用于闭环数据传输的方法和装置的制作方法

文档序号:7949485阅读:206来源:国知局
专利名称:用于闭环数据传输的方法和装置的制作方法
技术领域
本发明总的来说涉及通信系统,并且具体地,涉及一种方法和装置,用于在多输入多输出(MIMO)传输中提供功率加权。
背景技术
多输入多输出(MIMO)是一种涉及多个发射天线和多个接收天线的传输方法,其有望在很大程度上增加无线通信系统的链路容量。多种传输策略要求发射阵列具有关于每个发射天线元件和每个接收天线元件之间信道响应的某种程度的知识,并且通常被称为“闭环”MIMO。通过使用诸如时分双工(TDD)系统上行链路探测(sounding)、或TDD或频分双工(TDD)系统中信道反馈的技术,在发射机处获得完全的宽带信道知识是可能的。有限反馈方法,例如反馈天线选择指示或基于密码本的波束成形加权选择可以减小反馈量,与完全信道反馈不同。如果功率加权与密码本加权一起被反馈,则可以改进这些有限反馈方法。然而,向发射机传送功率加权可以要求显著的信道资源。因此,需要一种有效的反馈方法,用于向发射机提供功率加权。
附图简述

图1是通信系统的方框图。
图2是闭环发射天线阵列的方框图,该闭环发射天线阵列向具有一个或多个接收天线的接收设备传送单一数据流。
图3是闭环发射天线阵列的方框图,该闭环发射天线阵列向具有一个或多个接收天线的接收设备传送多个数据流。
图4是利用闭环发射天线阵列的频域取向的宽带传输系统的方框图。
图5是使用密码本选择和功率加权的发射机的方框图。
图6是使用天线选择和功率加权的发射机的方框图。
图7是整个反馈过程的流程图。
图8是FDD模式的反馈过程的时序图。
图9是TDD模式的反馈过程的时序图。
图10是移动设备加权和密码本选择单元的方框图。
图11是基站下行链路波束成形单元的方框图。
图12是优选信号发送和反馈方法的流程图。

发明内容
如果在发射机处已知完全的信道知识,闭环多输入多输出(MIMO)方法有望在很大程度上改进MIMO通信的性能。通过使用诸如时分双工(TDD)系统的上行链路探测、或TDD或频分双工(TDD)系统中信道反馈的技术,在发射机处获得完全的宽带信道知识是可能的。在有限反馈方法中,例如反馈关于天线选择或基于密码本的波束成形加权选择的消息可以减小反馈量,这一点与完全信道反馈不同。然而,对于可实现的接收机(例如线性MMSE,连续干扰抵消、或最大可能性),通过提供用于每个波束成形信号流的功率加权以及用于每个流的密码本加权或天线选择,可以改进这些有限反馈方法。
本发明是一种方法和设备,用于在MIMO传输中有效地提供关于每个数据流的功率加权。将反馈设计为,在某些带宽或子载波集合上使用密码本选择时,改进接收机的性能。在每个MIMO数据流的频域子载波上,确定密码本加权向量(例如天线选择加权/向量或高斯加权,作为示例),以及确定每个流的功率加权。注意,可能通过使用密码本来描述这种天线选择,该密码本包含对应于单位矩阵的列的发射加权向量,。然后,对于子载波组的每个流,反馈密码本加权和功率加权。本发明提供了有效的方式,用于量化功率加权,并且将功率加权连同密码本加权一起反馈给发射机。
本发明的另一方面涉及一种有效机制,用于发射机传递接收机需要反馈信息的多少数据流。MIMO系统中可以支持的数据流数目的上界小于接收机天线数目和发射天线数目之间的数目。但是,实际的流数目还可以取决于信道条件(例如空间条件和接收SNR)。最好在接收机处进行判决,但是必须首先分配所需用于传递全部流的密码本加权和功率加权的总反馈资源。尽管总是可以分配最大反馈资源,但是它可能是浪费的。替换方案是,接收机首先反馈数据流数目,作为反馈资源请求,但是这牵涉到额外的等待时间。在本发明中的有效机制是,在反馈请求和反馈资源分配消息中隐式地传递该反馈所请求的数据流数目。
为了简明,本发明从以下观点提出,即当向用户终端(SS)发射时,向基站(BS)提供这样的信息,该信息对于设定闭环天线阵列系统中的发射加权来说是必需的(例如,多个空间分离的发射天线)。应当清楚,本发明还适用于这样的情形,即BS和SS的作用与此处描述的作用是相反的。例如,本发明可以应用于这样的情形,其中,向SS提供必需的信息,以允许从SS到BS的闭环传输。因此,尽管描述将主要集中于BS向SS发射的情况,但是术语“源通信单元”将指可以执行向“目标通信单元”进行闭环传输的通信单元(例如,BS、SS或其他收发信机)。
而且,在本申请文件中,某些术语是可以互换使用的。术语“信道响应”、“频率选择性信道简档(profile)”、“空间频率信道响应”全部指的是基站需要的信道响应信息,以便于利用闭环传输技术。术语“波形”和“信号”也可以互换使用。“用户设备”或“用户站”(SS)有时指的是移动站(MS)或简单地移动设备,并且本发明同样适用于用户设备是固定的或移动(即,不是固定的)的情况。接收设备可以是基站(BS)、用户站(SS)或其任何组合。同样,发射设备可以是BS、SS、MS或其任何组合。此外,如果系统具有转发器、中继器或其他类似设备,则接收设备或发射设备可以是转发器、中继器或其他类似设备。如果BS正在执行向转发器/中断器闭环传输,则该转发器或中继器可以被认为等同于SS。如果中继器正在执行向SS的闭环传输,则转发器或中继器可以被认为等同于BS。术语“快速傅里叶变换”(FFT)和“逆快速傅里叶变换”(IFFT)分别指的是离散傅里叶变换(或类似变换)或逆离散傅里叶变换(或类似变换)。
具体实施例方式
现在转向附图,其中相同的数字指明了相同的元件,图1是本发明能够操作于其中的通信系统100的方框图。通信系统100包括一个或多个小区105(仅示出了一个),其每个具有与多个用户站(SS)101-103通信的基站(BS或基站)104。如果传输将在至SS 101的下行链路上执行,则BS 104可以被称为源通信单元,并且SS 101可以被称为目标通信单元。如果传输将在自SS 101到BS 104的在上行链路上执行,则SS 101可以被称为源通信单元,并且BS 104可以被称为目标通信单元。在本发明优选实施例中,通信系统100利用正交频分多路复用(OFDM)或包括自适应调制和编码(AMC)的基于多载波的结构。该结构还可以包括使用扩频技术,诸如多载波CDMA(MC-CDMA)、多载波直接序列CDMA(MC-DS-CDMA)、具有一维或二维扩频的正交频分和码分多路复用(OFCDM)、或可以基于较简单的时分和/或频分多路复用/多址技术,或者这些多种技术的组合。然而,在通信系统100的可替换实施例中,可以利用其他蜂窝通信系统协议,诸如但不限于,TDMA、直接序列CDMA、循环前缀单一载波系统、交织频分多址系统。
图2是作为源单元一部分的闭环发射天线阵列的方框图,该闭环发射天线阵列向作为目标通信单元一部分的接收设备传送单一数据流。该目标通信单元具有一个或多个接收天线。在输入流204被馈送到多个发射天线201之前,使用乘法器203,使输入流204乘以发射加权205。自多个发射天线201发射的信号传播通过矩阵信道208,并且被多个接收天线202接收。使用乘法器203,在多个接收天线102上接收的信号乘以接收加权206,并且由求和设备209求和,以产生输出码元流207。图2中,信号上以及发射和接收加权上的索引“k”表示时间索引或者子载波(频率)索引(例如,在OFDM的情况中),或者是此两者的组合。
图3是作为源单元一部分的闭环发射天线阵列的方框图,该闭环发射天线阵列向作为目标通信单元一部分的接收设备传送多个数据流。该目标通信单元具有一个或多个接收天线(例如,MIMO系统)。在多个输入流304被馈送到多个发射天线301之前,使用乘法器303,使多个输入流304乘以发射加权305。自多个发射天线301发射的信号传播通过矩阵信道308,并且被多个接收天线302接收。使用乘法器303,使在多个接收天线302上接收的信号乘以接收加权306,并且由求和设备309求和,以产生多个输出码元流307。产生输出码元流307的其他实施例也是可行的,诸如最大可能性检测或连续抵消,其可以使用或者可以不使用接收加权306和乘法器303。
图4是频域取向的传输系统的方框图,诸如正交频分多路复用(OFDM)或循环前缀单一载波(CP-单一载波),其中在进行传输之前在频域中执行图2和图3的传输技术。在CP-单一载波系统,通过一个或多个FFT 402,使一个或多个数据流401首先转换到频域,并且通过频域加权装置403加权频域数据流。在OFDM中,一个或多个数据流401被直接发送到频域加权装置403,而不使用FFT 402。频域加权装置403对频域中的每个子载波或频率点(frequency bin),执行如图2和图3发射部分中示出的加权函数。这样,在这种类型的系统中,可以在空间、或频率、或者空间和频率上定制发射信号。然后,通过IFFT 404,频域加权装置403的输出转换回时域。添加405循环前缀,如现有技术中已知的。然后,在向发射天线407发送所发射信号之前,执行发射滤波406。
从数学角度来说,本发明的一个方面是一种方法和设备,用于有效地向BS提供一个或多个发射加权向量,其用于乘以一个或多个数据流,如图2、图3和图4的方框图所示。可以按照如下方式计算发射加权。在有限反馈MIMO传输中,在BS(发射设备)和SS(接收设备)处均保持(或计算)密码本,并且该密码本包含将由BS处的发射天线阵列使用的全部可能的发射加权向量。SS确定哪个发射加权向量是密码本中最佳的加权向量,以用于数据传输。SS基于BS传输(诸如在下行链路上接收的导频),执行该确定。SS还计算将应用于每个数据流上功率加权,以优化所实现的特定接收机类型的性能。这样,发射加权是密码本加权乘以特定发射加权的功率加权的平方根。
图5是使用密码本选择和功率加权的源单元的方框图。使用频域或时域资源,一个或多个数据流501被单独地编码(502)和调制(503),以形成待发射的码元流。然后在504中,根据在块505从反馈消息得到的标量加权,对每个流进行功率加权。然后,在块506,通过波束成形向量,对每个流进行加权。在块507,通过根据反馈消息选择密码本,获得每个流的波束成形向量,该反馈消息传递所选发射加权向量的索引。然后,在功率加权和波束成形之后,根据全部的流来生成发射信号。
图6是使用天线选择和功率加权的源单元的方框图。注意,该情况在数学上等价于使用图5的密码本选择策略,且密码本的列对应于单位矩阵的列。使用频域或时域资源,一个或多个数据流601被单独地编码(602)和调制(603),以形成待发射的码元流。然后在604中,根据在块605从反馈消息得到的标量加权,对每个流进行功率加权。然后,将每个流通过天线选择开关块606馈送到天线。每个流的天线选择是根据反馈消息,该反馈消息传递该流的所选天线的索引。天线选择开关块606拾取发射数据流的发射天线总数的子集。
图7是表示由本发明使用的整个反馈方法的流程图。首先,BS从其每个发射天线,在下行链路上发射导频数据705(即BS和MS处均已知的码元)。接下来,MS接收下行链路导频数据并且测量从每个BS天线到其每个接收天线的下行链路信道估计710(尽管导频优先是被BS发射并且被MS使用用于所述信道估计,但是,可替换的信道估计技术,诸如盲的或直接判决信道估计(decision-directed channel estimation)方法有时也可以用于缺失导频或作为对基于导频信道估计的补充)。然后,MS使用下行链路信道估计,用于确定BS应当使用哪个密码本加权,以及确定每个数据流的功率加权715。在本发明的一个方面,密码本加权和功率加权的选择还包括用于确定BS应当发射多少流的过程。然后,MS对反馈消息中的密码本选择和功率加权进行编码,并且向BS发射反馈720。最后,BS接收反馈,并且使用反馈消息中的信息,以对下行链路数据传输进行波束成形725。
图8给出了用于频分双工(FDD)模式的反馈方法的示例时序图。对于该FDD示例,下行链路是在载波频率1805上并且上行链路是在载波频率2810上。BS自其每个发射天线820,在下行链路帧815中发送导频码元。例如,在OFDM系统中,通过时间多路复用、频率多路复用、码多路复用或以上这些的组合,来自不同发射天线的导频码元可以成为正交的(用于简化MS处的信道估计)。在4个发射天线情况中的频率多路复用的示例是,在特定OFDM码元周期期间,在以下子载波上发射导频码元从天线1,在开始于第一子载波的每第4个子载波上(子载波1,5…),自天线2,在开始于第二子载波每第4个子载波上(子载波2,6…),自天线3,在开始于第三子载波每第4个子载波上(子载波3,7…),以及自天线4,在开始于第四子载波每第4个子载波上(子载波4,8…)。然后,MS接收导频码元,并且确定每个数据流的密码本加权和功率加权。MS在上行链路帧840上,在反馈消息835中反馈密码本加权和功率加权。基站接收该反馈信息并且使用该信息,用于在未来的下行链路帧825上执行闭环波束成形830。注意,由于上行链路和下行链路传输是同时发生的(与TDD模式不同),从测量820信道时到执行830下行链路波束成形时的总体延迟可以是小的。
图9给出了用于时分双工模式(TDD)的反馈方法的示例时序图。TDD与FDD模式的主要差别在于,在TDD中上行链路和下行链路不能够同时发射,并且因此上行链路和下行链路在时间上必须是分隔的。因为上行链路和下行链路在时间上必须被分隔,因此,在TDD模式中反馈延迟趋向于高于FDD模式。然而,在这两种模式中,总体反馈操作是类似的。BS自其每个发射天线910,在下行链路帧905中发送导频码元。然后,MS接收该导频码元,并且确定每个数据流的密码本加权和功率加权。MS在下一上行链路帧915上,在反馈消息920中反馈密码本加权和功率加权。基站接收该反馈信息并且使用该信息,用于在未来的下行链路帧925上执行闭环波束成形930。
图10是MS加权和密码本选择单元1000的方框图。向下行链路信道估计单元1010提供接收天线数据1005和来自存储器单元1040的每个BS发射天线的导频码元,该接收天线数据1005对应于从BS发射的导频数据,该存储器单元1040用于存储导频码元信息。下行链路信道估计1010单元使用所提供的信息,用于确定信道估计,该下行链路信道估计1010单元将该信道估计提供给密码本加权选择和功率加权计算单元1015。还向密码本加权选择和功率加权计算单元1015提供信噪比(SNR)1020的估计,和来自用于存储密码本加权的存储器单元1035的密码本加权选择。密码本加权选择和功率加权计算单元1015使用所提供的信息,用于确定在每个流上使用哪个密码本加权及其对应的功率加权。密码本加权选择和功率加权计算单元1015还可以确定数据流的数目、和密码本加权选择和功率加权的计算。然后,密码本加权选择和功率加权计算单元1015向反馈单元1025提供密码本加权和功率加权,该反馈单元1025编码该信息,用于传输到基站。反馈单元1025向MS的发射单元1030提供编码的反馈信息,该发射单元1030向BS发射信息。
图11是BS的下行链路波束成形单元1100的方框图。向反馈接收单元1110提供接收天线数据1105,其对应于上行链路的反馈部分。反馈接收单元1110使用所提供的接收反馈数据,用于确定由MS在其反馈消息中发送的密码本加权选择和功率加权。然后,反馈接收单元1110向下行链路波束成形单元1115提供密码本加权选择和功率加权,该下行链路波束成形单元1115使用该信息,用于产生至MS的波束成形的下行链路数据。波束成形的下行链路数据被发送到BS的发射单元1120,用于在下行链路数据帧中传输。
图12中描述了优选信号发送和反馈方法的流程图。首先,基站向移动设备1205发送反馈请求和反馈资源分配。接下来,MS根据BS信息1210,确定反馈所请求的流数目。基于由发射机(BS)指配的反馈资源的数目,隐式地(implicitly)确定数据流的数目。然后,移动设备根据自BS 1215发送的导频,确定的密码本加权和流加权(尽管优选地由BS发射导频并且由MS使用该导频用于所述信道估计,但是可替换的信道估计技术,诸如盲的或直接判决信道估计方法在缺失导频时有时也可以使用,或者作为基于导频的信道估计的补充)。密码本选择过程可以使用利用最大接收功率和最大容量标准组合的方法(以下将描述)。然后,MS量化功率加权,并且向基站1220发送该功率加权和密码本加权。量化方法可以使用这样的方案,即在取决于先前量化的流功率的功率的范围内,顺序地量化数据流的功率(以下将描述)。最后,基站使用密码本加权和恢复的流加权,用于发送波束成形的数据1225。
对于在前文描述的反馈方法,信道带宽可以被分成不同的粒度,并且可以相应地执行反馈和发射加权。例如,密码本加权和功率加权的单一集合可以被反馈,并且被用于分配给至MS的特定MIMO传输的整个带宽(例如,将用于传输的全部OFDM子载波)。可替换地,可以使用频率选择方案,其中反馈多于一个集合,且每个集合对应于不同的子载波集合。该后一方案增加了反馈开销,但是在某些频率选择性信道条件中可以提供改进的性能。在另一示例中,可以基于大于将用于后继MIMO传输带宽的带宽上的信道估计,确定密码本加权和功率加权的单一集合(例如,基于整个信道带宽,即使至MS的后继MIMO传输将仅占用总子载波的小的子集)。该后一方案提供了更为平均的方案,并且当预期信道将在当发射导频时与当MIMO传输将发生时的时间之间显著变化时,可以是有利的。
以下将给出所提出的反馈方法的详细描述。假设在基站处存在Mb个发射天线,并且在移动设备处存在Mm个接收天线。假设OFDM下行链路具有K个可使用子载波,在移动设备处在子载波k(0≤k≤K-1)上接收Mm×1信号,并且码元时间b被给定为(注意这是由移动设备使用的下行链路信号,用于测量对每个基站的信道响应)Y(k,b)=(k,b)x(k,b)+N(k,b)(1)其中H(k,b)是子载波k和码元时间b上的Mm×Mb频域信道矩阵,x(k,b)是Mb×1训练向量,并且N(k,b)是附加噪声,其具有协方差矩阵σn2IMm,(其中In是n×n单位矩阵)。时间索引b指出测量下行链路信道的时间,用于确定反馈的功率加权和密码本加权(如果需要多个OFDM码元来探测全部Mb个发射天线,则可以使用多个时间索引)。
密码本索引选择将假设,在Mb×Nc矩阵V中,存在Nc个密码本加权。V的特别示例是来自现有技术的高斯加权,或者是天线选择加权(即,Nc=Mb和V=IMb]]>)。对于全部密码本加权,Mm×Nc组成频域信道(即,RF信道矩阵乘以全部密码本加权)被给出为G(k,b)=H(k,b)V(2)其中移动设备使用在下行链路上测量的其H(k,b)估计。
现在,移动设备只是需要确定V的哪个Ns(其中Ns是MIMO流的数目)列用作每个流的密码本加权。可以使用多种标准用于确定加权,诸如选择具有最高功率的G(k,b)的Ns列(平均交叉频率),或者选择使平均容量最大的G(k,b)的Ns列。对于最大功率选择技术,Ns列(标记为v1~vNs)可以被选择为v的对应于下式的Ns最大值Σk∈ΩgvH(k,b)gv(k,b)---(3)]]>其中Ω是密码本加权单一集合的子载波集合,并且gv(k,b)是G(k,b)的第v列。如以下所描述的,不同的频率粒度可以用于不同情形,这反映在Q的选择中。
最大容量选择技术被给出为,Ns列(标记为v1~vNs)被选择为v的对应于下式的Ns最大值Σk∈Ωlog2(1+1Nsσn2det(gv1H(k,b)...gvNsH(k,b)[gv1(k,b)···gvNs(k,b)]))---(4)]]>其中,在v1~vNs的全部 可能组合上执行搜索,其中 是用于表示一次从Nc中取出Ns个时的组合数目传统的记法。
本发明的一个方面是一种组合最大功率密码本选择技术与最大容量的手段。该方法被设计为,减小执行(4)的容量计算所必需的组合数目。例如,可以从提供(3)中最大值的加权中选择一个密码本加权。通过搜索v2~vNs的全部 剩余组合,从(4)中选择剩余加权。通常,可以选择多达Ns-1个加权,作为(3)中具有最高值的多达Ns-1密码本加权。因此,在(4)中的容量上的搜索可能是相当琐碎的。
流功率计算如果接收机类型实现在接收机处,可以计算每个流上功率电平,从而提供最佳预期的性能。
有效的反馈信号发送以下将描述反馈信号发送机制,假设功率被反馈给BS。然而,该算法可以容易地延伸到反馈其他的量,诸如电压(其是功率的平方根)。
功率加权和密码本加权的有效量化任何量化策略可以用于信号发送密码本加权,但是为了简明,假设每个数据流的密码本加权被量化为B比特。
对于量化全部流的功率加权,简单的方案是使用相同的比特数目量化每个流。然而,此处描述的更为有效的量化方法认识到了这样的事实,即每个流的范围可以细化到较小区域。该方法在取决于先前量化的流功率的功率加权的范围内,顺序地量化数据流的功率加权。此处还应当注意,按照减小的功率加权的次序对流进行索引,并且全部功率加权的和为1。因此,由于减小的范围,指配用于量化每个流的比特数目可以是较小的。
量化方案给出如下1.对于Ns个数据流中的每一个,确定密码本加权和功率加权。
2.将每个流的密码本加权量化为B比特。
3.将第一数据流的功率加权量化为1/Ns和Pul之间的L1个电平之一(Pul是预先确定的功率上限,即Pul=1)。例如,B1比特可以用于信号发送L1电平(即L1=2B1]]>)。使P1表示流1的量化的功率电平。
4.对于第m个流,其中m=2至Ns-1,将第m个数据流的功率加权量化为1NS+1-m(1-Σn=1m-1Pn)]]>同量化的Pm-1与 之间较小值之间的Lm个电平中的一个。例如,Bm比特可以用于信号发送Lm个电平(即Lm=2Bm]]>)且Bm<=Bm-1。对于m个数据流中的每一个,Pm表示的流m的量化功率。
这样,所需用于功率加权的反馈总量(以比特数目表示)为 。注意,该量化方法了流1~Ns-1的功率,并且根据其他流的功率确定最后流(第Ns个)的功率。然而,可以量化Ns-1个数据流中的任何任意组的功率,并且可以根据其他流的功率,确定剩余流。还应当注意,该算法假设全部流功率的和是1。然而,该算法容易地扩展到全部流功率的和是任意值的情况。
流数目的隐式信号发送注意,对于功率加权量化,已经确定了流数目Ns。理想地,MS应当确定Ns,并且向BS传递该信息,连同功率加权和密码本加权,这是因为最优流数目取决于在MS处感知的信道条件(例如,空间条件和接收SNR)。然而,反馈资源通常是由BS预分配的。尽管总是可以分配最大反馈资源,但是它可能是浪费的。另一方面,接收机可以首先反馈数据流数目,作为反馈资源请求,但是这可能牵涉到额外的等待时间。因此,期望由BS确定Ns,并且然后,BS向MS传递该Ns。本发明的另一方面是,通过MS,根据由BS指配的反馈资源,隐式确定Ns。这一点的一个简单的示例是,BS请求MS在Ns(或Ns+1)个反馈资源块上发射反馈。这样,由BS指配的反馈资源块的数目指出了Ns。现在,尽管MS可能会损失控制流数目的灵活性,但是整个系统仍然可以受益于该有效的机制,该机制允许BS隐式信号向MS发送流数目,该流数目是应当被反馈的功率加权和密码本加权。例如,初始时,对于全部MS,缺省流数目可以设定为1,并且如果BS发现它是必要的和有益的话,然后增加反馈分配,以允许更多的流。注意,对于以下所述的很多情况来说,信号流是最优的,所述情况诸如但不限于,当MS仅配备有单一天线的情况、当接收SNR足够低到难以支持单一流的情况、当因为波束成形加权由于快速的信道变化而迅速变为陈旧因而不能保证多个流的最优化的情况、或者当BS判决同许多进行单一流SDMA而不是同一个用户进行多个流时的情况。
图12中描述了优选信号发送和反馈方法的流程图。首先,基站向移动设备发送反馈请求和反馈资源分配1205。接下来,MS根据BS信息,确定反馈所请求的流数目1210。基于由发射机指配的反馈资源的数目,隐式地确定数据流的数目。然后,移动设备根据自基站发送的导频,确定的密码本加权和流加权1215(尽管优选地由基站发射导频并且由MS使用该导频用于所述信道估计,但是可替换的信道估计技术,诸如盲的或直接判决信道估计方法在缺失导频时有时也可以使用,或者作为基于导频的信道估计的补充)。密码本选择过程可以使用利用最大接收功率和最大容量标准组合的方法(如上文描述的)。然后,MS量化功率加权,并且向基站发送该功率加权和密码本加权1220。该量化方法可以使用这样的方案,即在取决于先前量化的流功率的功率范围内,顺序地量化数据流的功率(如上文描述的)。最后,基站使用密码本加权和恢复的流加权,用于发送波束成形的数据1225。
现在给出了功率量化和Ns的隐式信号发送的特定示例,用于说明性目的。以下假设6比特的反馈资源块,并且资源块指的是IEEE 802.16标准中的快的反馈信道。
1.BS请求MS在四个6比特反馈信道上进行发射(对于总24比特反馈)。
2.由BS所请求的反馈量,移动设备知道了Ns=4,(即对于每个请求的反馈信道存在一个流)。
3.MS确定BS应当使用哪四个密码本加权进行发射。
4.MS将每个流上的密码本加权量化为B=4比特(这样,总24比特中的Ns*B=16比特用于传递密码本加权)。
5.MS根据上述算法,使用B1=4比特、B2=2比特且B3=2比特,量化每个数据流的功率加权的平方根(其中每个流的范围是以上所示的平方根,以适应电压而不是功率的量化)。
6.MS向基站发射24比特的反馈。
7.BS使用四个密码本加权和在反馈信道中指定的其相应的功率电平进行发射。
本发明的反馈方法可以扩展为包括以下能力1.共同计算最优密码本加上功率加权,而不是分离地计算这两者,如以上所述。
2.使用多于集合Ω中的子载波,计算功率加权和确定密码本,以改进移动性性能。基本上,这种概念提供了更多的平均,用于确定解决方案,并且因此较好地匹配于长期信道统计。
总之,本发明可以概括如下本发明包括一种方法,用于具有多个发射天线的发射设备和接收设备之间传送多个数据流。所述方法包括编码功率加权,以有效地反馈给发射机。所述方法还包括一种确定Ns个密码本加权的有效方法,其使理论容量最大化。此外,所述方法包括一种隐式信号发送数据流数目的方法,所述数据流数目是发射机希望接收机反馈数据的数据流数目。
本领域技术人员将认识到,在不偏离本发明的精神和范围的情况下,可以对上述实施例进行多种修改、变更、组合,并且这些修改、变更和组合应当被视为在本发明的范围之内。可以预期,这些修改、改变和组合均在以下权利要求所限定的范围内。
权利要求
1.一种方法,用于在具有多个发射天线的发射设备和接收设备之间传送多个功率加权,所述方法包括以下步骤确定多个数据流的多个功率加权;以及发射关于所述多个功率加权的信息,其中关于第一功率加权的信息由第一比特数目表示,并且关于第二功率加权的信息由第二比特数目表示,其中所述第一比特数目大于所述第二比特数目。
2.根据权利要求1的方法,其中发射关于多个功率加权的信息的步骤包括以下步骤自最大值到最小值,发射关于所述功率加权的信息。
3.根据权利要求1的方法,其中发射关于多个功率加权的信息的步骤包括以下步骤发射所述功率加权的平方根。
4.如权利要求1所述的方法,进一步包括以下步骤接收根据所述功率加权进行加权的数据流。
5.一种装置,包括功率加权电路,该功率加权电路确定多个数据流的多个功率加权;以及发射机,该发射机发射关于所述多个功率加权的信息,其中关于第一功率加权信息由第一比特数目表示,并且关于第二功率加权的信息由第二比特数目表示,其中所述第一比特数目大于所述第二比特数目。
6.根据权利要求5的装置,其中自最大值到最小值,发射关于所述多个功率加权的信息。
7.根据权利要求5的装置,其中关于所述多个功率加权的信息包括所述功率加权的平方根。
8.如权利要求5所述的装置,进一步包括接收机,其接收根据所述功率加权进行加权的数据流。
全文摘要
本发明公开了一种方法,用于在具有多个发射天线的发射设备和接收设备之间传送多个数据流。所述方法包括确定功率加权的集合,有效地量化功率加权,并且向发射设备提供功率加权的集合。本发明的另一方面包括发射机通过请求的反馈量,隐式地信号发送数据流数目,该数据流数目是接收机应当反馈信息的数据流数目。本发明的另一个方面是一种通过组合最大功率与最大容量标准来确定最佳密码本加权的手段。
文档编号H04J99/00GK101057471SQ200580038219
公开日2007年10月17日 申请日期2005年10月31日 优先权日2004年11月4日
发明者蒂莫西·A·托马斯, 庄向阳 申请人:摩托罗拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1