拍摄单元及元件安装机的制作方法

文档序号:22627445发布日期:2020-10-23 19:36阅读:96来源:国知局
拍摄单元及元件安装机的制作方法
在本说明书中公开了拍摄单元及元件安装机。
背景技术
:以往,作为元件安装机,已知有如下的技术:在基座上设置波长互不相同的两种照明装置及拍摄由该照明装置照射的被摄体的相机,在各自的波长下运算对比度值,根据预先求出的各自的波长下的对比度曲线特性,求出与运算出的对比度值对应的可见光波长下的对焦位置。现有技术文献专利文献1:日本特开2010-232548号公报技术实现要素:发明所要解决的课题然而,在元件安装机中,在拍摄由波长互不相同的两种照明装置照射的被摄体时,由于倍率色差的影响,即使焦点的距离相同,距光轴的距离有时也不同。在专利文献1中未考虑到这样的倍率色差的影响。另外,拍摄被摄体而得到的图像有时因照射光的照射面的材质不同而分辨率不同。本公开鉴于这样的课题而作出,其主要目的在于抑制对拍摄被摄体而得到的图像进行处理时的倍率色差和被摄体的照射面的材质的影响。用于解决课题的技术方案本公开的拍摄单元具备:拍摄部;保持部,保持由上述拍摄部拍摄的被摄体;光照射部,能够从波长不同的多个光源之中选择一个以上的光源的光来向保持于上述保持部的上述被摄体照射;存储部,存储能够由上述光照射装置照射的光的颜色、被照射上述光的照射面的材质及表示每单位长度的像素数的分辨率之间的对应关系;及图像处理部,在处理通过向上述被摄体照射从上述多个光源之中选择出的光源的光并利用上述拍摄部对上述被摄体进行拍摄而得到的被摄体图像时,基于向上述被摄体照射的光的颜色和上述被摄体的照射面的材质,根据上述对应关系,求出上述分辨率,并使用上述分辨率对上述被摄体图像进行处理。在该拍摄单元中,存储部存储有能够通过光照射装置照射的光的颜色、被光照射的照射面的材质及表示每单位长度的像素数的分辨率之间的对应关系。图像处理部处理通过向被摄体照射从多个光源之中选择出的光源的光并利用拍摄部对被摄体进行拍摄而得到的被摄体图像。被摄体图像的分辨率有时根据照射到被摄体的光的颜色或被摄体的照射面的材质不同而不同。因此,图像处理部基于照射到被摄体的光的颜色和被摄体的照射面的材质,根据对应关系,求出分辨率,并使用分辨率对被摄体图像进行处理。因此,能够抑制对拍摄被摄体而得到的图像进行处理时的倍率色差和被摄体的照射面的材质的影响。本公开的元件安装机是具备上述任意一种拍摄单元的元件安装机,上述保持部保持从元件供给部供给的作为上述被摄体的元件并在基板上移动,在上述基板的预定位置解除上述元件的保持,上述拍摄部设于上述保持部保持上述元件并在上述基板上移动的移动路径上,上述图像处理部通过使用上述分辨率对作为上述被摄体图像的上述元件的拍摄图像进行处理来识别上述元件相对于上述保持部的位置。根据本公开的元件安装机,由于具备上述任意一个拍摄单元,因此能够得到与上述任意一个拍摄单元相同的效果。附图说明图1是元件安装机10的立体图。图2是零件相机40的结构的概略说明图。图3是表示与元件安装机10的控制相关的结构的框图。图4是分辨率校正例程的流程图。图5是倍率色差的说明图。图6是用于分辨率的运算的参数的说明图。图7是元件拍摄处理例程的流程图。具体实施方式以下,参照附图来说明本公开的拍摄单元及元件安装机的优选的实施方式。图1是元件安装机10的立体图,图2是零件相机40的结构的概略说明图,图3是表示与元件安装机10的控制相关的结构的框图。另外,在本实施方式中,左右方向(x轴)、前后方向(y轴)及上下方向(z轴)如图1所示。元件安装机10具备:基台12、设置于基台12上的安装机主体14、及安装于安装机主体14的作为元件供给装置的带盘单元70。安装机主体14以能够更换的方式设置于基台12。该安装机主体14具备:基板输送装置18、头24、吸嘴37、零件相机40及控制装置60。基板输送装置18是输送和保持基板16的装置。该基板输送装置18具备支撑板20、20和输送带22、22(在图1中仅示出单侧)。支撑板20、20是沿着左右方向延伸的部件,在图1中的前后隔开间隔地设置。输送带22、22以环状的方式架设在设于支撑板20、20的左右的驱动轮及从动轮。基板16被载放于一对输送带22、22的上表面而被从左向右输送。该基板16能够被多个立设的支撑销23从背面侧支撑。因此,基板输送装置18还发挥作为基板支撑装置的作用。头24安装于x轴滑动件26的前表面。x轴滑动件26安装于y轴滑动件30的前表面。y轴滑动件30以能够滑动的方式安装于沿着前后方向延伸的左右一对导轨32、32。在y轴滑动件30的前表面设有沿着左右方向延伸的上下一对导轨28、28。x轴滑动件26以能够滑动的方式安装于该导轨28、28。头24伴随着x轴滑动件26沿着左右方向移动而沿着左右方向移动,伴随着y轴滑动件30沿着前后方向移动而沿着前后方向移动。另外,各滑动件26、30分别由驱动马达26a、30a(参照图3)驱动。另外,头24内置有z轴马达34,通过z轴马达34来调整安装于沿着z轴延伸的滚珠丝杠35的吸嘴37的高度。此外,头24内置有使吸嘴37进行轴旋转的q轴马达36(参照图3)。吸嘴37是在吸嘴前端吸附并保持元件和对吸附于吸嘴前端的元件进行吸附解除的部件。吸嘴37能够由未图示的压力供给源供给压力,例如,当被供给有负压时,吸附元件,当停止负压的供给或者被供给正压时,对元件进行吸附解除。吸嘴37从头24的主体底面向下方突出。另外,吸嘴37通过z轴马达34而沿着z轴方向进行升降,从而对吸附于吸嘴37的元件的高度进行调整。通过q轴马达36而使吸嘴37旋转,从而对吸附于吸嘴37的元件的方向进行调整。零件相机40配置于基板输送装置18的前侧的支撑板20的前方。关于零件相机40,零件相机40的上方是拍摄范围,从下方对保持于吸嘴37的元件进行拍摄而生成拍摄图像。如图2所示,零件相机40具备照明部41和拍摄部49。照明部41对作为拍摄对象的元件照射光。该照明部41具备:壳体42、连结部43、落射光源44、半反射镜46及多段光源47。壳体42是上表面及下表面(底面)呈八边形状地开口的碗状的部件。壳体42的上表面的开口大于下表面的开口,形成随着从下表面靠近上表面而内部空间变大的趋势的形状。连结部43是连结壳体42与拍摄部49的筒状的部件。落射光源44具有多个led45。半反射镜46将来自落射光源44的led45的水平方向上的光向上方反射。另外,半反射镜46使来自上方的光朝着拍摄部49透过。多段光源47具备:上段光源47a、中段光源47b及下段光源47c。上段光源47a具有多个led48a,中段光源47b具有多个led48b,下段光源47c具有多个led48c。led48a~48c均向从光轴49a倾斜的方向照射光。在led48a~48c的照射方向从光轴49a起的倾斜角中,led48a最大,led48a向大致水平方向照射光。另外,在该倾斜角中,led48c最小。上段光源47a因向大致水平方向照射光而将其称为侧射光源,中段光源47b因向斜上方照射光而将其称为倾斜光源。在本实施方式中,上段光源47a的led48a为蓝色led,中段光源47b的led48b、下段光源47c的led48c及落射光源44的led45为红色led。拍摄部49基于接收到的光来生成拍摄图像。该拍摄部49具备未图示的透镜等光学系统及拍摄元件(例如ccd)。当从落射光源44及多段光源47发出并被拍摄对象的元件反射后的光透过半反射镜46而到达拍摄部49时,拍摄部49接收该光而生成拍摄图像。带盘单元70具备多个带盘72,以可拆装的方式安装于安装机主体14的前侧。在各带盘72上卷绕有带。在带的表面沿着带的长度方向设有多个收纳凹部。在各收纳凹部中收纳有元件。这些元件被覆盖带的表面的薄膜保护。这样的带被从带盘向后方放卷,在供料器部74中被剥离薄膜而成为元件露出的状态。该露出状态下的元件被吸嘴37吸附。带盘单元70的动作由各供料器部74具备的供料器控制器76(参照图3)控制。如图3所示,控制装置60具备:cpu61、存储部63(rom、ram、hdd等)、输入输出接口65等,它们经由总线66而连接。该控制装置60向基板输送装置18、x轴滑动件26的驱动马达26a、y轴滑动件30的驱动马达30a、z轴马达34、q轴马达36、零件相机40及吸嘴37用的未图示的压力供给源输出驱动信号。另外,控制装置60输入来自零件相机40的拍摄图像。控制装置60与带盘单元70的供料器控制器76以能够通信的方式连接。另外,虽未图示,但是在各滑动件26、30装备有未图示的位置传感器,控制装置60输入来自这些位置传感器的位置信息,并控制各滑动件26、30的驱动马达26a、30a。接着,说明元件安装机10的动作。控制装置60的cpu61从未图示的管理计算机接收生产作业。生产作业是规定了在元件安装机10中以怎样的顺序将哪个元件种类的元件安装于基板16、另外对多少块基板16进行元件的安装等的信息。cpu61当接收到生产作业时,首先,读出在该生产作业中向基板16安装的所有元件种类,执行分辨率的校正(校准)。图4是分辨率校正例程的流程图。在说明分辨率校正例程之前,对倍率色差进行说明。倍率色差是指因相对于光轴倾斜地入射的光在像面的不同位置成像而导致越靠近图像周边越会产生颜色偏差的现象。具体地说,如图5所示,在蓝色光和红色光中,即使焦点的距离相同,距透镜的中心线的距离也不同。另外,也因光所照射的照射面的材质不同而不同。在本实施方式中,通过校正图像处理时的分辨率来消除这样的倍率色差和照射面的材质的影响。cpu61在开始图4的分辨率校正例程时,首先,将本次的生产作业中使用的一个元件种类设定为测定对象的元件种类,使吸嘴37吸附该元件种类的元件(s100)。具体地说,cpu61控制各部,以使吸嘴37与由供给该元件种类的元件的供料器部74送出至预定的元件供给位置的元件相向,并向吸嘴37供给负压,以使吸嘴37吸附该元件。接着,cpu61以使吸嘴37的中心与第一地点p1一致的方式使吸嘴37移动(s110)。第一地点p1是元件安装机10的坐标上的一点,设定在零件相机40的上方的拍摄范围内(参照图6)。接着,cpu61用各种点灯光照射吸附于吸嘴37的元件并进行拍摄,且将拍摄到的图像作为第一地点图像存储于存储部63(s120)。在此,各种点灯光是指红色光、蓝色光、红色光+蓝色光这三种点灯光。cpu61首先用红色led(中段光源47b的led48b、下段光源47c的led48c及落射光源的led45)照射元件并进行拍摄,接着,用蓝色led(上段光源47a的led48a)照射元件并进行拍摄,接着用红色led及蓝色led照射元件并进行拍摄。cpu61将本次的元件种类和在各种点灯光下拍摄到的第一地点图像建立对应地存储于存储部63。接着,cpu61使吸嘴37移动,以使吸嘴37的中心与第二地点p2一致(s130)。第二地点p2是元件安装机10的坐标上的一点,设定在零件相机40的上方的拍摄范围内(参照图6)。第二地点p2被设定在从第一地点p1起沿着x轴向左方向离开了预定的长度lx[μm]的位置。接着,cpu61利用各种点灯光照射吸附于吸嘴37的元件并对该元件进行拍摄,将拍摄到的图像作为第二地点图像存储于存储部63(s140)。cpu61首先利用红色led照射元件并进行拍摄,接着利用蓝色led照射元件并进行拍摄,接着利用红色led及蓝色led照射元件并进行拍摄。cpu61将本次的元件种类和用各种点灯光拍摄到的第二地点图像建立对应地存储于存储部63。接着,cpu61针对本次的元件种类运算各种点灯光下的分辨率并保存于存储部63(s150)。图6是用于分辨率的运算的参数的说明图。如图6所示,cpu61求出用红色光拍摄到的第一地点图像(图6中的右侧)的元件中心的像素位置c与用红色光拍摄到的第二地点图像(图6中的左侧)的元件中心的像素位置c之间的像素数px,求出该元件种类的红色光下的分辨率(=lx/px)[μm/pixel]。另外,第一地点p1处的元件中心c与第二地点p2处的元件中心c的长度[μm]和吸嘴中心的第一地点p1与第二地点p2的长度lx[μm]一致。cpu61对于蓝色光、红色光+蓝色光也相同地求出分辨率。并且,将本次的元件种类、点灯光及分辨率之间的对应关系追加到表1所示的分辨率校正表格中而保存于存储部63。[表1]接着,cpu61使吸附于吸嘴37的元件返回到供料器部74的原来的位置(s160),判定是否对向基板16安装的所有元件种类进行了处理(s170)。若在s170中作出否定判定,则cpu61将未处理的元件种类设定为测定对象(s180),再次进行s100以后的处理。另一方面,若在s170中作出肯定判定,则cpu61结束本例程。由此,完成表示在本次的生产作业中使用的元件种类(例如元件种类pa~pd)、点灯光及分辨率之间的对应关系的表1的分辨率校正表格。接下来,说明元件安装机10进行元件安装处理时的动作。控制装置60的cpu61基于生产作业而控制元件安装机10的各部,来生产安装有多个元件的基板16。图7是元件安装处理例程的流程图。cpu61在开始元件安装处理程序时,首先,将计数器的变量n设定为1(s200),使吸嘴37吸附第n个元件(s210)。接着,cpu61从在存储部63中保存的点灯光表格(参照表2)取得与本次的元件的元件种类对应的点灯光(s220)。点灯光表格表示元件种类、该元件种类的元件的照射面的材质及拍摄该元件种类的元件时所使用的点灯光之间的对应关系。基于预先通过预备实验等对各元件种类的元件调查最适于拍摄的点灯光的结果而制作点灯光表格。另外,也可以从点灯光表格中省略元件的照射面的材质。[表2]元件种类材质点灯光paa蓝色光pbb红色光pca红色光+蓝色光pdc红色光………接着,cpu61执行元件拍摄处理(s230)。具体地说,cpu61使吸附于吸嘴37的元件向零件相机40的上方的拍摄范围移动,将在s220中取得的点灯光向该元件照射并使零件相机40拍摄该元件。接着,cpu61从表1的分辨率校正表格中取得与本次的元件种类和所使用的点灯光对应的分辨率(s240),使用得到的元件的图像和取得的分辨率,识别元件相对于吸嘴37的中心的位置(s250)。拍摄到的图像中的吸嘴37的中心的位置是已知的。吸嘴37的中心被控制为与元件的预定的吸附位置(通常为元件的中心)一致。但是,由于元件的供给位置的偏差等,吸嘴37的中心错开元件的预定的吸附位置而进行吸附的情况较多。因此,在s250中,识别元件的预定的吸附位置与吸嘴37的中心的偏差量。从图像中得到的偏差量的单位是像素。因此,使用分辨率将像素置换为长度的单位(在此为μm)。如上所述,分辨率取决于元件种类(换言之元件种类的照射面的材质)和点灯光。在此,使用根据表1的分辨率校正表格求出的适当的分辨率,将元件相对于吸嘴37的中心的预定的吸附位置的偏差量的单位从像素置换为长度(μm)。因此,被置换为长度的单位的偏差量成为精度较高的数值。接着,cpu61将吸附于吸嘴37的元件向基板16的指定位置安装(s260)。具体地说,cpu61以考虑元件相对于吸嘴37的中心的偏差量(长度的单位)地将元件配置在基板16的指定位置的正上方的方式控制各部,并向吸嘴37供给正压,以使吸嘴37在该位置释放元件。接着,cpu61判定是否结束了所有元件的安装(s270)。若在s270中为否定判定,则cpu61将计数器的变量n加1(s280),再次进行s210以后的处理。另一方面,若在步骤s270中为肯定判定,则cpu61结束本例程。由此,在一块基板16上安装所有元件种类的元件。然后,cpu61重复该元件安装处理例程,直到完成元件安装的基板16达到生产作业内的生产预定块数为止。在此,对本实施方式的构成要素与本公开的拍摄单元的构成要素的对应关系进行说明。本实施方式的拍摄部49相当于本发明的拍摄单元的拍摄部,吸嘴37相当于保持部,照明部41相当于光照射部,存储部63相当于存储部,cpu61相当于图像处理部。另外,元件相当于被摄体。在以上说明的本实施方式中,拍摄元件而得到的图像的分辨率有时根据向元件照射的光的颜色或元件的照射面的材质不同而不同。因此,cpu61基于向元件照射的光的颜色和元件种类(元件的照射面的材质的一个例子),根据分辨率校正表格,求出分辨率,并使用该分辨率对元件的图像进行处理。因此,能够抑制对拍摄元件而得到的图像进行处理时的倍率色差和照射面的材质的影响。另外,照明部41包含红色led(中段光源47b的led48b、下段光源47c的led48c及落射光源44的led45)和蓝色led(上段光源47a的led48a)。因此,能够以红色光、蓝色光、红色光+蓝色光这三种模式中的任一种来照射元件。特别是在以红色光+蓝色光的模式照射元件时,有时分辨率因元件种类而不同,因此应用本公开的技术的意义较高。另外,本发明不受上述实施方式的任何限定,只要属于本发明的技术范围,就能够以各种方式进行实施,这是不言而喻的。例如,在上述实施方式中,作为分辨率校正表格,使用了表示元件种类、点灯光及分辨率之间的对应关系的表格(表1),但是也可以使用表示元件的照射面的材质、点灯光及分辨率之间的对应关系的表格(表3)。作为元件的照射面的材质,例如,在原材料直接作为照射面的情况下是该原材料本身。作为原材料,没有特别限定,例如能够举出铁、铜、银、金、氧化铝陶瓷、氧化锆陶瓷、丙烯酸树脂、环氧树脂等。此外,例如,在照射面被着色剂着色的情况下,照射面的材质是着色剂,在照射面被涂覆剂涂覆的情况下,照射面的材质是涂覆剂。另外,若确定了元件种类,则元件的照射面的材质也必然确定,因此能够将元件种类称为元件的照射面的材质的一个例子。在不同的两个以上的元件种类的元件的照射面的材质相同的情况下,采用表示元件的照射面的材质、点灯光及分辨率之间的对应关系的表格(表3)时,数据大小变小。例如,在表1中,针对四个元件种类pa~pd中的每一个,以点灯光为单位与分辨率建立对应。在此,元件种类pa和元件种类pc如表2所示,照射面都是材质a。因此,若采用取代元件种类而使用材质的表3的表格,则数据数量变少。[表3]在上述实施方式中,作为分辨率,使用了分辨率本身,但是也可以使用相对于预定的基准分辨率的修正系数。作为预定的基准分辨率,能够使用根据向基准材质(例如白色陶瓷片)照射光时得到的图像求出的分辨率。在上述实施方式中,使用在使吸嘴37沿着x方向移动时测定出的分辨率来制作分辨率校正表格,但是也可以使用在使吸嘴37沿着y方向移动时测定出的分辨率来制作分辨率校正表格。或者,也可以针对x方向上的分辨率和y方向上的分辨率分别制作分辨率校正表格,在将x方向上的像素数转换为长度时使用x方向上的分辨率,在将y方向上的像素数转换为长度时使用y方向上的分辨率。在上述实施方式中,制作了将三个点灯光的分辨率与元件种类建立对应而得到的分辨率校正表格(表1),但是在如表2的点灯光表格所示那样以元件种类为单位已知最佳的点灯光的情况下,也可以仅制作使最佳的点灯光的分辨率与元件种类建立对应而得到的分辨率校正表格(例如元件种类pa仅为蓝色光的分辨率、元件种类pb仅为红色光的分辨率)。这样,能够缩短制作分辨率校正表格的时间。在上述实施方式中,使用元件安装机10来制作分辨率校正表格,但是也可以取代元件安装机10而准备与元件安装机10不同的离线摄像机,在该离线摄像机上安装与照明部41相同的照明部,与上述步骤相同地制作分辨率校正表格。在上述实施方式的分辨率校正例程中,针对在生产作业中使用的所有元件种类运算了分辨率,但是对于各点灯光的分辨率已存储于存储部63的元件种类也可以跳过s100~s160的处理。在上述实施方式中,使用了具备一个吸嘴37的头24,但是也可以使用在圆周方向上具备多个吸嘴的旋转头。在上述实施方式中,作为点灯光,例示了蓝色光、红色光、蓝色光及红色光这三种,但是未特别限定于此,也可以取代这些点灯光或者在此基础上使用其他点灯光(例如绿色光、uv光、ir光等)。在上述实施方式中,作为本公开的拍摄单元的构成要素例示了零件相机40,但是不特别限定于此,只要是具有在透镜侧未进行色差的对策的多色照明装置的相机,则可以是任意的相机。在上述实施方式中,作为本公开的拍摄单元的保持部例示了吸嘴37,但是不特别限定于此,例如也可以是机械卡盘或电磁铁。在上述实施方式中,作为本公开的元件安装机的元件供给部例示了带盘单元70,但是不特别限定于此,例如,也可以采用在托盘上载置元件并进行供给的托盘单元。本公开的拍摄单元也可以如以下那样构成。在本公开的拍摄单元中,也可以是,上述多个光源至少包含蓝色的光源和红色的光源。在该情况下,能够以蓝色、红色、红色+蓝色这三种模式中的任一种来照射被摄体。特别是在以红色+蓝色的模式来照射被摄体时,分辨率有时因被摄体的材质而不同,因此应用本公开的技术的意义较高。在本公开的拍摄单元中,作为上述分辨率,既可以使用分辨率本身,也可以使用相对于预定的基准分辨率的修正系数。预定的基准分辨率是指根据向基准材质(例如白色陶瓷片)照射光时得到的图像而求出的分辨率。在本公开的拍摄单元中,也可以是,上述被摄体是向基板安装的元件,作为上述照射面的材质,使用上述元件的种类。这样,光的颜色、元件的种类及分辨率之间的对应关系被存储于存储部,能够根据该对应关系,基于光的颜色和元件的种类来求出分辨率。产业上的可利用性本发明能够应用于与拍摄保持于保持部的元件的作业相伴的产业。附图标记说明10、元件安装机;12、基座;14、安装机主体;16、基板;18、基板输送装置;20、支撑板;22、输送带;23、支撑销;24、头;26、x轴滑动件;26a、驱动马达;28、导轨;30、y轴滑动件;30a、驱动马达;32、导轨;34、z轴马达;35、滚珠丝杠;36、q轴马达;37、吸嘴;40、零件相机;41、照明部;42、壳体;43、连结部;44、落射光源;45、led;46、半反射镜;47、多段光源;47a、上段光源;47b、中段光源;47c、下段光源;48a~48c、led;49、拍摄部;49a、光轴;60、控制装置;61、cpu;63、存储部;65、输入输出接口;66、总线;70、带盘单元;72、带盘;74、供料器部;76、供料器控制器。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1