电源装置及放电灯照明装置的制作方法

文档序号:8146521阅读:269来源:国知局
专利名称:电源装置及放电灯照明装置的制作方法
技术领域
本发明涉及将多个电容器作为电力供给源的电源装置和放电灯照明装置。
现有技术在特开平7-123733号公报中,记载了使用电容器和开关元件将电源频率变换为高频的电源装置。该电源装置通过用全波整流器对交流电源进行全波整流后的波形对电容器充电,在交流电源的正极也顺次开、关控制多个开关元件,根据电源电压给分别对应的电容器充电,在交流电源的负极顺次开、关控制多个开关元件,根据电源电压给分别对应的电容器充电,使用放电用开关元件,高速地开、关控制各开关元件,放电这些电容器,在负载中流过高频电流。
发明要解决的问题在这种电源装置中,由于负载变化,会产生电容器充电电压变化和输入电流波形畸变等问题。因此,第一本发明提供一种可将电容器的充电电压控制为恒定的电源装置。
在一般将电源装置作为放电灯等电灯的照明装置的电源时,现有的放电灯照明装置为了限制电灯电流,使用线圈等绕组部件。该线圈等绕组部件的重量和体积大,因此,难以实现装置的小型化、轻量化。因此,第二本发明提供一种不使用线圈等绕组部件而能限流控制电灯电流、可实现装置小型化轻量化的放电灯照明装置。
作为这种现有技术的放电灯照明装置将来自交流阶梯状电压发生源的交流阶梯状电压波形直接提供给放电灯,通过改变发生各电压的时间来控制交流阶梯状电压的有效值,使电灯电流恒定化。但是,在这种放电灯照明装置中,由于输入电流高频分量的制约,需要规定交流阶梯状电压的有效值控制范围,该有效值的控制范围为额定电压的±20%左右,对于超过该范围的负载电压,动作点不存在,因此,存在不能使该放电灯动作的情况。即,可适用的放电灯的电灯电压范围很窄。因此,第三本发明提供一种能扩大可适用的放电灯的电灯电压范围而且在放电灯短路时能防止流过过量电流的放电灯照明装置。
用于解决课题的手段权利要求1记载的发明是一种电源装置,多个可变电阻器和电容器的串联电路并联连接,通过商用电源电压经对应的可变电阻器对各电容器进行充电,各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间控制成阻抗无限大,从各电容器向负载顺次流过放电电流,所述电源装置具有阻抗控制单元,控制对应的可变电阻器的阻抗,使得在任意的可变电阻器中流过预先设定的目标值的输入电流;振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得任意电容器的充电电压为恒定。
权利要求2记载的发明具有多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和多个振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得对应于各阻抗控制单元控制阻抗的可变电阻器的电容器充电电压变为恒定。
权利要求3记载的发明具有多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将各电容器中充电目标值最高的电容器的充电电压变为恒定,各阻抗控制单元控制对应的可变电阻器的阻抗,使得在各可变电阻器中流过跟踪由振幅控制单元进行振幅控制的输入电流目标值的输入电流。
权利要求7记载的发明具有多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将各电容器中某个特定电容器的充电电压变为恒定,各阻抗控制单元控制对应的可变电阻器的阻抗,使得流过跟踪由振幅控制单元进行振幅控制的输入电流目标值的输入电流,并且,将某个特定的电容器切换为其他电容器。
权利要求8记载的发明具有多个直流电压源,产生不同的正电压值;开关电路,从各直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;极性反转电流,输入来自开关电路的阶梯状电压波形,输出交流的阶梯状电压波形;放电灯,提供来自极性反转电路的交流阶梯状电压波形;有效值检测部,检测在该放电灯中流动的电灯电流的有效值;和控制单元,控制开关电路,可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得有效值检测部检测的电灯电流的有效值变为恒定。
权利要求9记载的发明具有多个第一直流电压源,产生不同的正电压值;多个第二直流电压源,产生绝对值与各第一直流电压源的电压值相等的包含零电压值的负电压值;第一开关电路,从各第一直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;第二开关电路,以和第一开关电路不同的定时从第二直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;放电灯,提供来自各开关电路的阶梯状电压波形;有效值检测部,检测在该放电灯中流动的电灯电流的有效值;和控制单元,控制各开关电路,可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得有效值检测部检测的电灯电流的有效值变为恒定。
权利要求10记载的发明是一种放电灯照明装置,具有交流阶梯状电压发生源,电压值台阶状变化,正弦波那样增减的阶梯状正电压波形和电压值台阶状变化,交替地输出正弦波那样增减的阶梯状负电压波形;放电灯,提供来自交流阶梯状电压发生源的交流阶梯状电压波形;和串联连接在交流阶梯状电压发生源和放电灯之间的电容器。


图1是包含表示本发明第一实施例的部分功能块的电路构成图;图2是包含表示第一实施例中驱动电路具体构成的部分功能块的电路构成图;图3是包含表示本发明第二实施例的部分功能块的部分电路构成图;图4是包含表示本发明第三实施例的部分功能块的部分电路构成图;图5是用于说明第三实施例变为检测并控制目标电压值最高的电容器充电电压的构成根据的电源电压和输入电流的波形图;图6是包含表示本发明第4实施例的部分功能块的部分电路构成图;图7是包含表示本发明第5实施例的部分功能块的部分电路构成图;图8是包含表示本发明第6实施例的部分功能块的部分电路构成图;图9是包含表示本发明第7实施例的部分功能块的部分电路构成图;图10是包含表示本发明第8实施例的部分功能块的部分电路构成图;图11是包含表示本发明第9实施例的部分功能块的部分电路构成图;图12是包含表示本发明第10实施例的部分功能块的部分电路构成图;图13是包含表示本发明第11实施例的部分功能块的电路构成图;图14是表示第11实施例中提供给放电灯的阶梯状电压波形的一个例子的图;图15是表示第11实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;图16是包含表示本发明第12实施例的部分功能块的电路构成图;图17是包含表示本发明第13实施例的部分功能块的电路构成图;图18是表示本发明第14实施例中提供给放电灯的阶梯状电压波形的一个例子的图;图19是表示第14实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;图20是表示第14实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;图21是表示第14实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;图22是表示本发明第15实施例中来自全波整流器的输出电压波形和各电容器充电电压的关系图;图23是表示第15实施例中提供给极性反转电路的高频阶梯状电压波形的图;图24是包含表示本发明第16实施例的部分功能块的电路构成图;图25是表示用于和本发明第17实施例中电灯电流有效值变化时提供给放电灯的阶梯状电压波形比较的正弦波波形的图;
图26是表示第17实施例中电灯电流有效值变化时的输入电流波形的图;图27是包含表示本发明第18实施例的部分功能块的电路构成图;图28是表示第18实施例中输入电压波形和阶梯状电压波形的有效值为额定值时由输入电流目标波形成形电路成形的输入电流目标波形的图;图29是表示第18实施例中,阶梯状电压波形有效值高于额定值时由输入电流目标波形成形电路成形的输入电流目标波形与正弦波的输入电流波形相比较的图;图30是表示第18实施例中,阶梯状电压波形有效值低于额定值时由输入电流目标波形成形电路成形的输入电流目标波形与正弦波的输入电流波形相比较的图;图31是包含表示本发明第19实施例的部分功能块的电路构成图;图32是表示第19实施例中,不使用电容器而将交流阶梯状电压波形直接提供给放电灯时的负载特性的图;图33是表示第19实施例中,通过电容器向放电灯提供交流阶梯状电压波形,且交流阶梯状电压波形的有效值为恒定的条件下的负载特性的图;图34是表示第19实施例中,通过电容器向放电灯提供交流阶梯状电压波形,且可改变交流阶梯状电压波形的各电压的时间宽度来控制有效值时的负载特性的图;图35是包含表示本发明第20实施例的部分功能块的电路构成图;图36是表示在涉及本发明的第21实施例中,设交流阶梯状电压波形的各电压的时间宽度的平均值为ts、由第一电容器的电容和额定照明时的放电灯的等价电阻决定的时间常数为CR时的CR/ts和波形因数的关系曲线;图37是表示在第21实施例中,设交流阶梯状电压波形的台阶数为5个台阶时的交流阶梯状电压波形和第一电容器的电容变化时的放电灯两端之间产生的电压波形的波形图;图38示出了在第21实施例中,设交流阶梯状电压波形的台阶数为11个台阶时的交流阶梯状电压波形和第一电容器的电容变化时的放电灯两端之间产生的电压波形的波形图;图39示出了在第21实施例中,设交流阶梯状电压波形的台阶数为21个台阶时的交流阶梯状电压波形和第一电容器的电容变化时的放电灯两端之间产生的电压波形的波形图;图40是表示根据本发明的第22实施例的电路构成图;图41是表示第22实施例中交流阶梯状电压波形和流入放电灯的负载电流波形的波形图;图42是表示在第22实施例中使用的两极性开关的另一个电路构成图;图43示出了根据本发明第23实施例的电路构成图;图44示出了根据本发明第24实施例的电路构成图;图45示出了在第24实施例中从交流阶梯状电压发生源输出的交流阶梯状电压波形例的图;图46是根据本发明第25实施例的电路构成图;图47是表示第25实施例中开关元件具体例的部分电路构成图。
发明实施例以下,参照图1至图12对第一本发明的第一至第十实施例进行说明。第一至第十实施例的说明中及图1至图12中的符号适用于第一至第十实施例。
第一实施例如图1所示,全波整流电路2的输入端子连接到商用交流电源1上,MOS型FET(场效应晶体管)构成的可变电阻器4-1、4-2、……、4-n、由电阻器等阻抗元件构成的输入电流检测电路5-1、5-2、……、5-n和电容器6-1、6-2……6-n的串联电路顺极性地通过各个二极管3-1、3-2、……、3-n分别并联连接到该全波整流电路2的输出端子上。
上述各可变电阻器4-1、4-2…4-n控制MOS型FET的栅极、源极间的偏压,在非饱和区域中驱动它,由此实现将其作为可变电阻器的功能,因此控制成仅在分别通过驱动电路7-1、7-2…7-n充电对应的电容器6-1、6-2…6-n期间,将阻抗控制为有限值,在其以外的期间内,阻抗为无限大。
驱动电源8-1、8-2…8-n分别连接到上述各驱动电路7-1、7-2…7-n上。上述各输入电流检测电流5-1、5-2…5-n的两端电压输入到上述各驱动电路7-1、7-2…7-n中。上述各驱动电路7-1、7-2…7-n及各驱动电源8-1、8-2…8-n的基极电位分别变成各电容器6-1、6-2…6-n的充电电压。
上述各驱动电路7-1、7-2…7-n由阻抗控制单元和振幅控制单元构成。具体地说,图2中,驱动电流7-1由阻抗控制单元7-11和振幅控制单元7-12构成,阻抗控制单元7-11由驱动控制可变电阻器4-1的驱动电流11、第一误差放大器12构成。上述振幅控制单元7-12由乘法器13、输入电流目标值设定电路14、对应电容器6-1的电压检测电路15、第二误差放大器16构成。
在上述输入电流目标值设定电路14中设定用于设定输入电流目标值的正弦波形数据,将其正弦波形数据提供给上述乘法器13。电阻分压电路17并联连接到上述电容器6-1上,通过输出电路18输出电阻分压电路17的分压点电压。这样,输入电路19取得来自上述输出电路18的输出后输入到上述电压检测电路15中。上述输出电路18和输入电路19的关系例如是光电耦合器中发光二极管和光电晶体管的关系,输入电路19绝缘并取得来自输出电路18的输出信号。
上述电压检测电路15通过来自输入电路19的信号检测上述电容器6-1的充电电压,将该检测输出提供给上述第二误差放大器16的反转输入端子(-)。在上述第二误差放大器16的非反转输入端子(+)上施加设定充电电压目标值的基准电压Vref。
上述第二误差放大器16将电压检测电路15检测的电容器6-1的充电电压和基准电压Vref相比较,将与其差对应的电压信号提供给上述乘法器13。上述乘法器13根据来自第二误差放大器16的电压信号控制来自上述输入电流目标值设定电路14的正弦波形数据的振幅。
即,电容器6-1的充电电压比基准电压Vref低时,乘法器13根据来自第二误差放大器16的电压信号进行增大来自输入电流目标值设定电路14的正弦波形数据的振幅的控制,电容器6-1的充电电压比基准电压Vref高时,乘法器13根据来自第二误差放大器16的电压信号进行减小来自输入电流目标值设定电路14的正弦波形数据的振幅的控制。
上述乘法器13的输出提供给第一误差放大器12的非反转输入端子(+)。上述输入电流检测电路5-1的输出提供给上述第一误差放大器12的反转输入端子(-)。
上述第一误差放大器12将乘法器13的输出和输入电流检测电路5-1的输出相比较,根据差驱动上述驱动电路11,驱动电路11根据差可变控制可变电阻器4-1的阻抗。图2虽然对驱动电路7-1的构成作了说明,但在其他的驱动电路7-2~7-n中构成也是一样的。
这里虽然未图示,但上述各电容器6-1、6-1…6-n分别通过开关电路和极性反转电路连接到负载上,通过顺次使各开关电路开、关动作,通过极性反转电路将各电容器6-1、6-2…6-n的充电电压顺次提供给负载,可交流驱动负载。
在这种构成中,控制成在全波整流电路2的输出电压上升的同时,通过分别对应的驱动电路7-1、7-2…7-n顺次将各可变电阻器4-1、4-2…4-n变为规定的阻抗,通过各可变电阻器4-1、4-2…4-n流过期望的输入电流,分别充电各电容器6-1、6-2…6-n。
即,首先,将可变电阻器4-1的阻抗从无限大控制为规定阳抗值且流过向电容器6-1的充电电流,控制可变电阻器4-1的阻抗使得充电电流变成作为目标值设定的输入电流。此外,来自全波整流电路2的输入电压等于下级的电容器6-2的充电电压时,将可变电阻器4-1的阻抗控制为无限大且停止对电容器6-1充电,取而代之,将可变电阻器4-2的阻抗从无限大控制为规定的阻抗值,并开始对电容器6-2充电。此外,控制可变电阻器4-2的阻抗,使得充电电流变成作为目标值设定的输入电流。
这样,在来自全波整流器2的输入电压波形上升期间,可变电阻器4-1、4-2…4-n的阻抗以规定定时从无限大切换为有限值,而且,可变控制阻抗并顺次进行对各电容6-1、6-2…6-n的充电。
在来自全波整流器2的输入电压波形下降期间,若电容器6-n的充电电压等于输入电压,则在可变电阻器4-n的阻抗切换为无限大的同时,可变电阻器4-(n-1)的阻抗切换为有限值,代替向电容器6-n而开始向电容器6-(n-1)充电。在对电容器6-(n-1)充电过程中,进行可变电阻器4-(n-1)的阻抗减少的控制,控制输入电流。
通过进行这种控制,来自全波整流器2的输入电流波形变成和输入电压波形几乎相同相位的正弦波。由此,可充分抑制输入电流中的高频分量,改善功率因数。
在进行这种控制时,由于负载发生变化,存在电容器6-1、6-2…6-n的充电电压比目标值低或高的情况。例如,出现电容器6-1、6-2…6-n的充电电压比目标值低的情况时,驱动电路7-1、7-2…7-n的电压检测电路15分别对其进行检测,第二误差放大器16将作为充电电压目标值的基准电压Vref和检测电压相比较。其误差输出到乘法器13中。乘法器13通过来自第二误差放大器16的误差输出进行增大来自输入电流目标值设定电路14的正弦波形数据的振幅的控制。
第一误差放大器12将振幅大的目标值的输入电流和输入电流检测电路5-1、5-2…5-n检测的实际输入电流相比较,其误差输出提供给驱动电路11。驱动电路11控制可变电阻器4-1、4-2…4-n的阻抗,使得实际的输入电流接近目标值的输入电流。由此,电容器6-1、6-2…6-n的充电电压比目标值低时,控制可变电阻器4-1、4-2…4-n的阻抗,使得在电容器6-1、6-2…6-n中流过比较多的充电电流,将电容器6-1、6-2…6-n的充电电压控制为目标值。
电容器6-1、6-2…6-n的充电电压比目标值高时,相反,控制可变电阻器4-1、4-2…4-n的阻抗,使得在电容器6-1、6-2…6-n中流过比较少的充电电流,将电容器6-1、6-2…6-n的充电电压控制为目标值。
这样,及时负载发生变化,电容器6-1、6-2…6-n的充电电压也总是被控制为目标值而变为恒定。由此,即使负载发生变化,也能使提供给负载的电压稳定化。
第二实施例和实施例第一实施例相同的部分用相同的符号表示,详细说明从略。
如图3所示,对整个电路的基准电位设置输入电流目标值设定电路141,来自输入电流目标值设定电路141的作为目标值的输入电流的正弦波形数据分别提供给乘法器13-1、13-2…。此外,来自各乘法器13-1、13-2…的输出分别通过电平移动电路20-1、20-2…提供给第一误差放大器12-1、12-2…的非反转输入端子(+)。
即,在该电源装置中,驱动电路11-1、11-2…及第一误差放大器12-1、12-2…的基极电位分别是各电容器6-1、6-2…的充电电压,电压检测电路15-1、15-2…及第二误差放大器16-1、16-2…的基极电位变成作为整个电路基准电位的全波整流电路2的输出端子中负极端子的电位。因此,需要使用电平移动电路20-1、20-2…用每个电容器来移动基极电位的电平。电压检测电路15-1、15-2…构成为从电容器6-1、6-2…检测直接电压。
这种构成的电源装置中,在出现负载变化且电容器6-1、6-2…的充电电压比目标值低时,电压检测电路15-1、15-2…对其进行检测,第二误差放大器16-1、16-2…比较作为充电电压目标值的基准电压Vref1、Vref2…和检测电压。而且,将其误差输出到乘法器13-1、13-2…中。乘法器13-1、13-2…通过来自第二误差放大器16-1、16-2…的误差输出进行增大来自输入电流目标值设定电路141的正弦波形数据的振幅的控制。来自乘法器13-1、13-2…的输出通过电平移动电路20-1、20-2…进行电平移动后输入到第一误差放大器12-1、12-2…中。
第一误差放大器12-1、12-2…比较振幅变大的目标值的输入电流和输入电流输出电路5-1、5-2…检测出的实际输入电流,将其误差输出提供给驱动电路11-1、11-2…。驱动电路11-1、11-2…控制可变电阻器4-1、4-2…的阻抗,使得实际的输入电流接近目标值的输入电流。由此,在电容器6-1、6-2…的充电电压比目标值低时,控制可变电阻器4-1、4-2…的阻抗使得在电容器6-1、6-2…中流过较多的充电电流,将电容器6-1、6-2…的充电电压控制成目标值。
若电容器6-1、6-2…的充电电压比目标值高,这时,相反地,控制可变电阻器4-1、4-2…的阻抗使得在电容器6-1、6-2…中流过比较少的充电电流,将电容器6-1、6-2…的充电电压控制成目标值。
因此,本实施例和上述实施例一样,即使负载发生变化,电容器6-1、6-2…的充电电压也总是被控为目标值而变成恒定的,使提供给负载的电压稳定化。输入电流目标值设定电路141可通用化。
第三实施例和上述第一及第二实施例相同的部分用相同的符号表示,说明从略。
如图4所示,在n个电容器中,通过电压检测电路151直接检测目标电压值最高的电容器6-n的充电电压,将其检测输出输入到第二误差放大器161的反转输入端子(-)中。将设定电容器6-n的充电电压目标值的基准电压Vrefn输入到上述第二误差放大器161的非反转输入端子(+)中。
上述第二误差放大器161将电压检测电路151检测的电容器6-n的充电电压和基准电压Vrefn相比较,将与差对应的电压信号提供给乘法器131。上述乘法器131根据来自第二误差放大器161的电压信号控制来自输入电流目标值设定电路142的正弦波形数据的振幅。
即,和基准电压Vrefn相比,电容器6-n的充电电压低时,乘法器131根据来自第二误差放大器161的电压信号进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制,和基准电压Vrefn相比,电容器6-n的充电电压高时,乘法器131根据来自第二误差放大器161的电压信号进行减小来自输入电流目标值设定电路142的正弦波形数据的振幅的控制。而且,来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…提供给第一误差放大器12-n、12-(n-1)…的非反转输入端子(+)。
即,通过电源装置,驱动电路11-n、11-(n-1)…及第一误差放大器12-n、12-(n-1)…的基极电位分别为各电容器6-n、6-(n-1)…的充电电压,电压检测电路151和第二误差放大器161的基极电位变成作为整个电路的基准电位的全波整流电路2的输入端子中负极端子的电位。而且,需要使用电平移动电路20-n、20-(n-1)…来使每个电容器的基极电位电平移动。
在这种构成的电源装置中,在出现负载变化且电容器6-n的充电电压比目标值低时,电压检测电路151对其进行检测,第二误差放大器161比较作为充电电压目标值的基准电压Vrefn和检测电压。而且,将其误差输出到乘法器131中。乘法器131通过来自第二误差放大器161的误差输出进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制。来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…进行电平移动后输入到第一误差放大器12-n、12-(n-1)…中。
第一误差放大器12-n、12-(n-1)…比较振幅变大的目标值的输入电流和输入电流输出电路5-n、5-(n-1)…检测出的实际输入电流,将其误差输出提供给驱动电路11-n、11-(n-1)…。驱动电路11-n、11-(n-1)…控制可变电阻器4-n、4-(n-1)…的阻抗,使得实际的输入电流接近目标值的输入电流。由此,在电容器6-n的充电电压比目标值低时,控制可变电阻器4-n、4-(n-1)…的阻抗使得在电容器6-n、6-(n-1)…中流过较多的充电电流,将电容器6-n的充电电压控制成目标值。
若电容器6-n的充电电压比目标值高,这时,相反地,控制可变电阻器4-n、4-(n-1)…的阻抗使得在电容器6-n、6-(n-1)…中流过比较少的充电电流,将电容器6-n的充电电压控制成目标值。
因此,通过本实施例,构成为检测并控制目标电压值最高的电容器6-n的充电电压,对其依据进行描述。例如,考虑检测并控制目标电压值最高的电容器6-n以外的电容器6-(n-1)的充电电压。在电容器的充电电压比目标电压值低时,进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制,由此,进行这样的控制充电电流增加,电容器电压上升,充电电压接近目标值。
对检测充电电压的电容器以外的电容器也同样进行该控制。而且,对目标电压值最高的电容器6-n进行,电容器6-n的充电电压上升。但是,电容器6-n的充电电压不比电源电压即全波整流电路2的输出电压的峰值高。
另一方面,该电路的条件是构成可变电阻器4-n、4-(n-1)…的MOS型FET在能动区域即非饱和区域内动作,给对应于目标电压值最高的电容器6-n的可变电阻器4-n施加电容器6-n的充电电压和电源电压的差电压,该差电压变小时,MOS型FET的动作从非饱和区域向饱和区域靠近。而且,变成开关动作。在MOS型FET进行开关动作时,输入电流变成微分输入电压后的波形,相对图5(a)所示的电源电压波形,输入电流波形变成图5(b)所示峰值部分被切掉的畸变波形。
这样,在检测并控制目标电压值最高的电容器6-n以外的电容器6-(n-1)的充电电压时,就产生输入电流不平滑变化的问题。在这一点上,在检测并控制目标电压值最高的电容器6-n的充电电压时,不用担心构成对应于目标电压值最高的电容器6-n的可变电阻器4-n的MOS型FET进行开关动作,可总是在非饱和区域中动作,而且,可总是平滑地连续流过输入电流。
在本实施例中,在作为电源电压的来自全波整流电路2的输入电压波形上升期间,若某个电容器的电压不等于输入电压,则将对应的可变电阻器的阻抗从无限大切换成有限值并开始该电容器的充电。在来自全波整流电路2的输入电压波形下降期间,若前1个电容器的充电电压等于输入电压则开始某个电容器的充电,在该电容器的充电电压等于输入电压时停止。通过在各电容器间连续进行这种控制可连续地流过输入电流。输入电流目标值设定电路142、电压检测电路151、第二误差放大器161、乘法器131可通用化,可简化结构。
第四实施例和上述第一至第三实施例相同的部分用相同的符号表示,详细说明从略。
如图6所示,通过第一选择电路21由电压检测电路151检测n个电容器6-n、6-(n-1)…的充电电压。设置用于设定各电容器6-n、6-(n-1)…的充电电压目标值的基准电压Vrefn、Vref(n-1)…Vref1通过第二选择电路22将各基准电压提供给第二误差放大器161的非反转输入端子(+)。将选择信号S输入到上述各选择电路21、22中,进行检测充电电压的电容器的切换和基准电压的切换。即,根据电容器和基准电压来选择,使得在检测电容器6-n的充电电压时设定基准电压Vrefn,在检测电容器6-(n-1)的充电电压时设定基准电压Vref(n-1)。其他的构成和上述第三实施例基本相同。
在这种构成的电源装置中,例如,在通过选择信号S选择电容器6-n的充电电压检测和基准电压Vrefn的状态下,在负载发生变化且电容器6-n的充电电压比目标值低时,电压检测电路151对其进行检测,第二误差放大器161将作为充电电压的目标值的基准电压Vrefn和检测电压进行比较。将其误差输出到乘法器131中。乘法器131通过来自第二误差放大器161的误差输出进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制。来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…进行电平移动,并输入到第一误差放大器12-n、12-(n-1)…中。
第一误差放大器12-n、12-(n-1)…将振幅变大的目标值的输入电流和输入电流输出电路5-n、5-(n-1)…检测出的实际输入电流相比较,将其误差输出提供给驱动电路11-n、11-(n-1)…。驱动电路11-n、11-(n-1)…控制可变电阻器4-n、4-(n-1)…,使得实际的输入电流接近目标值的输入电流。由此,在电容器6-n的充电电压比目标值低时,控制可变电阻器4-n、4-(n-1)…的阻抗,使得不管在电容器6-n还是在其他的电容器6-(n-1)…中流过较多的充电电流。
但是,对于其他的电容器6-(n-1)…而言,由于不直接检测充电电压,所以,仍然会担心充电电压偏离目标值。在这点上,在本实施例中,通过选择信号S,在检测下一个电容器6-(n-1)的充电电压时选择基准电压Vref(n-1),因此,这一次,直接检测电容器6-(n-1)的充电电压。而且将电容器6-(n-1)的充电电压控制为目标值。
因此,在顺序切换检测充电电压的电容器的同时,与其对应地设定基准电压。由此,可使各电容器的充电电压确实接近目标值。即,可将各电容器的充电电压确实控制为目标值而变成恒定。
而且,本实施例和上述实施例一样,电容器6-n、6-(n-1)…的充电电压即使发生负载变化等,也能总是控制为目标值而变为恒定,可使向负载提供的电压稳定化,同时,输入电流可成正弦波状。
第五实施例和上述第一至第四实施例相同的部分用相同的符号表示,详细说明从略。
如图7所示,作为检测电容器的充电电压的电路,通过取得各电容器6-n、6-(n-1)…的充电电压,使用输出其平均值的电压平均值输出电路152,将来自电压平均值输出电路152的输出提供给第二误差放大器161的反转输入端子(-)。作为基准电压,设置设定各电容器6-n、6-(n-1)…的充电电压目标值的平均值的平均值基准电压Vrefav,该平均值基准电压Vrefav提供给上述第二误差放大器161的非反转输入端子(+)。
这样,通过电压平均值输出电路152求出各电容器6-n、6-(n-1)…的充电电压平均值的构成,例如在由于负载变化,充电电压的平均值变得低于平均值基准电压Vrefav时,第二误差放大器161将其差提供给乘法器131。由此,乘法器131增大来自输入电流目标值设定电路142的输入电流的正弦波形数据的振幅,提供各电平移动电路20-n、20-(n-1)…分别提供给各第一误差放大器12-n、12-(n-1)…。
而且,在本实施例中,在各电容器的充电电压平均值低于目标值时,控制可变电阻器4-n、4-(n-1)…的阻抗使得在各电容器中流过较多充电电流。若各电容器的充电电压平均值高于目标值,相反则控制可变电阻器4-n、4-(n-1)…的阻抗使得在各电容器中流过较少充电电流。
而且,在本实施例中,和上述实施例相同,即使发生负载变化等,也能将电容器6-n、6-(n-1)…的充电电压总是控制为目标值而变成恒定,可使向负载提供的电压稳定化,同时,输入电流成正弦波状。
第六实施例和上述第一至第五实施例相同的部分用相同的符号表示,详细说明从略。
本实施例用图8所示的电路来代替第五实施例的电压平均值输出电路152。该电路构成为检测控制和电容器的充电电压目标值之差最大的电容器中使用。其他的结构和第五实施例相同。
即,各电容器6-n、6-(n-1)…、6-1的充电电压分别输入到差检测器23-n、23-(n-1)…、23-1的一方的输入端子上同时输入到被控电压选择器26中。用于设定各电容器目标值的基准电压Vrefn、Vref(n-1)…Vref1提供给上述各差检测器23-n、23-(n-1)…、23-1的另一方输入端子,同时提供给目标电压选择器27。
上述各差检测器23-n、23-(n-1)…、23-1检测电容器6-n、6-(n-1)…、6-1的充电电压和基准电压Vrefn、Vref(n-1)…Vref1的差,将其检测输出分别提供给绝对值检测器24-n、24-(n-1)、…24-1。上述各绝对值检测器24-n、24-(n-1)、…24-1检测差的绝对值,将其输出提供给最大值检测器25。上述最大值检测器25检测绝对值的最大值,选择对应于其最大值的电容器的选择信号提供给上述被控电压选择器26,同时,将选择对应于其最大值的基准电压的选择信号提供给上述目标电压选择器27。
上述被控电压选择器26通过来自上述最大值检测器25的选择信号选择各电容器6-n、6-(n-1)…、6-1的一个充电电压并输入到第二误差放大器161的反转输入端子(-)中。上述目标电压选择器27通过来自上述最大值检测器25的选择信号从基准电压Vrefn、Vref(n-1)…Vref1中选择对应于选择电容器的基准电压并输入到上述第二误差放大器161的非反转输入端子(+)中。
在这种构成中,由于负载变化,各电容器6-n、6-(n-1)…、6-1的充电电压变化。差检测器23-n、23-(n-1)…、23-1分别检测电容器6-n、6-(n-1)…、6-1的充电电压和设定目标值的基准电压Vrefn、Vref(n-1)…Vref1的差,接着,绝对值检测器24-n、24-(n-1)、…24-1检测差的绝对值,而且,最大值检测器25检测绝对值的最大值。即,最大值检测器25检测基准电压和充电电压的差最大的电容器。最大值检测器25将选择差最大的电容器的充电电压的选择信号提供给被控电压选择器26,同时,将选择对应于差最大的电容器的基准电压的选择信号提供给目标电压选择器27。
由此,第二误差放大器161求出差最大的电容器的充电电压和对应的基准电压的差并提供给乘法器131。乘法器131通过来自第二误差放大器161的误差输出控制来自输入电流目标值设定电路142的正弦波形数据的振幅。来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…进行电平移动,然后输入到第一误差放大器12-n、12-(n-1)…中。
第一误差放大器12-n、12-(n-1)…将控制振幅的目标值的输入电流和输入电流输出电路5-n、5-(n-1)检测出的实际输入电流相比较,将其误差输出提供给驱动电路11-n、11-(n-1)…。驱动电路11-n、11-(n-1)…控制可变电阻器4-n、4-(n-1)…的阻抗使得实际输入电流接近目标值的输入电流。由此,将对应的电容器的充电电压控制成接近目标值。
本实施例和上述实施例相同,即使发生负载变化等,电容器6-n、6-(n-1)…的充电电压也能总是被控制为目标值而变成恒定,可使提供给负载的电压稳定化,同时,输入电流可变为正弦波状。
第七实施例和上述第一至第六实施例相同的部分用相同的符号表示,详细说明从略。
如图9所示,本实施例用比值检测器28-n、28-(n-1)…28-1来代替第六实施例的差检测器23-n、23-(n-1)…、23-1,用和1的差检测器29-n、29-(n-1)…29-1来代替绝对值检测器24-n、24-(n-1)、…24-1。
该电路构成为通过上述比值检测器28-n、28-(n-1)…28-1检测出电容器的充电电压和目标值之比后,通过和1的差检测器29-n、29-(n-1)…29-1检测检测出的比和1的差的绝对值,通过最大值检测器25检测检测出的和1的差的绝对值最大的,在使充电电压接近目标值的控制中使用该检测出的电容器的充电电压和目标值。例如,检测出的比值为0.5和1.2等时,求出|0.5-1|=0.5、|1.2-1|=0.2等,最大值检测器25判断0.5>0.2。
这样,检测电容器的充电电压和目标值之比和1的差的绝对值最大的,并进行使电容器的充电电压接近目标值的控制,和上述实施例同样,即使发生负载变化等,总是将电容器6-n、6-(n-1)…、6-1的充电电压控制为目标值而变成恒定,可使提供给负载的电压稳定化,同时,输入电流可变为正弦波状。
第八实施例和上述第一至第七实施例相同的部分使用相同符号,详细说明从略。
如图10中所示的驱动电路7-1的结构,本实施例示出了上述第一实施例的变形例。即,在全波整流电路2的输出端子上并联连接电阻分压电路31,该电阻分压电路31的分压点电压由输出电路32输出。
另一方面,在振幅控制单元7-12中设置电源电压检测电路33,来自上述输出电路32的输出由输入电路34接收并提供给上述电源电压检测电路33。上述输出电路32和输入电路34的关系例如是光电耦合器中发光二极管和光电晶体管的关系,输入电路34绝缘并取得来自输出电路32的输出信号。
上述电源电压检测电路33通过输出电路32、输入电路34检测电源电压,根据检测出的电源电压,改变设定充电电压的目标值的基准电压Vref。这里,虽然对驱动电路7-1的构成做了说明,但其他的驱动电路7-2~7-n的构成也相同。
在这种构成中,在来自全波整流器2的输入电压波形上升期间,可变电阻器4-1、4-2…4-n的阻抗以规定的定时从无限大切换成有限值,而且,对阻抗进行可变控制并顺次对各电容器6-1、6-2…、6-n进行充电。
在来自全波整流器2的输入电压波形下降期间,若前级的电容器的充电电压等于输入电压,则将对应的可变电阻器的阻抗切换为无限大,同时,下一级的可变电阻器的阻抗切换为有限值,代替前级的电容器,开始对下一级的电容器充电。而且,控制成与正在对电容器进行充电之中对应的可变电阻器的阻抗减少,控制输入电流。
通过进行这种控制,来自全波整流器2的输入电流波形变成几乎和输入电压波形同相位的正弦波。这样,可改善充分抑制输入电流中高频分量的功率因数。
在进行这种控制时,存在负载发生变化且电容器6-n、6-(n-1)…、6-1的充电电压低于或高于目标值的情况。在这种情况下,将电容器6-n、6-(n-1)…、6-1的充电电压控制为目标值。因此,即使发生负载变化等,电容器6-n、6-(n-1)…、6-1的充电电压也总被控制为目标值而变成恒定,即使发生负载变化等也能使提供给负载的电压稳定化。
在电源电压变化时,电源电压检测电路33通过输出电路32和输入电路34检测其变化。根据其变化可变基准电压Vref。即,电源电压比额定电压高时,电源电压检测电路33提高基准电压Vref,在电源电压比目标值的电压低时,电源电压检测电路33降低基准电压Vref。
由此,减小构成可变电阻器4-1、4-2…4-n的MOS型FET的负载电压而抑制电路损失。可避免不流过输入电流的情况,可连续地流过输入电流。
第九实施例和上述第一至第八实施例相同的部分用相同符号表示,详细说明从略。
如图11所示,本实施例示出了上述第三实施例的变形例。即,由电阻35和36的串联电路组成的电阻分压电路37并联连接到全波整流电路2的输出端子上,将电容器38并联连接到电阻分压电路37的电阻36上,将电阻35和36的连接点连接到到第二误差放大器161的非反转输入端子(+)上。即,通过电阻36和电容器38的并联电路输出平均值电压,用平均值电压来代替用于设定电容器6-n的充电电压的目标值的基准电压Vrefn。
在该构成中,电源电压从额定开始变化时,与其成比例地设定充电电压的目标值。由此,电容器的充电电压和电源电压的关系变成总是满足用于提高充电效率的条件,不会损失变化效率。在电源电压上升时,若进行提高电容器电压的控制,则减小构成可变电阻器4-n、4-(n-1)…的MOS型FET的负载电压而抑制电路损失。在电源电压下降时,若进行降低电容器电压的控制,则可避免不流过输入电流的情况,可连续流过输入电流。在本实施例中,和其他的实施例同样,即使发生负载变化等,电容器6-n、6-(n-1)…的充电电压也总是被控制为目标值而变成恒定,可使提供给负载的电压稳定化。
第十实施例和上述第一至第九实施例相同的部分用相同的符号表示,详细说明从略。
如图12所示,本实施例示出了上述第二实施例的变形例。即,由(n+2)个电阻的串联电路组成的电阻分压电路40并联连接到全波整流电路2的输出端子上,该电阻分压电路40的(n+2)个电阻中,在n个电阻的串联电路上并联连接电容器41。而且,(n+1)个电阻的各连接点按电压低的顺序顺次连接到n个第二误差放大器16-1、16-2…的非反转输入端子(+)上。从而,在该电路中,(n+1)个电阻的各连接点电压代替用于设定各电容器6-1、6-2…的充电电压目标值的基准电压Vref1、Vref2…。
在该构成中,在电源电压从额定开始变化时,与其成比例地设定各电容器6-1、6-2…的充电电压的目标值。由此,各电容器的充电电压和电源电压的关系变成总是满足用于提高充电效率的条件,不会损失变化效率。在电源电压上升时,若进行提高电容器电压的控制,则减小构成可变电阻器4-n、4-(n-1)…的MOS型FET的负载电压而抑制电路损失。在电源电压下降时,若进行降低电容器电压的控制,则可避免不流过输入电流的情况,可连续流过输入电流。在本实施例中,和其他的实施例同样,即使发生负载变化等,电容器6-n、6-(n-1)…的充电电压也总是被控制为目标值而变成恒定,可使提供给负载的电压稳定化。
以下,对于第二本发明而言,参考图13至图30说明第11至第18实施例。第11至第18实施例的说明中以及图13至图30的图面中的符号适用于第11至第18实施例。
第11实施例如图13所示,分别由FET(场效应晶体管)等组成的n个开关12-1、12-2…12-n的一端连接到发生不同的正电压值的n个直流电压源11-1、11-2…11-n的正极端子上。上述各开关12-1~12-n构成开关电路。上述各开关12-1~12-n连接到极性反转电路13的一端上。
上述极性反转电路13由FET等组成的4个开关14-1、14-2、14-3、14-4构成。即,开关14-1和开关14-2的串联电路与开关14-3和开关14-4的串联电路并联连接,上述各开关12-1~12-n的一端连接到上述开关14-1、14-3的一端上。
上述极性反转电路13的另一端即上述开关14-2、144的另一端连接到上述各直流电压源11-1~11-n的负极端子上。通过低电阻等组成的电灯电流检测器16将放电灯15连接在上述极性反转电路13中开关14-1和开关14-2的连接点与开关14-3和开关14-4的连接点之间。
上述各开关12-1~12-n通过驱动电路17顺次择一地反复开关,从上述各电流电压源11-1~11-n中顺次择一地取出直流电压值,将包含零电压值的阶梯状电压波形输出到上述极性反转电路13中。上述极性反转电路13在上述各开关12-1~12-n的反复动作的每个周期中交互反复开关14-1、14-4的开和开关14-2、14-3的开,例如以数十KHz的高频向放电灯15提供阶梯状电压的电压波形。
上述电灯电流检测器16检测出的放电灯电流提供给有效值转换器18。上述有效值转换器18通过获得电灯电流检测器16检测到的放电灯电流,变换成根据放电灯电流的有效值的电压,其有效值电压提供给误差放大器19的反转输入端子(-)。相当于放电灯电流有效值的额定值的电压Vref提供给上述误差放大器19的非反转输入端子(+)。
上述误差放大器19将来自有效值转换器18的有效值电压和相当于额定值的电压Vref相比较,输出用于使有效值电压接近相当于额定值的电压Vref的反馈信号。来自上述误差放大器19的反馈信号提供给控制器20的开/关定时控制部21。
上述开/关定时控制部21通过来自误差放大器19的反馈信号决定上述驱动电路17开、关各开关12-1~12-n的定时并将定时信号提供给同一控制器20的驱动信号发生部22。
上述驱动信号发生部22从时钟发生部23获取时钟信号,使由上述开/关定时控制部21决定的定时的驱动信号和时钟信号同步并提供给上述驱动电路17。由此,上述驱动电路17使各开关12-1~12-n按规定的定时顺次择一地进行开动作,使得有效值电压接近相当于额定值的电压Vref。这样,通过来自时钟发生部23的时钟信号固定包含从极性反转电路13提供给放电灯15的零电压值的阶梯状电压波形的频率。
控制器20将开关控制各开关12-1~12-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压与相当于额定值的电压Vref大致相等时,将如图14(b)所示包含零电压值的阶梯状电压波形从极性反转电路13提供给放电灯15。
控制器20将开关控制各开关12-1~12-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref低时,将如图14(a)所示包含零电压值的阶梯状电压波形从极性反转电路13提供给放电灯15。即,控制器20进行这样的控制越是阶梯状电压波形中的高电压值,输出时间越长,越是包含零电压值的低电压值,输出时间越短。
控制器20将开关控制各开关12-1~12-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref高时,将如图14(c)所示包含零电压值的阶梯状电压波形从极性反转电路13提供给放电灯15。即,控制器20进行这样的控制阶梯状电压波形中,电压值越高,输出时间越短,包含零电压值的电压值越低,输出时间越长。
通过进行这样的控制,放电灯15中流动的放电灯电流被控制为其有效值变为恒定,因此,在放电灯15中流动的放电灯电流被限流而稳定。即,不使用线圈等绕组部件,可稳定放电灯15而使其照明,可实现装置的小型、轻量化。
通过该控制,控制向放电灯15提供零电压值的时间,因此,可扩大所取的供给电压的有效值的控制范围。
作为另外的控制,控制器20输出开关控制各开关12-1~12-n的驱动信号,使得在来自有效值转换器18的有效值电压和相当于额定值的电压Vref大致相等时,通过各开关12-1~12-n向极性反转电路13提供图15(b)所示的阶梯状电压波形。
控制器20进行这样的控制在来自有效值转换器18的有效值电压比相当于额定值的电压Vref低时,通过各开关12-1~12-n向极性反转电路13施加图15(a)所示的零电压值的时间为恒定的阶梯状电压波形中,越是高电压值,输出时间越长,越是低电压值,输出时间越短。
控制器20进行这样的控制在来自有效值转换器18的有效值电压比相当于额定值的电压Vref高时,通过各开关12-1~12-n向极性反转电路13施加图15(a)所示的零电压值的时间为恒定的阶梯状电压波形中,越是高电压值,输出时间越长,越是低电压值,输出时间越短。
进行这种控制,在放电灯15中流过的放电灯电流被限流而稳定。通过该控制,给放电灯15供电的期间总是变成恒定的,因此,放电灯的发光效率提高,可抑制从放电灯放射的放射杂音。
第12实施例和上述第11实施例相同的部分用相同的符号表示,这些部分的详细说明从略。
如图16所示,使用新发生的不同负电压值的n个直流电压源31-1、31-2…31-n,在该直流电压源31-1~31-n的负极端子上连接分别由FET(场效应晶体管)等组成的n个开关32-1、32-2……32-n的一端。各开关12-1~12-n构成第一开关电路,上述各开关32-1~32n构成第二开关电路。
在不使用极性反转电路13的情况下,上述各开关12-1~12-n的另一端及上述各32-1~32-n的另一端连接到放电灯15的一端上。上述放电灯15的另一端通过电灯电流检测器16连接到直流电压源11-1~11-n的负极端子及上述各直流电压源31-1~31-n的正极端子上。此外,其他的构成和上述实施例相同。
在这种构成中,控制器20将开关控制各开关12-1~12-n、32-1~32-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压和相当于额定值的电压Vref大致相等时,通过各开关开关12-1~12-n、32-1~32-n向放电灯15提供包含图14(b)或图15(b)所示的包含零电压值的阶梯状电压波形。
控制器20将开关控制各开关12-1~12-n、32-1~32-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref低时,通过各开关开关12-1~12-n、32-1~32-n向放电灯15提供图14(a)或图15(a)所示的包含零电压值的阶梯状电压波形。即,进行这样的控制在越是阶梯状电压波形中的高电压值,输出时间越长,越是包含零电压值的低电压值,输出时间越短,或者零电压值的输出时间固定,电压值越低,输出时间越短。
控制器20将开关控制各开关12-1~12-n、32-1~32-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref高时,通过各开关开关12-1~12-n、32-1~32-n向放电灯15提供图14(c)或图15(c)所示的包含零电压值的阶梯状电压波形。即,进行这样的控制在阶梯状电压波形中,电压值越高,输出时间越短,包含零电压值的电压值越低,输出时间越长,或者零电压值的输出时间固定,电压值越低,输出时间越长。
因此,在本实施例中,控制在放电灯15中流过的放电灯电流使得其有效值变为恒定,在放电灯15中流过的放电灯电流被限流而稳定。因此,和上述实施例一样,可实现装置的小型、轻量化。
在本实施例中,若如图14所示那样进行阶梯状电压波形的控制,则可扩大所取的供给电压有效值的控制范围。若进行如图15所示那样的阶梯状电压波形的控制,则可提高发光效率,可抑制放射杂音。
第13实施例和上述第11至第12实施例相同的部分用相同的符号表示,这些部分的详细说明从略。如图17所示,用电容器来代替上述第11实施例中的直流电压源11-1~11-n。
即,全波整流器42的输入端子连接到商用交流电源41上,电容器44-1、44-2…44-n分别通过由FET(场效应晶体管)组成的可变电阻器43-1、43-2…43-n分别连接到全波整流器42的输出端子上。分别通过开关12-1、12-2…12-n将极性反转电路13连接到上述各电容器44-1~44-n上。
上述各可变电阻器43-1~43-n在非饱和区域驱动FET而实现作为可变电阻器的功能,因此,控制成仅在分别充电对应的电容器44-1~44-n期间,阻抗变为有限值,在此之外的期间,阻抗变为无限大。上述各可变电阻器43-1~43-n变成控制充电各电容器44-1~44-n时的阻抗,使得大致和商用交流输入电压成比例的波形的输入电流从上述全波整流器42流入。
在商用交流电源41的电源电压的绝对值上升期间,在某个电容器的电压等于商用交流电源电压的绝对值时开始该电容器的充电,在下级电容器的电压等于商用交流电源电压的绝对值时停止,在商用交流电源41的电源电压的绝对值下降期间,在前1个电容器的电压等于商用交流电源电压的绝对值时开始某个电容器的充电,在充电电压等于商用交流电源电压的绝对值时停止。其他的构成和上述第12实施例相同。
在该构成中,根据全波整流器42的输出电压的变化控制各可变电阻器43-1~43-n变成顺次规定的阻抗,通过各可变电阻器43-1~43-n在各电容器44-1~44-n中流过期望的充电电流。
即,在全波整流器42的输出电压上升时,通过可变电阻器43-1对电容器44-1进行充电时,若全波整流器42的输出电压等于下一级的电容器44-2的充电电压,则可变电阻器43-1的阻抗从有限值切换到无限大,并停止对电容器44-1充电,取而代之,可变电阻器43-2的阻抗从无限大切换为有限值,通过可变电阻器43-2对电容器44-2进行充电。
这样,在全波整流器42的输出电压上升期间,各可变电阻器43-1~43-n的阻抗以规定的定时从无限大切换为有限值,在各电容器44-1~44-n中流过预先设定的目标值的充电电流。
在全波整流器42的输出电压下降时,若电容器44-n的充电电压等于全波整流器42的输出电压,则可变电阻器43-n的阻抗从有限值切换为无限大,同时,可变电阻器43-(n-1)的阻抗从无限大切换为有限值,取代电容器44-n,开始向电容器44-(n-1)充电。
这样,在全波整流器42的输出电压下降期间,各可变电阻器43-1~43-n的阻抗以规定的定时从无限大切换为有限值,在各电容器44-1~44-n中流过预先设定的目标值的充电电流。设定目标值的充电电流波形作为和输入电压波形同相位的正弦波,通过进行这种控制,来自全波整流器42的输入电流波形可变成几乎和电压波形同相位的正弦波,可提高输入功率因数。
另一方面,各开关12-1~12-n以比各可变电阻器43-1~43-n切换阻抗的周期早的周期顺次进行开关动作,顺次向极性反转电路13提供各电容器44-1~44-n的充电电压。而且,从极性反转电路13向放电灯15提供阶梯状电压波形。这样,放电灯15被高频照明。
在本实施例中,从极性反转电路13向放电灯15提供的阶梯状电压波形被控制成在放电灯15中流过的放电灯电流的有效值变为恒定,因此,在放电灯15中流过的放电灯电流被限流而稳定。因此,和上述实施例一样,可实现装置的小型、轻量化。
在本实施例中,若如图14所示进行阶梯状电压波形的控制,则可扩大所取的供给电压有效值的控制范围。若如图15所示进行阶梯状电压波形的控制,则可提高放电灯的发光效率,可抑制从放电灯放射的放射杂音。
第14实施例本实施例的构成如图16所示。在本实施例中,例如,作为一个例子,在放电灯电流的有效值处于额定状态时,如图18(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,且将包含零电压值的阶梯状电压波形提供给放电灯15。
在放电灯电流的有效值增加得比额定还大时,如图18(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间不可变而为恒定,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间可变长,并向放电灯15提供阶梯状电压波形。
在放电灯电流的有效值减少得比额定还小时,如图18(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间不可变而为恒定,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间可变短,并向放电灯15提供阶梯状电压波形。
通过进行这种控制,可将电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。
作为另一个例子,在放电灯电流的有效值处于额定状态时,如图19(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,将包含零电压值的阶梯状电压波形提供给放电灯15。
在放电灯电流的有效值增加得比额定还大时,如图19(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变短,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间不可变而为恒定,向放电灯15提供阶梯状电压波形。
在放电灯电流的有效值减少得比额定还小时,如图19(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变长,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间不可变而为恒定,向放电灯15提供阶梯状电压波形。
通过进行这种控制,可将放电灯电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。
作为另一个例子,在放电灯电流的有效值处于额定状态时,如图20(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,将包含零电压值的阶梯状电压波形提供给放电灯15。
在放电灯电流的有效值增加得比额定还大时,如图20(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变短,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变长,向放电灯15提供阶梯状电压波形。
在放电灯电流的有效值减少得比额定还小时,如图20(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变长,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变短,向放电灯15提供阶梯状电压波形。
通过进行这种控制,可将放电灯电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。
作为另一个例子,如图21所示,在提供给放电灯15的阶梯状电压波形频率几乎固定的状态下,进行这样的控制和额定有效值的差越大的直流电压源,对应的开关接通时间越长,或者增大缩短接通时间的程度。即,在放电灯电流的有效值处于额定状态时,如图21(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,将包含零电压值的阶梯状电压波形提供给放电灯15。
在放电灯电流的有效值增加得比额定还大时,如图21(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变短,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变长,向放电灯15提供阶梯状电压波形。
在放电灯电流的有效值减少得比额定还小时,如图21(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变长,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变短,向放电灯15提供阶梯状电压波形。
通过进行这种控制,可将放电灯电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。
第15实施例本实施例的构成如图17所示。在本实施例中,如图22所示,各电容器44-1~44-n的充电电压由各可变电阻器43-1~43-n的阻抗控制,作为沿全波整流器42的输出电压波形Vin的阶梯状电压VA。
这样,通过各开关12-1~12-n的开关动作将各电容器44-1~44-n的充电电压作为高频的阶梯状电压波形提供给极性反转电路13,从极性反转电路13向放电灯14提供高频阶梯状电压波形。
此时的开关12-1~12-n开动作的开关动作时间设定为根据各可变电阻器43-1~43-n的阻抗切换定时,在可变电阻器43-1~43-n阻抗切换为有限值的时间上一律乘以同一常数的时间。
因此,如图23所示,提供给极性反转电路13的高频阶梯状电压波形为沿正弦波状的包络线VX的波形。如果这样,则从极性反转电路13提供给放电灯15的阶梯状电压波形的包络线可为正弦波状,因此,可提高放电灯的发光效率,抑制来自放电灯等的放射杂音等。此外,在本实施例中,可不使用绕组部件而将放电灯电流的有效值控制为恒定,因此,可实现装置的小型、轻量化。
第16实施例和上述第11至第15实施例相同的部分用相同的符号表示,这些部分的详细说明从略。
如图24所示,分别通过串联的二极管5-1…45-n、可变电阻器43-1…43-n、电阻器等的阻抗元件组成的输入电流检测电路46-1…46-n将电容器44-1…44-n连接到全波整流器42的输出端子上。
通过驱动电路47-1…47-n驱动上述各可变电阻器43-1~43-n,将来自误差放大器48-1…48-n的输出提供给各驱动电路47-1~47-n。
通过电容器电压检测电路49-1…49-n分别检测上述各电容器44-1~44-n的充电电压,将其检测输出提供给误差放大器50-1…50-n的反转输入端子(-)上。在上述各误差放大器50-1…50-n的非反转输入端子(+)上提供设定充电电压目标值的基准电压Vref1~Vrefn。将上述各误差放大器50-1…50-n的输出分别提供给乘法器51-1~51-n。
设置输入电流目标值设定电路52,将作为目标值的输入电流的正弦波数据从设定电路52提供给上述各乘法器51-1~51-n。上述各乘法器51-1~51-n通过来自上述各误差放大器50-1…50-n的输出可变控制来自上述输入电流目标值设定电路52的输入电流正弦波数据的振幅。
来自上述各乘法器51-1~51-n的输出分别通过电平移动电路53-1~53-n进行电平移动并输入到上述第一误差放大器48-1~48-n的非反转输入端子(+)上。上述误差放大器48-1~48-n将目标值的输入电流和输入电流检测电路46-1~46-n检测出的实际输入电流相比较,求出其误差,提供给上述驱动电路47-1~47-n。上述驱动电路47-1~47-n可变控制可变电阻器43-1~43-n,使得实际的输入电流接近目标值的输入电流。
此外,在该装置中,上述驱动电路47-1~47-n和误差放大器48-1~48-n的基准电位是各电容器44-1~44-n的充电电压,上述电容器电压检测电路49-1~49-n及误差放大器50-1~50-n的基准电位变成作为整个电路的基准电位的全波整流器42的输出端子中的负极端子的电位。从而,为了使用电平移动电路53-1~53-n而使基准电位一致,需要使每个电容器移动。
上述各电容器44-1~44-n的充电电压分别通过二极管54-1~54-n及开关12-1~12-n提供给极性反转电路13。
上述各电容器电压检测电路49-1~49-n检测的电容器电压提供给电容器电压比较电路55。来自时钟发生部23的时钟信号输入到上述电容器电压比较电路55中。上述电容器电压比较电路55与时钟信号同步地求出各电容器电压检测电路49-1~49-n检测的电容器电压平均值,将算出的平均值和预先设定的各电容器的充电电压目标值的平均值相比较。在误差放大器19的非反转输入端子(+)上提供相当于电灯电流有效值的额定值的可变电压VRref。
上述电容器电压比较电路55根据比较结果可变控制上述电压VRref。即,检测出的电容器电压的平均值大于充电电压目标值的平均值时,使电灯电流有效值的目标值即电压VRref低。检测出的电容器电压的平均值小于充电电压目标值的平均值时,使电灯电流有效值的目标值即电压VRref上升。
在这种构成中,各电容器44-1~44-n的充电电压整体变高时,进行减小电灯电流有效值的控制,相反,各电容器44-1~44-n的充电电压整体变低时,进行增大电灯电流有效值的控制。
同时,通过输入电流检测电路46-1~46-n、驱动电路47-1~47-n、电容器电压检测电路49-1~49-n、误差放大器48-1~48-n、50-1~50-n、输入电流目标值设定电路52、乘法器51-1~51-n等的作用控制电容器电压使得充电电压接近目标值,电灯电流的目标值收敛为作为当初目标值的额定值。由此,对电容器电压的变化,可防止电灯电流过度增加或过度减少。实现功率因数的改善。在本实施例中,不使用绕组部件,控制放电灯15使得电灯电流变为恒定,因此,和上述实施例一样,可实现装置的小型、轻量化。
第17实施例本实施例的构成如图24所示。在本实施例中,输出电压有效值的可变范围处于额定时的有效值的±20%的范围内。
即,通过开关12-1~12-n的择一的开关动作向极性反转电路13提供阶梯状电压波形,交流的阶梯状电压波形从极性反转电路13提供给放电灯15而使放电灯15照明。
作为来自输入电流目标值设定电路52的目标值的输入电流的正弦波数据对各乘法器51-1~51-n通过来自误差放大器50-1~50-n的输出可变控制其振幅。由此,基于实际电容器电压和目标值之差的大小控制可变电阻器43-1~43-n的阻抗,控制电容器46-1~46-n的输入电流量,同时控制成充电电压接近目标值。
在输出部中,控制开关12-1~12-n的开动作时间,使得在放电灯15中流过的电灯电流的有效值变成由电压VRref设定的额定值。
因此,控制开关12-1~12-n中对应的开关使得以短于额定时间的时间进行开动作的电容器对放电灯15的电荷放电量减少,因此,电容器的充电电压上升。这时,控制为通过电容器恒压控制,作为来自乘法器的输入电流目标值的正弦波数据的振幅变小,使电容器电压下降,电容器的充电电压接近目标值。
控制开关12-1~12-n中对应的开关使得以长于额定时间的时间进行开动作的电容器对放电灯15的电荷放电量增大,因此,电容器的充电电压下降。这时,控制为通过电容器恒压控制,作为来自乘法器的输入电流目标值的正弦波数据的振幅变大,使电容器电压上升,电容器的充电电压接近目标值。
结果,即使将各电容器46-1~46-n的输入电流目标值的波形设定为正弦波,振幅的设定对每个电容器也是不同的,在输入电流中出现等级,高频分量变大。因此,为了不增加输入电流的高频分量而变差,需要规定提供给放电灯15的阶梯状电压波形的有效值范围。
图25示出了用于和提供给放电灯15的阶梯状电压波形比较的正弦波波形,(a)表示电灯电流的有效值为额定时的有效值的-24%时的阶梯状电压波形和正弦波波形,(b)表示电灯电流的有效值为额定时的有效值的-11%时的阶梯状电压波形和正弦波波形,(c)表示电灯电流的有效值与额定时的有效值一致时的阶梯状电压波形和正弦波波形,(d)表示电灯电流的有效值为额定时的有效值的+10%时的阶梯状电压波形和正弦波波形,(e)表示电灯电流的有效值为额定时的有效值的+19%时的阶梯状电压波形和正弦波波形。
电灯电流有效值为额定时的有效值的-24%时的输入电流波形如图26(a)所示,电灯电流有效值为额定时的有效值的-11%时的输入电流波形如图26(b)所示,电灯电流有效值与额定时的有效值一致时的输入电流波形如图26(c)所示,电灯电流有效值为额定时的有效值的+10%时的输入电流波形如图26(d)所示,电灯电流有效值为额定时的有效值的-19%时的输入电流波形如图26(e)所示。
表1表示阶梯状电压有效值的变化和输入电流的关系。阶梯状电压的有效值在额定以外时,显然,输入电流的尤其是3次高频分量变大。从结果可见,通过将阶梯状电压波形有效值的变化范围设定为额定动作时的阶梯状电压波形有效值的约20%的绝对值以下,则不会增大输入电流的高频分量而变差。
表1

输出电压变化量输入电流输入功率因数(其他部分表内容同原表1)本实施例的构成如图24所示,因此,不用说在本实施例中,不使用绕组部件的情况下控制放电灯15而使放电灯电流变为恒定,因此,可得到和上述实施例相同的作用效果。
第18实施例和上述第11至第17实施例相同的部分用相同的符号表示,详细说明从略。
如图27所示,通过电容器电压平均值检测电路56检测各电容器44-1~44-n的电压,求出其平均值作为代表值。不限于平均值作为代表值,可检测各电容器44-1~44-n中其中一个电压作为代表值。这种情况下,若根据充电目标值检测高的电容器电压,则能可靠地进行各可变电阻器43-1~43-n的阻抗控制,可总是平滑连续地流过输入电流。
通过上述电容器电压平均值检测电路56求出的电容器电压的平均值提供给误差放大器57的反转输入端子(-),同时,提供给电容器电压比较电路58。
设定充电电压目标值的平均值的基准电压Vref提供给上述误差放大器57的非反转输入端子(+)。上述误差放大器57将通过电容器电压平均值检测电路56求出的电容器电压的平均值和设定充电电压目标值的基准电压Vref相比较,将其误差输出提供给输入电流目标波形成形电路59。
上述输入电流目标波形成形电路59在提供给放电灯15的阶梯状电压波形的有效值为额定值时,成形与图28(a)所示正弦波输入电压波形相似形状的图28(b)所示正弦波输入电流波形作为输入电流目标波形并输出。
上述输入电流目标波形成形电路59作成在阶梯状电压波形的有效值高于额定值时,如图29所示,在商用交流的1个周期中,在相位为90°和270°前后额定动作时,振幅比作为目标值的输入电流波形I0大,而且,向着90°和270°,振幅比较大,在其以外的部位,成形振幅比输入电流波形I0小的电流波形作为输入电流目标波形I1输出。
上述输入电流目标波形成形电路59作成阶梯状电压波形的有效值比额定值低时,如图30所示,在商用交流的1个周期中,在相位为90°和270°前后额定动作时,振幅比作为目标值的输入电流波形I0小,而且,向着90°和270°,振幅比较小,在其以外的部位,成形振幅比输入电流波形I0大的电流波形作为输入电流目标波形I2输出。
在上述电容器电压比较电路58中输入来自时钟发生部23的时钟信号。上述电容器电压比较电路58和时钟信号同步,将由上述电容器电压平均值检测电路56求出的电容器电压的平均值和预先设定的各电容器的充电电压目标值的平均值相比较。上述电容器电压比较电路58基于比较结果可变控制上述电压Vrref。
在这种构成中,提供给放电灯15的阶梯状电压波形的有效值从额定值开始上升时,控制用于向放电灯15提供充电电压低的电容器的开关使得以短于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量减少,因此,其电容器电压上升。
控制用于向放电灯15提供充电电压高的电容器的开关,使得以长于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量增加,因此,其电容器电压下降。
因此,作为来自全波整流器42的输入电流的目标波形,在商用交流的1个周期中,通过输入电流目标波形成形电路59实现波形成形,使得在相位为90°和270°前后,振幅比正弦波的输入电流波形I0大,在其以外的部位,振幅小,从而,依据电容器电压的代表值的控制可使各电容器的充电电压接近对应的目标值电压,同时,可平滑输入电流波形。
提供给放电灯15的阶梯状电压波形的有效值从额定值开始减少时,控制用于向放电灯15提供充电电压低的电容器的开关,使得以长于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量增加,因此,其电容器电压下降。
控制用于向放电灯15提供充电电压高的电容器的开关,使得以短于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量减少,因此,其电容器电压上升。
因此,作为来自全波整流器42的输入电流的目标波形,在商用交流的1个周期中,通过输入电流目标波形成形电路59实现波形成形,使得在相位为90°和270°前后,振幅比正弦波的输入电流波形I0小,在其以外的部位,振幅大,从而,通过依据电容器电压的代表值的控制,可使各电容器的充电电压接近对应的目标值电压,同时,可平滑输入电流波形。
这样,根据提供给放电灯15的阶梯状电压波形有效值的变化,使从输入电流目标波形成形电路59提供给各误差放大器48-1~48-n的输入电流目标波形变化,从而,依据电容器电压的代表值的控制可使各电容器的充电电压接近对应的目标值电压,同时,在来自全波整流器42的输入电流波形在不急剧变化的情况下总是平滑变化。因此,可抑制输入电流波形尤其高次高频分量的发生。在本实施例中,不用说,不使用绕组部件的情况下控制放电灯15而使放电灯电流变为恒定,因此,可得到和上述实施例相同的作用效果。
以下,对于第三本发明,参照图31-图47说明第19至第25实施例。第19至第25实施例的说明中以及图31至图47中的符号适用于第19至第25实施例。
第19实施例如图31所示,设置交流阶梯状电压发生源1,电压值变化为阶梯状,象正弦波这样增减的阶梯状正电压波形及电压值变化为台阶状,交互输出象正弦波这样增减的阶梯状负电压波形。
通过由第一电容器3及低电阻等组成的电灯电流检测器4将放电灯2的各灯丝电极2a、2b的一端连接到上述电压发生源1的输出端子上。即,通过串联上述第一电容器3将上述放电灯2中一方灯丝电极2a的一端连接到上述电压发生源1的输出端子的一端上,通过串联上述电灯电流检测器4将上述放电灯2中另一方的灯丝电极2b的一端连接到上述电压发生源1的输出端子的另一端上。
在上述放电灯2的各灯丝电极2a、2b的另一端间,连接第二电容器5和由MOSFET(MOS型场效应晶体管)组成的两极性开关元件6的串联电路。该串联电路构成预热电路,在放电灯2开始照明前的预热时,上述开关元件6变导通。
上述交流阶梯状电压发生源1将全波整流器12的输入端子连接到商用交流电源11上,将由MOSFET组成的用作可变电阻器的n个开关13-1、13-2…13-3和构成直流电压源的n个电容器14-1、14-2…14-n的串联电路分别作为分支电路并联连接到全波整流器12的输出端子上。这样,分别通过开关元件15-1、15-2…15-n将电灯电流检测器16连接到上述各电容器14-1~14-n上。
上述电灯电流检测器16由FET构成的2个开关元件16-1、16-2的串联电路和MOSFET构成的2个开关元件16-3、16-4的串联电路的并联电路形成,上述各开关元件16-1、16-2的连接点和上述各开关元件16-3、16-4的连接点作为上述交流阶梯状电压发生源1的输出端子。
用作上述可变电阻器的开关元件13-1~13-n在非饱和区域中驱动,以实现作为可变电阻器的功能,因此,被控制为仅充电各自对应的电容器14-1~14-n期间,阻抗变成有限值,在此以外的期间中,阻抗无限大。这样,控制上述各开关元件13-1~13-n在充电各电容器14-1~14-n时的阻抗,使得与商用交流输入电压大致成比例的波形的输入电流从上述全波整流器流入。由此,可抑制输入电流的高频分量。
在商用交流电源11的电源电压的绝对值上升期间,在某个电容器电压和商用交流电源电压的绝对值相等时开始该电容器的充电,在下一级电容器的电压和商用交流电源电压的绝对值相等时停止,在商用交流电源11的电源电压的绝对值下降期间,在前1个电容器的电压等于商用交流电源电压的绝对值相等时开始某个电容器的充电,在充电电压和商用交流电源电压的绝对值相等时停止。从而,上述各电容器14-1~14-n充电彼此不同的电压值。例如,电容器14-1充电成最小的电压值,电容器14-n充电成最大的电压值。
通过驱动电路17以高频顺次择一地反复开关上述各开关元件15-1~15-n,从上述各电容器14-1~14-n中顺次择一地取出充电电压,将该取出的阶梯状电压波形提供给上述电灯电流检测器16。
上述电灯电流检测器16实现在每一个上述各开关元件15-1~15-n的反复开关动作周期中,交互地反复开关元件16-1、16-4的接通和开关16-2、16-3的接通,通过第一电容器3以例如数十KHz这样的高频将包含零电压值的交流阶梯状电压波形提供给放电灯2。
上述电灯电流检测器4检测电灯电流,将该检测信号提供给有效值转换器18。上述有效值转换器18通过来自电灯电流检测器4的检测信号变换为根据电灯电流的有效值的电压,该有效值电压提供给误差放大器19的反转输入端子(-)。相当于电灯电流有效值的额定值的电压Vref提供给上述误差放大器19的非反转输入端子(+)。
上述误差放大器19将来自有效值转换器18的有效值电压和相当于额定值的电压Vref相比较,输出用于使有效值电压接近相当于额定值的电压Vref的反馈信号。来自上述误差放大器19的反馈信号提供给控制器20的开/关定时控制部21。
通过来自误差放大器19的反馈信号,上述开/关控制部21决定上述驱动电路17开、关各开关元件15-1~15-n的定时并将定时信号提供给相同控制器20的驱动信号发生部22。
上述驱动信号发生部22从时钟发生部23中取出时钟信号,与时钟信号同步地将由上述开/关定时控制部21决定的定时的驱动信号提供给上述驱动电路17。由此,上述驱动电路17以规定的定时顺次择一地开/关控制各开关元件15-1~15-n,使得电灯电流有效值接近相当于额定值的电压Vref。这样,根据来自时钟发生部23的时钟信号,从电灯电流检测器16经第一电容器3提供给放电灯2的包含零电压值的阶梯状电压波形频率固定。
在这种构成中,各开关元件13-1~13-n对应于来自全波整流器12的输出电压波形而电源电压的绝对值上升期间,按13-1—>13-2—>…13-n的顺序,阻抗仅在一定期间变为有限值,顺次充电对应的电容器14-1~14-n,在电源电压的绝对值下降期间,按13-n…—>13-2—>13-1的顺序,阻抗仅在一定期间变为有限值,顺次充电对应的电容器14-1~14-n。这样,各电容器14-1~14-n充电为彼此不同的电压值。
另一方面,通过驱动电路17顺次开关各开关元件15-1~15-n,通过第一电容器3将来自电灯电流检测器16包含零电压值的交流阶梯状电压波形提供给放电灯2。放电灯2在预热时开关元件6导通并通过第二电容器5在各灯丝电极2a、2b中流过预热电流。
因此,变成来自电灯电流检测器16的交流阶梯状电压波形通过第一电容器3提供给放电灯2的构成。另一方面,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,需要根据输入电流高频分量的制约来规定有效值的控制范围。
在不使用第一电容器3而将来自电灯电流检测器16的交流阶梯状电压波形直接提供给放电灯2时,有效值的控制范围为±20%,此时的负载特性如图32所示。从负载特性可见,对于超过额定电压的±20%范围的负载电压,不存在动作点,因此,不能动作。
与其相对,在使用第一电容器3时,交流阶梯状电压波形的有效值恒定条件下的负载特性如图33所示。因而,可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,负载特性如图34所示。即,放电灯2从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。
第20实施例和上述第19实施例相同的部分用相同的符号表示,这些部分的详细说明从略。
如图35所示,使用不用全波整流器及极性反转电路的交流阶梯状电压发生源31。即,上述交流阶梯状电压发生源31将由MOSFET构成的用作可变电阻器的n个开关元件32-1、32-2…32-n和构成第一直流电压源的n个电容器34-1、34-2…34-n的串联电路分别作为支路并联连接到商用交流电源11上。将由MOSFET构成的用作可变电阻器的n个开关元件33-1、33-2…33-n和构成第二直流电压源的n个电容器35-1、35-2…35-n的串联电路分别作为支路并联连接到商用交流电源11上。
在非饱和区域中驱动用作上述可变电阻器的开关元件32-1~32-n,实现作为可变电阻器的功能,因此,控制为仅在充电分别对应的电容器34-1~34-n期间,阻抗变为有限值,在此之外的期间,将阻抗无限大。这样,上述各开关元件32-1~32-n将充电各电容器34-1~34-n时的阻抗控制为流过大致与商用交流输入电压正半周期成比例的波形的输入电流。
在非饱和区域中驱动用作上述可变电阻器的开关元件33-1~33-n,实现作为可变电阻器的功能,因此,控制为仅在充电分别对应的电容器35-1~35-n期间,阻抗变为有限值,在此之外的期间,将阻抗无限大。这样,上述各开关元件33-1~33-n将充电各电容器35-1~35-n时的阻抗控制为流过大致与商用交流输入电压负半周期成比例的波形的输入电流。
在商用交流电源11的电源电压绝对值上升期间,在某个电容器的电压和商用交流电源电压的绝对值相等时开始该电容器的充电,在下一级电容器的电压等于商用交流电源电压的绝对值相等时停止,在商用交流电源11的电源电压绝对值下降期间,在前一个电容器的电压等于商用交流电源电压的绝对值相等时开始某个电容器的充电,在充电电压等于商用交流电源电压的绝对值相等时停止。
由此,上述各电容器34-1~34-n充电彼此不同的正电压值,上述各电容器35-1~35-n充电彼此不同的负电压值。例如,在正半周期中,在正方向上将电容器34-1充电到最小电压值,在正方向上将电容器34-n充电到最大电压值,在负半周期中,在负方向上将电容器35-1充电到最小电压值,在负方向上将电容器35-n充电到最大电压值。
由FET构成的开关元件36-1、36-2…36-n的一端分别连接到上述电容器34-1~34-n的正极侧,由MOSFET构成的开关元件37-1、37-2…37-n的一端分别连接到上述电容器35-1~35-n的负极侧。上述各开关元件36-1~36-n、37-1~37-n的另一端通过串联第一电容器3连接到放电灯2中另一方灯丝电极2a的一端上。上述放电灯2中另一方灯丝电极2b的一端通过串联电灯电流检测器4而分别连接到作为上述电压发生源31的输出端子的另一端的上述各电容器34-1~34-n的负极侧及上述电容器35-1~35-n的正极侧。
驱动信号发生部22从时钟发生部23中取得时钟信号,与时钟信号同步地将由开/关定时控制部21决定的定时的驱动信号提供给驱动电路171,驱动电路171以规定的定时顺次择一地接通各开关元件36-1~36-n、37-1~37-n,使得电灯电路有效值接近相当于额定值的电压Vref。这样,根据来自时钟发生部23的时钟信号,通过第一电容器3将从交流阶梯状电压发生源31提供给放电灯2的包含零电压值的阶梯状电压波形的频率固定。此外,其他的构成和上述实施例相同。
在这种构成中,交流电源11的正半周期中,各开关元件32-1~32-n的阻抗顺次择一地变成有限值,向各电容器34-1~34-n充电彼此不同值的正电压。交流电源11的负半周期中,各开关元件33-1~33-n的阻抗顺次择一地变成有限值,向各电容器35-1~35-n充电彼此不同值的正电压。
另一方面,在输出侧,各开关元件36-1~36-n、37-1~37-n以比输入侧短的周期顺次择一地进行开关动作,反复进行。由此,从各开关元件36-1~36-n、37-1~37-n通过第一电容器3向放电灯2提供电压值以阶梯状变化的交流阶梯状电压。这样,在预热时导通开关元件6,通过第二电容器5在各灯丝电极2a、2b中流过预热电流。
因而,在本实施例中,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,负载特性是在放电灯2从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。
第21实施例在本实施例中使用的放电灯照明装置的电路构成和上述第19实施例相同。即,构成如图31所示。
在本实施例中,构成直流电压源的各电容器14-1~14-n的电容相等。另外,设通过第一电容器3从交流阶梯状电压发生源1提供给放电灯2的交流阶梯状电压波形的各电压的时间宽度的平均值为ts、由第一电容器3的电容和额定照明时的放电灯2的等价电阻决定的时间常数为CR时,设定第一电容器3的电容及交流阶梯状电压波形的各电压的时间宽度,使得满足CR/ts>1。
然而,在通过第一电容器3将交流阶梯状电压波形提供给放电灯2的构成中,会产生额定动作时的电灯电流的波形因数(峰值因数)变差的问题。波形因数由(最大值/有效值)求出。电灯电流的波形因数变差时,电灯的发光效率下降,灯丝的损坏变大,灯寿命变短。
例如,作为放电灯2,使用额定电压125V、额定电流0.255A的放电灯,提供给放电灯2的交流阶梯状电压波形的频率为20KHz,调整交流阶梯状电压的有效值使得得到额定输出。使第一电容器3的电容变化为0.02μF、0.015μF、0.01μF、0.005μF,研究CR/ts和波形因数的关系的结果,得到的关系如图36所示。
图中,用□画出的曲线是第一电容器3的电容为0.02μF时,△画出的曲线是第一电容器3的电容为0.015μF时,用×画出的曲线是第一电容器3的电容为0.01μF时,用○画出的曲线是第一电容器3的电容为0.005μF时。
从曲线可见,设定为CR/ts>1时,波形因数可小于2.1,设定为CR/ts>2.5时,波形因数可小于1.7。即,通过设定为CR/ts>1,电灯电流的波形因数可比较良好,若设定为CR/ts>2.5,可进一步改善电灯电流的波形因数。由此,可防止电灯的发光效率下降,可防止电灯寿命变短。
图37示出了在上述条件下提供给放电灯2的交流阶梯状电压波形的半周期中台阶数(阶梯数)是5个台阶时在交流阶梯状电压波形和放电灯2的两端间发生的电压波形。照明频率为20kHz,因此,电灯电压波形和电灯电流波形大致相似。因此,电灯电压的波形因数和电灯电流的波形因数一致。因此,这里考虑电灯电压的波形因数。
即,(a)是交流阶梯状电压波形,(b)是第一电容器3的电容为0.1μF时的放电灯2两端间发生的电压波形,(c)是第一电容器3的电容为0.02μF时的放电灯2两端间发生的电压波形,(d)是第一电容器3的电容为0.015μF时的放电灯2两端间发生的电压波形,(e)是第一电容器3的电容为0.01μF时的放电灯2两端间发生的电压波形,(f)是第一电容器3的电容为0.005μF时的放电灯2两端间发生的电压波形。这时,(e)和(f)时电灯电流的波形因数差。
图38示出了在上述条件下提供给放电灯2的交流阶梯状电压波形的半周期中台阶数(阶梯数)是11个台阶时在交流阶梯状电压波形和放电灯2的两端间发生的电压波形。即,(a)是交流阶梯状电压波形,(b)是第一电容器3的电容为0.1μF时的放电灯2两端间发生的电压波形,(c)是第一电容器3的电容为0.02μF时的放电灯2两端间发生的电压波形,(d)是第一电容器3的电容为0.015μF时的放电灯2两端间发生的电压波形,(e)是第一电容器3的电容为0.01μF时的放电灯2两端间发生的电压波形,(f)是第一电容器3的电容为0.005μF时的放电灯2两端间发生的电压波形。
图39示出了在上述条件下提供给放电灯2的交流阶梯状电压波形的半周期中台阶数(阶梯数)是21个台阶时在交流阶梯状电压波形和放电灯2的两端间发生的电压波形。即,(a)是交流阶梯状电压波形,(b)是第一电容器3的电容为0.1μF时的放电灯2两端间发生的电压波形,(c)是第一电容器3的电容为0.02μF时的放电灯2两端间发生的电压波形,(d)是第一电容器3的电容为0.015μF时的放电灯2两端间发生的电压波形,(e)是第一电容器3的电容为0.01μF时的放电灯2两端间发生的电压波形,(f)是第一电容器3的电容为0.005μF时的放电灯2两端间发生的电压波形。
从以上结果可见,通过增加交流阶梯状电压波形的半周期中的台阶数可减小交流阶梯状电压波形各电压的时间宽度的平均值ts,因此,即使时间常数CR变小,也能满足CR/ts>1。换言之,为了在电灯电流的波形因数对第一电容器3的各种电容值均保持良好,只要增加交流阶梯状电压波形的半周期中的台阶数即可。通过根据交流阶梯状电压波形的半周期中的台阶数适当设定电容器3的电容,可使电灯电流的波形因数保持良好。
在本实施例中使用的放电灯照明装置的电路构成和图31的构成相同,因此,本实施例当然能得到和上述第19至第20实施例相同的作用效果。
第22实施例和上述第19至第22实施例相同的部分用相同的符号表示,这些部分的详细说明从略。如图40所示,放电灯2的各灯丝电极2a、2b的一端经第一电容器3连接到交流阶梯状电压发生源41的输出端子上。
上述交流阶梯状电压发生源41设置发生不同正电压值的多个直流电压源42-1、42-2…42-n,极性反转电路16的输入端子经作为开关元件的分别可控制两极性电流的断开、导通的两极性开关43-1、43-2…43-n连接到各直流电压源42-1~42-n上。上述各两极性开关43-1~43-n公共连接2个MOSFET的源极端子和栅极端子。在本实施例中,省略了将交流阶梯状电压波形的有效值电压控制为额定值的电路和各两极性开关43-1、43-2…43-n的驱动电路。
在该构成中,交流阶梯状电压发生源4 1通过第一电容器3将来自极性反转电路16的交流阶梯状电压波形提供给放电灯2。图41示出了此时交流阶梯状电压波形和在放电灯2中流过的负载电流波形的一个例子。即,在该例子中,交流阶梯状电压波形Vo和负载电流波形Io由于第一电容器3而相位相差接近90°。
因此,例如,极性反转电路16的开关元件16-1和16-4导通且在放电灯2的灯丝电极2a侧施加正极电压时,电灯电流最初以开关元件16-1->第一电容器3->放电灯2->开关元件16-4的路径流动,但在途中反转,以开关元件16-4->放电灯2->第一电容器3->开关元件16-1的路径流动。此时,因为使用两极性开关43-1~43-n,所以电流经该两极性开关43-1~43-n流入直流电压源42-1~42-n侧。
由此,可在放电灯2中无浪费地有效地流过电灯电流,可提高电灯的发光效率。
相反,在两极性开关43-1~43-n为单极性的开关时,出现不流过反方向的电流、电灯电流切断期间,因此,在得到恒定光输出的情况下,电灯的发光效率下降。
在本实施例中,因为从交流阶梯状电压发生源41经第一电容器3向放电灯2提供交流阶梯状电压,所以和上述实施例一样,放电灯2在从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。
在本实施例中,使用2个MOSFET的源极端子和栅极端子公共连接的结构作为两极性开关,但该构成不限于此。例如,可使用如图42所示MOSFET44和二极管45的串联电路和与上述二极管45反极性的二极管46和MOSFET47的串联电路并联连接的结构。
第23实施例和上述第19至第22实施例相同的部分用相同的符号表示,这些部分的详细说明从略。如图43所示,放电灯2的各灯丝电极2a、2b的一端经第一电容器3连接到交流阶梯状电压发生源51的输出端子上。
上述交流阶梯状电压发生源51设置发生不同正电压值的多个第一直流电压源52-1、52-2…52-n及发生绝对值与各第一直流电压源52-1~52-n的各电压值相等的不同负电压值的多个第二直流电压源53-1、53-2…53-n。
作为开关元件的可分别控制两极性的电流断开、导通的两极性开关54-1、54-2…54-n的一端连接到上述各第一直流电压源52-1~52-n上。作为开关元件的可分别控制两极性的电流断开、导通的两极性开关55-1、55-2…55-n的一端连接到上述各第二直流电压源53-1~53-n上。
上述各两极性开关54-1、54-2…54-n的另一端及上述各两极性开关55-1~55-n的另一端公共连接,作为上述交流阶梯状电压发生源51的输出端子的一端。上述各第一直流电压源52-1~52-n的负极端子及上述各第二直流电压源53-1~53-n的正极端子公共连接,作为上述交流阶梯状电压发生源51的输出端子的另一端。
在上述交流阶梯状电压发生源51的输出端子之间还连接两极性开关56。该两极性开关56使交流阶梯状电压发生源51的输出端子之间短路,得到施加在放电灯2上的零电压值。
上述各两极性开关54-1~54-n、55-1~55-n、56是2个MOSFET的源极端子及栅极端子公共连接的结构。
在本实施例中,省略了将交流阶梯状电压波形的有效值电压控制为额定值的电路及各两极性开关54-1~54-n、55-1~55-n、56的驱动电路。
在该构成中,交流阶梯状电压发生源5 1通过两极性开关54-1~54-n、56的动作经第一电容器3将包含零电压值的正半周期的交流阶梯状电压提供给放电灯2,通过两极性开关55-1~55-n、56的动作经第一电容器3将包含零电压值的负半周期的交流阶梯状电压提供给放电灯2。此时的交流阶梯状电压波形和流入放电灯2的负载电流波形的关系和第22实施例相同,如图41所示。
因此,例如,两极性开关54-1~54-n动作时,电灯电流最初从第一直流电压源52-1~52-n经两极性开关54-1~54-n和电容器3流入放电灯2,但在途中反转,从放电灯2侧经电容器3和两极性开关54-1~54-n流入第一直流电压源侧。两极性开关55-1~55-n动作时,电灯电流最初从第二直流电压源53-1~53-n经放电灯2和电容器3流入两极性开关55-1~55-n侧,但在途中反转,从两极性开关55-1~55-n侧经电容器3和放电灯2流入第二直流电压源侧。
由此,电灯电流无浪费地有效地流入放电灯2,可提高电灯的发光效率。在本实施例中,因为从交流阶梯状电压发生源51经第一电容器3向放电灯2提供交流阶梯状电压,所以和上述实施例一样,放电灯2在从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。
第24实施例和上述第19至第23实施例相同的部分用相同的符号标号,这些部分的详细说明从略。如图44所示,交流阶梯状电压发生源61将n个支路62-1、62-2…并联连接到全波整流器12的输出端子上。
上述各支路62-1、62-2…设置开关元件13-1、13-2…和构成直流电压源的n个电容器14-11、14-21…的串联电路。在开关元件13-1和电容器14-11的支路中,相同电容的(m-1)个电容器14-12、14-13…14-1m分别经MOSFET构成的开关元件并联连接到上述电容器14-11上。
即,上述电容器14-12的一端经开关元件63-11连接到上述电容器14-11的一端上,上述电容器14-12的另一端经开关元件64-11连接到上述电容器14-11的另一端上。上述电容器14-13的一端经开关元件63-12和63-11串联连接到上述电容器14-11的一端上,上述电容器14-13的另一端经开关元件64-12和64-11串联连接到上述电容器14-11的另一端上。同样地连接其它电容器,最后,上述电容器14-1m的一端经开关元件63-1(m-1)…63-12、63-11串联连接到上述电容器14-11的一端上,上述电容器14-1m的另一端经开关元件64-1(m-1)…64-12、64-11串联连接到上述电容器14-11的另一端上。
在上述开关元件63-11和电容器14-12的串联电路上并联连接开关元件65-11,在上述开关元件63-12和电容器14-13的串联电路上并联连接开关元件65-12,以同样的构成连接开关元件,最后在上述开关元件63-1(m-1)和电容器14-1m的串联电路上并联连接开关元件65-1(m-1)。
上述电容器14-22的一端经开关元件63-21连接到上述电容器14-21的一端上,上述电容器14-22的另一端经开关元件64-21连接到上述电容器14-21的另一端上。上述电容器14-23的一端经开关元件63-22和63-21串联连接到上述电容器14-21的一端上,上述电容器14-23的另一端经开关元件64-22和64-21串联连接到上述电容器14-21的另一端上。同样地连接其它电容器,最后,上述电容器14-2m的一端经开关元件63-2(m-1)…63-22、63-21串联连接到上述电容器14-21的一端上,上述电容器14-2m的另一端经开关元件64-2(m-1)…64-22、64-21串联连接到上述电容器14-21的另一端上。
在上述开关元件63-21和电容器14-22的串联电路上并联连接开关元件65-21,在上述开关元件63-22和电容器14-23的串联电路上并联连接开关元件65-22,以同样的构成连接开关元件,最后在上述开关元件63-2(m-1)和电容器14-2m的串联电路上并联连接开关元件65-2(m-1)。
这样,剩下的全部支路也通过多个开关元件和电容器构成和上述2个支路62-1、62-2相同的电路。
各支路的最终电容器14-1m、14-2m…和开关元件63-1(m-1)、63-2(m-1)的连接点分别经开关元件66-1、66-2…连接到极性反转电路16的开关元件16-1和16-3的连接点上。上述极性反转电路16的开关元件16-2和16-4的连接点连接到上述各电容器14-11、14-21…的另一端上。
这种构成的交流阶梯状电压发生源61在充电时,在支路62-1中,开关元件13-1的阻抗被控制为有限值,使开关元件63-11~63-1(m-1)、64-11~64-1(m-1)进行开动作,使开关元件65-11~65-1(m-1)进行关动作。由此,支路62-1的各电容器14-11~14-1m全部并联连接,通过全波整流器12的输出电压充电为规定电平。
在下一个支路62-2中,开关元件13-2的阻抗被控制为有限值,使开关元件63-21~63-2(m-1)、64-21~64-2(m-1)进行开动作,使开关元件65-21~65-2(m-1)进行关动作。由此,支路62-2的各电容器14-21~14-2m全部并联连接,通过全波整流器12的输出电压充电为比各电容器14-11~14-1m高若干电平的规定电平。
这样,n级支路的全部电容器通过全波整流器12的输出电压充电为每个支路不同的电压值。
控制电容器的放电,使得各支路中开关元件13-1、13-2…的阻抗变为无限大,除此之外的各开关元件选择性地进行开动作。
例如,支路62-1中开关元件13-1的阻抗控制为无限大,在使开关元件63-11~63-1(m-1)、64-11~64-1(m-1)关动作、开关元件65-11~65-1(m-1)、66-1开动作时,支路62-1的各电容器14-11~14-1m全部串联连接,向极性反转电路16输出各电容器的充电电压m倍的电压值。
在支路62-2中开关元件13-2的阻抗控制为无限大,在使开关元件63-21~63-2(m-1)、64-21~64-2(m-1)关动作、开关元件65-21~65-2(m-1)、66-2开动作时,支路62-2的各电容器14-21~14-2m全部串联连接,向极性反转电路16输出各电容器的充电电压m倍的电压值。
这样,在放电时,全部支路顺次动作,通过反复进行,高压的交流阶梯状电压波形以例如20KHz的高频从交流阶梯状电压发生源61经第一电容器3提供给放电灯2。
这里,虽然以从交流阶梯状电压发生源61提供将各电容器充电电压升压到m倍的交流阶梯状电压波形为例进行描述,但通过控制各支路的开关元件,可在1倍到m倍的范围内控制输出电压。例如,若各支路的电容器全部并联连接,则变为和输入电压相同电平的输出电压,输出如图45(a)所示的交流阶梯状电压波形。若控制为仅串联连接2个各支路的电容器,则如图45(b)所示,输出升压为2倍的交流阶梯状电压波形。
这样,可发生各种交流阶梯状电压,可提高通用性。
该电路的情况下,在提供升压的交流阶梯状电压波形时,由于电压电平不同,因此各支路中可不同时进行电容器的充电和放电。因此,在某个支路处于充电周期时,在处于对放电灯2的输出中必须使用该支路的状态时,必须对该期间的开关元件13-1…进行断开控制。因此,因为该期间充电停止,所以切断来自全波整流器12的输入电流。
但是,若设向放电灯2提供升压的交流阶梯状电压波形期间仅仅是开始照明时,这个期间是非常短的时间,即使切断输入电流,也不会造成输入电流畸变。放电灯2开始照明后,若控制开关元件使得各支路中电容器并联连接,则因为电容器的充电和放电电压电平一致,所以在某个支路处于充电周期时,即使变成在向放电灯2的输出中必须使用该支路的状态,也不需要对开关元件13-1…进行断开控制。从而,可改善放电灯2照明时的输入功率因数。
在这种构成中,各支路的电容器分别并联连接来进行充电,从预热开始到照明时,各支路的电容器串联连接,向放电灯2提供升压的交流阶梯状电压波形。而且,预热在开关元件6导通一定时间后进行,此后,通过升压的交流阶梯状电压波形使放电灯2开始照明。照明后,各支路的电容器并联连接以与输入电压相同电平的输出电压维持照明。
在该构成中,来自交流阶梯状电压发生源61的交流阶梯状电压波形经第一电容器3提供给放电灯2。因此,在本实施例中,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,负载特性在从放电灯2的断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。
在上述例子中,在开始照明时升压从交流阶梯状电压发生源61提供给放电灯2的交流阶梯状电压波形,但也可不升压交流阶梯状电压波形,在放电时各电容器并联连接,并且将放电充电最高电压的电容器的时间设长。从而,在开始照明时,从交流阶梯状电压发生源61提供给放电灯2的交流阶梯状电压波形如图45(c)所示。这样,施加在放电灯2上的有效值可比通常高,因此,放电灯可开始照明。
第25实施例和上述第19至第24实施例相同的部分用相同的符号表示,这些部分的详细说明从略。
如图46所示,该交流阶梯状电压发生源7 1将n个支路72-1、72-2…并联连接到全波整流器12的输出端子上。上述n个支路72-1、72-2…分别由多个电容器和由多个MOSFET构成的开关元件构成。
例如,支路72-1是经开关元件13-1将m个开关元件和m个电容器交互串联的电路,即,将开关元件73-11、电容器74-11、开关元件73-12、电容器74-12、开关元件73-13、电容器74-13…开关元件73-1m、电容器74-1m的串联电路并联连接到全波整流器12的输出端子上。上述各电容器74-11~74-1m构成直流电压源。
在电容器74-11和开关元件73-12的串联电路上并联连接开关元件75-11,在电容器74-12和开关元件73-13的串联电路上并联连接开关元件75-12,在电容器74-13和开关元件73-14(未图示)的串联电路上并联连接开关元件75-13,…,在电容器74-1(m-1)(未图示)和开关元件73-1m的串联电路上并联连接开关元件75-1(m-1)。
在开关元件73-12和电容器74-12的串联电路上并联连接开关元件76-11,在开关元件73-13和电容器74-13的串联电路上并联连接开关元件76-12,…,在开关元件73-1m和电容器74-1m的串联电路上并联连接开关元件76-1(m-1)。
支路72-2是经开关元件13-2将m个开关元件和m个电容器交互串联的电路,即,将开关元件73-21、电容器74-21、开关元件73-22、电容器74-22、开关元件73-23、电容器74-23…开关元件73-2m、电容器74-2m的串联电路并联连接到全波整流器12的输出端子上。上述各电容器74-21~74-2m构成直流电压源。
在电容器74-21和开关元件73-22的串联电路上并联连接开关元件75-21,在电容器74-22和开关元件73-23的串联电路上并联连接开关元件75-22,在电容器74-23和开关元件73-24(未图示)的串联电路上并联连接开关元件75-23,…,在电容器74-2(m-1)(未图示)和开关元件73-2m的串联电路上并联连接开关元件75-2(m-1)。
在开关元件73-22和电容器74-22的串联电路上并联连接开关元件76-21,在开关元件73-23和电容器74-23的串联电路上并联连接开关元件76-22,…,在开关元件73-2m和电容器74-2m的串联电路上并联连接开关元件76-2(m-1)。
这样,全部支路通过多个开关元件和电容器构成和上述2个支路同样的电路。
上述开关元件73-11、73-21…和电容器74-11、74-21…的连接点分别经开关元件66-1、66-2连接到极性反转电路16的开关元件16-1和16-3的连接点上。上述极性反转电路的开关元件16-2和16-4的连接点连接到上述各支路最另一端侧的电容器74-1m、74-2m的另一端上。
各支路72-1、72-2…的各开关元件由MOSFET构成,下面描述其具体例。
图47示出了支路72-1的构成,开关元件13-1由二极管和1个MOSFET构成,其它的开关元件73-11~73-1m、75-11~75-1(m-1)、76-11~76-1(m-1)由2个MOSFET的源极和栅极公共连接的两极性开关构成。
该构成对其它的支路72-2…也一样。在输出降压的电压时,交流阶梯状电压发生源71是这样的充电时,在支路72-1中,开关元件13-1的阻抗被控制为有限值,使开关元件73-11~73-1m进行开动作,开关元件75-11~75-1(m-1)、76-11~76-(m-1)进行关动作。从而支路72-1的各电容器74-11~74-1m全部串联连接,通过全波整流器12的输出电压充电到规定电平。
在下一个支路72-2中,开关元件13-2的阻抗被控制为有限值,使开关元件73-21~73-2(m-1)进行开动作,使开关元件75-21~75-2(m-1)、76-21~76-2(m-1)、66-2进行关动作。由此,支路72-2的各电容器74-21~74-2m全部串联连接,通过全波整流器12的输出电压充电为比支路72-1高若干电平的规定电平。
这样,在充电时,n级支路的全部电容器串联连接,通过来自全波整流器12的输出电压,电容器的串联电路充电为每个支路不同的电压值。
交流阶梯状电压发生源71是这样的放电时,在支路72-1中,使开关元件73-11~73-1m进行关动作,开关元件75-11~75-1(m-1)、76-11~76-1(m-1)、66-1进行开动作,从而支路72-1的各电容器74-11~74-1m全部变成并联连接,可输出1/m的电压。
在下一个支路72-2中,使开关元件73-21~73-2m进行关动作,开关元件75-21~75-2(m-1)、76-21~76-2(m-1)、66-2进行开动作,从而支路72-2的各电容器74-21~74-2m全部变成并联连接,可输出1/m的电压。
因此,在该例中,放电时,各支路并联连接各电容器,在极性反转电路16中流过电流。因此,输入电压降压到1/m的交流阶梯状电压从交流阶梯状电压发生源71经第一电容器3提供给放电灯2。放电时,通过开关控制各支路72-1、72-2…的开关元件可串联连接任意个数的电容器,从而可任意降压交流阶梯状电压。
在输出升压的电压时,交流阶梯状电压发生源71是这样的充电时,在支路72-1中,开关元件13-1的阻抗被控制为有限值,使开关元件73-11、75-11~75-1(m-1)、76-11~76-(m-1)进行开动作,开关元件73-12、73-1m进行关动作。从而支路72-1的各电容器74-11~74-1m全部并联连接,通过全波整流器12的输出电压充电到规定电平。
在下一个支路72-2中,开关元件13-2的阻抗被控制为有限值,使开关元件73-21、75-21~75-2(m-1)、76-21~76-2(m-1)进行开动作,使开关元件73-22~73-2m进行关动作。由此,支路72-2的各电容器74-21~74-2m全部并联连接,通过全波整流器12的输出电压充电为比支路72-2高若干电平的规定电平。
这样,在充电时,n级支路的全部电容器并联连接,通过来自全波整流器12的输出电压,电容器的串联电路充电为每个支路不同的电压值。
交流阶梯状电压发生源71是这样的放电时,在支路72-1中,使开关元件73-11、75-11~75-1(m-1)、76-11~76-1(m-1)进行开动作,开关元件73-12~73-1m、66-1进行关动作,从而支路72-1的各电容器74-11~74-1m全部串联连接,电流从各电容器74-11~74-1m经开关元件66-1流入极性反转电路16。即,各电容器74-11~74-1m的充电电压相加后输出。
在下一个支路72-2中,使开关元件73-21、75-21~75-2(m-1)、76-21~76-2(m-1)进行关动作,开关元件73-22~73-2m、66-2进行开动作,从而支路72-2的各电容器74-21~74-2m全部串联连接,电流从各电容器74-21~74-2m经开关元件66-2流入极性反转电路16。即,各电容器74-21~74-2m的充电电压相加后输出。
这样,放电时,各支路串联连接各电容器,在极性反转电路16中流过电流。因此,输入电压升压为m倍的交流阶梯状电压从交流阶梯状电压发生源71经第一电容器3提供给放电灯2。放电时,通过开关控制各支路72-1、72-2…的开关元件可变化串联连接的电容器数,从而可改变升压的程度。这样,可发生各种交流阶梯状电压,可提高通用性。
在该装置中,一个支路不能同时进行充电和放电。即,在支路72-1中,在充电期间进行放电的情况下,在关动作开关元件73-11并停止充电后进行放电。此时,由于充电的停止,输入电流被切断。为了避免这种情况,在充电期间不进行放电。即,在充电期间仅进行充电,由不处于充电期间的其它支路进行放电。从而,可避免输入电流被切断的现象。
在这种构成中,来自交流阶梯状电压发生源71的交流阶梯状电压波形经第一电容器3提供给放电灯2。因此,在本实施例中,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,放电灯2在从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制放电灯2在短路时流过的负载电流,可防止流过过量电流。
发明效果根据权利要求1和2所述的发明,提供可将电容器充电电压控制为恒定的电源装置。
根据权利要求3-7所述的发明,还可平滑连续地流过输入电流。即,输入电流可成正弦波状。
而且,根据权利要求5-7所述的发明,还可充分抑制输入电流中的高频分量来改善功率因数。
根据权利要求8和9所述的发明,通过有效值检测部检测流入放电灯的电灯电流的有效值,控制开关电路且可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间使得该有效值检测部检测出的电灯电流有效值变为恒定,因此,可不使用线圈灯绕组部件来限流控制电灯电流,可实现装置的小型、轻量化。
根据权利要求10所述的发明,来自交流阶梯状电压发生源的交流阶梯状电压波形经电容器提供给放电灯,因此,可扩大可适用的放电灯的电灯电压范围,而且,可防止在放电灯短路时流过过量电流。
权利要求
1.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有阻抗控制单元,控制对应的可变电阻器的阻抗,使得在任意的可变电阻器中流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将上述任意电容器的充电电压变为恒定。
2.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在上述可变电阻器中分别流过预先设定的目标值的输入电流;和多个振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得对应于各阻抗控制单元控制阻抗的可变电阻器的电容器充电电压变为恒定。
3.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将各电容器中充电目标值最高的电容器的充电电压变为恒定,上述各阻抗控制单元控制对应的可变电阻器的阻抗,使得在各可变电阻器中流过跟踪由上述振幅控制单元进行振幅控制的输入电流目标值的输入电流。
4.根据权利要求2或3所述的电源装置,其特征在于,振幅控制单元设置电源电压检测电路,根据该电源电压检测电路检测的电源电压,可改变对应的电容器充电电压目标值。
5.根据权利要求2或3所述的电源装置,其特征在于,将各电容器充电电压的目标值设定为越是充电为高电压的电容器,和相邻电容器的充电电压比越小。
6.根据权利要求2或3所述的电源装置,其特征在于,在商用电源电压的绝对值上升期间,某个电容器电压和上述商用电源电压的绝对值相等时开始对该电容器进行充电,下级的电容器电压和上述商用电源电压相等时停止,在商用电源电压绝对值下降期间,前一个电容器的电压等于上述商用电源电压绝对值时开始某个电容器的充电,充电电压等于上述商用电源电压时停止。
7.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在上述各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将上述各电容器中某个特定电容器的充电电压变为恒定,上述各阻抗控制单元控制对应的可变电阻器的阻抗,使得流过跟踪由上述振幅控制单元进行振幅控制的输入电流目标值的输入电流,并且,将某个特定的电容器切换为其他电容器。
8.一种放电灯照明装置,其特征在于,具有多个直流电压源,产生不同的正电压值;开关电路,从各直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;极性反转电路,输入来自开关电路的阶梯状电压波形,输出交流的阶梯状电压波形;放电灯,提供来自极性反转电路的交流阶梯状电压波形;有效值检测部,检测在该放电灯中流动的电灯电流的有效值;和控制单元,控制上述开关电路,并可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得上述有效值检测部检测的电灯电流的有效值变为恒定。
9.一种放电灯照明装置,其特征在于,具有多个第一直流电压源,产生不同的正电压值;多个第二直流电压源,产生绝对值与各第一直流电压源的电压值相等的包含零电压值的负电压值;第一开关电路,从上述各第一直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;第二开关电路,以和第一开关电路不同的定时从上述各第二直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;放电灯,提供来自上述各开关电路的阶梯状电压波形;有效值检测部,检测在该放电灯中流过的电灯电流的有效值;和控制单元,控制上述各开关电路,可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得上述有效值检测部检测的电灯电流的有效值变为恒定。
10.一种放电灯照明装置,其特征在于,具有交流阶梯状电压发生源,电压值台阶状变化,正弦波那样增减的阶梯状正电压波形和电压值台阶状变化,交替地输出正弦波那样增减的阶梯状负电压波形;放电灯,提供来自交流阶梯状电压发生源的交流阶梯状电压波形;和串联连接在上述交流阶梯状电压发生源和上述放电灯之间的电容器。
全文摘要
将电容器的充电电压总是控制为恒定。一种电源装置,将多个可变电阻器4和电容器6的串联电路并联连接,各电容器通过商用电源电压经对应的可变电阻器充电,从各电容器向负载顺次流过放电电流,具有阻抗控制单元7-11,控制对应的可变电阻器的阻抗,使得在任意电容器中流过预先设定的目标值的输入电流;和振幅控制单元7-12,在电容器电压低于充电电压目标值时进行增大目标值输入电流振幅的控制,在电容器电压高于充电电压目标值时进行减小目标值输入电流振幅的控制,使得任意电容器的充电电压为恒定。
文档编号H05B41/14GK1440114SQ0312009
公开日2003年9月3日 申请日期2003年1月31日 优先权日2002年1月31日
发明者高橋雄治, 清水惠一 申请人:东芝照明技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1