇设置于外管的敞开端上,且风扇的工作气流由外管内部指向外管的外部。
[0008]作为本实用新型的优选技术方案:所述风扇为无刷电机风扇。
[0009]作为本实用新型的优选技术方案:所述外管表面上的各个通气孔彼此等间距的均勾分布在外管表面一周上。
[0010]作为本实用新型的优选技术方案:所述控制模块为单片机。
[0011]作为本实用新型的优选技术方案:所述电源为外接电源。
[0012]本实用新型所述一种滤波检测管道式液体散热装置采用以上技术方案与现有技术相比,具有以下技术效果:
[0013](I)本实用新型设计的滤波检测管道式液体散热装置,采用全新设计结构,设计外管、内管彼此相嵌套式结构,将内管嵌入外管当中,基于内管中所设计液体的流动,产生外管、内管之间间隙环境与外管所设待散热区域之间的温度差,以此通过外管表面所设计的通气孔,实现外管所设待散热区域空气与外管内管之间间隙环境空气之间的对流,由相对温度较低的内管首先与热空气相接触,形成初步降温,避免最终散向外管外部环境的热量过高;同时经具体所设计的滤波电路,获得来自温度传感器针对外管所设待散热区域的实时温度检测结果,以此为依据控制设计位于外管敞开端的风扇工作,针对外管与内管之间间隙环境中空气的流动进行准确引导,将其由外管的敞开端引导至外部环境当中,实现最终的散热操作,由此,有效保证了本实用新型所设计滤波检测管道式液体散热装置在实际应用过程中的散热工作效率;
[0014](2)本实用新型设计的滤波检测管道式液体散热装置中,针对风扇,进一步设计采用无刷电机风扇,使得本实用新型所设计的滤波检测管道式液体散热装置在实际工作过程中,能够实现静音工作,既保证了所设计的滤波检测管道式液体散热装置具有高效的散热功能,又能保证其工作过程不对周围环境产生噪声影响,体现了设计过程中的人性化设计;
[0015](3)本实用新型设计的滤波检测管道式液体散热装置中,针对外管表面上所设计的各个通气孔,进一步设计各个通气孔彼此等间距的均匀分布在外管表面一周上,能够在外管、内管之间间隙环境与外管所设待散热区域之间温度差,以及风扇的共同作用下,进一步提高外管所设待散热区域中热空气经外管表面各通气孔流向外管内部的流动效率,进而有效提高了所设计滤波检测管道式液体散热装置的散热工作效率;
[0016](4)本实用新型设计的滤波检测管道式液体散热装置中,针对控制模块,进一步设计采用单片机,一方面能够适用于后期针对所设计滤波检测管道式液体散热装置的扩展需求,另一方面,简洁的控制架构模式能够便于后期的维护;
[0017](5)本实用新型设计的滤波检测管道式液体散热装置中,针对电源,进一步设计采用外接电源,能够有效保证所设计滤波检测管道式液体散热装置在实际工作散热过程中,取电、用电的稳定性,进而能够有效保证滤波检测管道式液体散热装置实际的散热效果。
【附图说明】
[0018]图1是本实用新型所设计滤波检测管道式液体散热装置的结构示意图;
[0019]图2是本实用新型所设计滤波检测管道式液体散热装置中滤波电路示意图。
[0020]其中,1.外管,2.内管,3.控制模块,4.电源,5.温度传感器,6.风扇,7.第一通孔,
8.第二通孔,9.通气孔,10.滤波电路。
【具体实施方式】
[0021]下面结合说明书附图对本实用新型的【具体实施方式】作进一步详细的说明。
[0022]如图1所示,本实用新型设计了一种滤波检测管道式液体散热装置,包括外管1、内管2、温度传感器5、控制模块3,以及分别与控制模块3相连接的电源4、风扇6、滤波电路10;温度传感器5经滤波电路10与控制模块3相连接;其中,电源4经过控制模块3为风扇6进行供电,同时,电源4依次经过控制模块3、滤波电路10为温度传感器5进行供电;如图2所示,滤波电路10包括运放器Al、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一电容Cl和第二电容C2;其中,滤波电路1输入端依次串联第一电阻Rl、第二电阻R2、运放器Al的同向输入端,同时,滤波电路10输入端连接温度传感器5;运放器Al的输出端连接滤波电路10输出端,同时,滤波电路1输出端连接控制模块3 ;第一电容Cl的其中一端与第一电阻Rl、第二电阻R2之间的导线相连接,另一端与运放器Al的输出端相连接;第二电容C2的其中一端与运放器Al的同向输入端相连接,另一端接地;运放器Al的反向输入端串联第三电阻R3,并接地;第四电阻R4串联在运放器Al的反向输入端与输出端之间;外管I采用隔热材料制成,内管2采用导热材料制成;外管I的其中一端封闭,另一端敞开,外管I上封闭端的表面设置第一通孔7,外管I上位于敞开端的侧面设置第二通孔8,第一通孔7的内径和第二通孔8的内径均与内管2的外径相适应;内管2的外径小于外管I的内径,内管2的其中一端连接供水管道,内管2的另一端由外管I外部穿过外管I封闭端表面上的第一通孔7,进入外管I内部,并沿外管I内部路径穿过外管I上的第二通孔8延伸出至外管I外部与集水池相连接,且内管2上位于外管I内部的部分的中轴线与外管I的中轴线相重合;外管I表面设置至少一个通气孔9,各个通气孔9分别连接外管I内部与外部;温度传感器5设置于外管I的外表面;风扇6叶片的外径与外管I的内径相适应,风扇6设置于外管I的敞开端上,且风扇6的工作气流由外管I内部指向外管I的外部。上述技术方案所设计的滤波检测管道式液体散热装置,采用全新设计结构,设计外管1、内管2彼此相嵌套式结构,将内管2嵌入外管I当中,基于内管2中所设计液体的流动,产生外管1、内管2之间间隙环境与外管I所设待散热区域之间的温度差,以此通过外管I表面所设计的通气孔9,实现外管I所设待散热区域空气与外管I内管2之间间隙环境空气之间的对流,由相对温度较低的内管2首先与热空气相接触,形成初步降温,避免最终散向外管I外部环境的热量过高;同时经具体所设计的滤波电路10,获得来自温度传感器5针对外管I所设待散热区域的实时温度检测结果,以此为依据控制设计位于外管I敞开端的风扇6工作,针对外管I与内管2之间间隙环境中空气的流动进行准确引导,将其由外管I的敞开端引导至外部环境当中,实现最终的散热操作,由此,有效保证了本实用新型所设计滤波检测管道式液体散热装置在实际应用过程中的散热工作效率。
[0023]基于上述设计滤波检测管道式液体散热装置技术方案的基础之上,本实用新型还进一步设计了如下优选技术方案:针对风扇6,进一步设计采用无刷电机风扇,使得本实用新型所设计的滤波检测管道式液体散热装置在实际工作过程中,能够实现静音工作,既保证了所设计的滤波检测管道式液体散热装置具有高效的散热功能,又能保证其工作过程不对周围环境产生噪声影响,体现了设计过程中的人性化设计;还有针对外管I表面上所设计的各个通气孔9,进一步设计各个通气孔9彼此等间距的均匀分布在外管I表面一周上,能够在外管1、内管2之间间隙环境与外管I所设待散热区域之间温度差,以及风扇6的共同作用下,进一步提高外管I外部环境中热空气经外管I表面各通气孔9流向外管I内部的流动效率,进而有效提高了所设计滤波检测管道式液体散热装置的散热工作效率;而且针对控制模块3,进一步设计采用单片机,一方面能够适用于后期针对所设计滤波检测管道式液体散热装置的扩展需求,另一方面,简洁的控制架构模式能够便于后期的维护;不仅如此,针对电源4,进一步设计采用外接电源,能够有效保证所设计滤波检测管道式液体散热装置在实际工作散热过程中,取电、用电的稳定性,进而能够有效保证滤波检测管道式液体散热装置实际的散热效果。
[0024]本实用新型设计了滤波检测管道式液体散热装置在实际应用过程当中,具体包括外管1、内管2、温度传感器5、单片机,以及分别与单片机相连接的外接电源、无刷电机风扇、滤波电路10;温度传感器5经滤波电路10与单片机相连接;其中,外接电源经过单片机为无刷电机风扇进行供电,同时,外接电源依次经过单片机、滤波电路10为温度传感器5进行供电;滤波电路10包括运放器Al、第一电阻Rl、第二电阻R2、第三电阻R3、第四电阻R4、第一电容Cl和第二电容C2;其中,滤波电路10输入端依次串联第一电阻R1、第二电阻R2、运放器Al的同向输入端,同时,滤波电路10输入端连接温度传感器5;运放器Al的输出端连接滤波电路10输出端,同时,滤波电路1输出端连接单片机;第一电容Cl的其中一端与第一电阻Rl、第二电阻R2之间的导线相连接,另一端与运放器Al的输出端相连接;第二电容C2的其中一端与运放器Al的同向输入端相连接,另一端接地;运放器Al的反向输入端串联第三电阻R3,并接地;第四电阻R4串联在运放器Al的反向输入端与输出端之间;外管I采用隔热材料制成,内管2采用导热材料制成;外管I的其中一端封闭,另一端敞开,外管I上封闭端的表面设置第一通孔7,外管I上位于敞开端的侧面设置第二通孔8,第一通孔7的内径和第二通孔8的内径均与内管2的外径相适应;内管2的外径小于外管I的内径,内管2的其中一端连接供水管道,内管2的另一端由外管I外部穿过外管I封闭端表面上的第一通孔7,进入外管I内部,并沿外管I内部路径穿过外管I上的第二通孔8延伸出至外管I外部与集水池相连接,且内管2上位于外管I内部的部分的中轴线与外管I的中轴线相重合;外管I表面设置至少一个通气孔9,各个通气孔9分别连接外管I内部与外部,且各个通气孔9彼此等间距的均匀分布在外管I表面一周上;温度传感器5设置于外管I的外表面;无刷电机风扇叶片的外径与外管I的内径相适应,无刷电机风扇设置于外管I的敞开端上,且无刷电机风扇的工作气流由外管I内部指向外管I的外部。实际应用中,将本发明所设计的滤波检测管道式液体散热装置设置于待散热区域当中,尤其将其中外管I设置于待散热区域,内管2上连接供水管的一端,由供水管开始取水,并沿内管2流动,最后经内管2的另一端排入集水池中,由于外管I采用隔热材料制成,内管2采用导热材料制成,内管2的外径小于外管I的内径,且内管2上位于外管I内部的部分的中轴线与外管I的中轴线相重合,因此,外管I所在待散热区域的温度较高时,则相对温度较低的内管表面就会与外管I外部区域之间形成温度差,则外管I所在待散热区域的热空气,就会经外管I表面所设置的各个通气孔9流入外管I与内管2之间的间隙区域,并与内管2表面相接触,此时就可通过内管2针对流入间隙区域的热空气进行降温,有效降低最终经外管I敞开端向外部环境所排热空气的温度,降低对外部环境温度的影响;与上述过程同时进行的是,设置于外管I表面的温度传感器5实时工作,获取外管I所在待散热区域中的温度检测结果,并实时将该温度检测结果经本发明设计方案中具体所设计的滤波电路10上传至单片机当中,其中,滤波电路10实时接收来自温度传感器5的温度检测结果,并实时针对温度检测结果进行滤波处理,滤除其中的噪声数据,使得后续单片机能够获得更加准确、更加稳定的温度检测结果,进而为后针对无刷电机风扇的控制提供了稳定的数据支持,实时经过滤波处理的温度检测结果被滤波电路10实时上传至单片机当中,单片机接收温度检测结果进行实时分析,并根据分析结果分别做出相应进一步操作,其中,当温度检测结果小于等于预设温度阈值时,则单片机不做任何进一步操作,仅通过内管2中液体流动,内管2相对较低的温度与进入间隙环境中的热空气进行冷热对流,并自然随外管I敞开端向外部环境中进行排放;当温度检测结果大于预设温度阈值时,则单片机随即控制与之相连的无刷电机风扇开始工作,由于无刷电机风扇的工作气流由外管I内部指向外管I的外部,因此,在无刷电机风扇的工作下,外管I所设散热区域中的热空气会加速由外管I表面通气孔9进入间隙环境中,随后首先与内管2表面相接触进行降温,随后再在无刷电机风扇的工作下,加速向外管I敞开端的方向进行流动,进而排出至外部环境当中,在降低针对外部环境温度影响的情况下,有效提高了针对外管I所述散热区域的散热工作效率;在采用无刷电机风扇工作的过程中,实时工作的温度传感器5仍然实时工作,当单片机所获温度检测结果大于预设温度阈值时,则单片机不做任何进一步操作,保持无刷电机风扇继续工作;当单片机所获温度检测结果小于等于预设温度阈值时,则单片机随即控制无刷电机风扇停止工作,采用内管2、外管I间的冷热对流继续针对外管I所设待散热区域进行散热操作。
[0025]上面结合附图对本实用新型的实施方式作了详细说明,但是本实用新型并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的提下做出各种变化
【主权项】
1.一种滤波检测管道式液体散热装置,其特征在于:包括外管(I)、内管(2)、温度传感器(5)、控制模块(3),以及分别与控制模块(3)相连接的电源(4)、风扇(6)、滤波电路(10);温度传感器(5)经滤波电路(10)与控制模块(3)相连接;其中,电源(4)经过控制模块(3)为风扇(6)进行供电,同时,电源(4)依次经过控制模块(3)、滤波电路(10)为温度传感器(5)进行供电;滤波电路(10)包括运放器Al、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一电容Cl和第二电容C2;其中,滤波电路(1)输入端依次串联第一电阻R1、第二电阻R2、运放器Al的同向输入端,同时,滤波电路(10)输入端连接温度传感器(5);运放器Al的输出端连接滤波电路(1)输出端,同时,滤波电路(1)输出端连接控制模块(3);第一电容CI的其中一端与第一电阻R1、第二电阻R2之间的导线相连接,另一端与运放器Al的输出端相连接;第二电容C2的其中一端与运放器Al的同向输入端相连接,另一端接地;运放器Al的反向输入端串联第三电阻R3,并接地;第四电阻R4串联在运放器Al的反向输入端与输出端之间;外管(I)采用隔热材料制成,内管(2)采用导热材料制成;外管(I)的其中一端封闭,另一端敞开,外管(I)上封闭端的表面设置第一通孔(7),外管(I)上位于敞开端的侧面设置第二通孔(8),第一通孔(7)的内径和第二通孔(8)的内径均与内管(2)的外径相适应;内管(2)的外径小于外管(I)的内径,内管(2)的其中一端连接供水管道,内管(2)的另一端由外管(I)夕卜部穿过外管(I)封闭端表面上的第一通孔(7),进入外管(I)内部,并沿外管(I)内部路径穿过外管(I)上的第二通孔(8)延伸出至外管(I)外部与集水池相连接,且内管(2)上位于外管(I)内部的部分的中轴线与外管(I)的中轴线相重合;外管(I)表面设置至少一个通气孔(9),各个通气孔(9)分别连接外管(I)内部与外部;温度传感器(5)设置于外管(I)的外表面;风扇(6)叶片的外径与外管(I)的内径相适应,风扇(6)设置于外管(I)的敞开端上,且风扇(6)的工作气流由外管(I)内部指向外管(I)的外部。2.根据权利要求1所述一种滤波检测管道式液体散热装置,其特征在于:所述风扇(6)为无刷电机风扇。3.根据权利要求1所述一种滤波检测管道式液体散热装置,其特征在于:所述外管(I)表面上的各个通气孔(9)彼此等间距的均匀分布在外管(I)表面一周上。4.根据权利要求1所述一种滤波检测管道式液体散热装置,其特征在于:所述控制模块(3)为单片机。5.根据权利要求1所述一种滤波检测管道式液体散热装置,其特征在于:所述电源(4)为外接电源。
【文档编号】H05K7/20GK205546380SQ201620172477
【公开日】2016年8月31日
【申请日】2016年3月7日
【发明人】费芬芳
【申请人】苏州硅果电子有限公司
再多了解一些
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1