一种水汽氧气阻隔膜及其制备方法与流程

文档序号:12771837阅读:543来源:国知局

本发明涉及一种光学用薄膜,尤其涉及一种水汽氧气阻隔膜及其制备方法。



背景技术:

如今移动电子设备上使用的LED都是以设备背面的一组发光二极管作为光源,或者采用蓝光LED和稀土荧光粉相配合以达到显示不同色彩的效果。传统LED背光液晶的色域只有70%NTSC,色彩表现力一般。量子点膜技术和OLED技术的引入将极大的提高色域,达到100%全色域甚至更高,因而显示更加明亮,色彩更丰富。由于OLED和量子点对环境中的水汽和氧气非常敏感,容易发生衰减,最直接有效的方法是将其进行封装。使用塑料薄膜进行封装不仅成本较低,且能满足使用中对光学性能方面的要求。提高塑料薄膜的透光率以及水汽氧气的阻隔性,对显示设备的使用性能和寿命至关重要。

目前,阻隔膜主要采用PVD或PECVD的方法制备而成。原子层沉积(ALD)工艺是一种以准单分子层形式逐层生长的周期性工艺,采用ALD的方法制备薄膜,更适用于大尺寸薄膜,制备的薄膜致密、成分厚度均匀、厚度控制精确、台阶覆盖性高,更适用于大尺寸制备。



技术实现要素:

为了提高水汽氧气阻隔膜的透光率和水汽氧气阻隔性,本发明提供一种水汽氧气阻隔膜及其制备方法。该水汽氧气阻隔膜(简称水氧阻隔膜)具有较高的透光率和水汽氧气阻隔性,从而能够提高显示设备的使用寿命。

为了解决上述技术问题,本发明提供下述技术方案:

本发明提供一种水汽氧气阻隔膜,所述水汽氧气阻隔膜包括有机高分子层、水汽氧气阻隔层和抗粘连层;所述水汽氧气阻隔层粘结在有机高分子层的上表面,所述抗粘连层粘结在有机高分子层的下表面。

进一步的,在所述的水汽氧气阻隔膜中,所述有机高分子层为高透明高分子薄膜;所述水汽氧气阻隔层为无机膜层;所述抗粘连层包括树脂和抗粘连粒子,所述抗粘连粒子通过树脂粘结在有机高分子层的下表面。

进一步的,在所述的水汽氧气阻隔膜中,所述有机高分子层的厚度为50-150μm,所述水汽氧气阻隔层的厚度为2-25nm,所述抗粘连层的厚度为2-5μm。

进一步的,所述有机高分子层的厚度为50-100μm。进一步的,所述有机高分子层的A层的厚度是2-3μm,B层的厚度是46-94μm。

进一步的,所述水汽氧气阻隔层的厚度为5-15nm。进一步的,所述水汽氧气阻隔层的厚度为10nm。

进一步的,所述抗粘连层的厚度为3-4μm。

进一步的,在所述的水汽氧气阻隔膜中,所述有机高分子层的材料选自聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚偏氯乙烯(PVDF)、聚萘二甲酸乙二醇酯(PEN)或聚对苯二甲酸丁二醇酯(PBT)中的一种或其中至少两种的混合物。

进一步的,在所述的水汽氧气阻隔膜中,所述有机高分子层包括ABA三层共挤结构。

进一步的,所述有机高分子层为ABA三层共挤结构。

所述有机高分子层的A层的材料选自聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚偏氯乙烯(PVDF)、聚萘二甲酸乙二醇酯(PEN)或聚对苯二甲酸丁二醇酯(PBT)中的一种。

所述有机高分子层的B层的材料选自聚乙烯(PE)、聚丙烯(PP)、聚对 苯二甲酸乙二醇酯(PET)、聚偏氯乙烯(PVDF)、聚萘二甲酸乙二醇酯(PEN)或聚对苯二甲酸丁二醇酯(PBT)中的一种。

所述有机高分子层采用ABA三层共挤技术(即外层材料为A,内层材料为B),通过双拉工艺制备而成,所述制备方法包括下述步骤:将母料熔融,通过三层共挤出机挤出,通过冷却、铸片和双向拉伸工艺,制得ABA三层结构的光学薄膜。

进一步的,在所述的水汽氧气阻隔膜中,所述水汽氧气阻隔层的材料选自SiO2或Al2O3

进一步的,在所述的水汽氧气阻隔膜中,所述水汽氧气阻隔层采用原子层沉积(ALD)技术制备。

进一步的,在所述的水汽氧气阻隔膜中,所述水汽氧气阻隔层为Al2O3薄膜或SiO2薄膜。

进一步的,在所述的水汽氧气阻隔膜中,所述抗粘连层中的树脂为水溶性聚丙烯酸酯树脂,所述抗粘连粒子为二氧化硅颗粒,二氧化硅颗粒的粒径为0.5-2μm。

本发明还提供一种制备所述的水汽氧气阻隔膜的方法,所述制备方法包括下述步骤:

(1)制备有机高分子层;

(2)在有机高分子层的表面涂布抗粘连层;

(3)在有机高分子层的另一表面采用原子层沉积(ALD)技术沉积水汽氧气阻隔层。

进一步的,水汽氧气阻隔层为Al2O3薄膜,所述制备方法包括下述步骤:

(1)采用所述有机高分子层作为基材;

(2)采用三甲基铝(C3H9Al)为铝源,H2O或O3为氧源,沉积温度80-300℃,在有机高分子层上利用原子层沉积(ALD)技术沉积Al2O3薄膜。Al2O3薄膜即水汽氧气阻隔层。进一步的,沉积温度为150-220℃。

进一步的,在沉积Al2O3薄膜的过程中,原子层沉积设备的气路温度控制在20-70℃,生长周期20-200秒,本底真空度为0.1-0.5托尔(Torr),清洗气体为氮气,流量为0-40sccm(即mL/min)。

进一步的,水汽氧气阻隔层为SiO2薄膜,所述制备方法包括下述步骤:

(1)采用有机高分子层作为基材;

(2)采用三甲基硅烷(C3H10Si)为硅源,O3为氧源,沉积温度80-300℃,在有机高分子层上利用原子层沉积(ALD)技术沉积SiO2薄膜。进一步的,沉积温度为150-220℃。

进一步的,在沉积SiO2薄膜的过程中,原子层沉积设备的气路温度控制在70-100℃,生长周期20-200秒,本底真空度为0.1-0.5托尔(Torr),清洗气体为氮气,流量为0-40sccm(mL/min)。

进一步的,所述抗粘连层中,所述抗粘连粒子通过水溶性聚丙烯酸酯粘接在所述有机高分子层的下表面,所述制备方法包括下述步骤:

(1)抗粘连层的原料先配制成涂布液,所述涂布液包括下述材料:1-5%的水溶性聚丙烯酸酯,0.1-0.5%的胶体硅,其余为纯净水,所述百分含量为重量百分含量;

(2)将步骤(1)得到的涂布液通过单面涂布工艺涂布在有机高分子层的下表面;

(3)干燥后,抗粘连粒子通过水溶性聚丙烯酸酯树脂粘接在有机高分子层的下表面,形成抗粘连层。

进一步的,所述抗粘连层的原料先配制成涂布液,所述涂布液包括下述材料:2-4%的水溶性聚丙烯酸酯,0.2-0.4%的胶体硅,其余为纯净水,所述百分含量为重量百分含量。

进一步的,所述抗粘连层的原料先配制成涂布液,所述涂布液包括下述材料:3%的水溶性聚丙烯酸酯,0.3%的胶体硅,其余为纯净水,所述百分含量为重量百分含量。

与现有水汽氧气阻隔膜相比,本发明提供的水汽氧气阻隔膜具有较高的透过率以及高阻隔性,广泛应用于液晶显示设备,能够更好的保护显示设备,提高了背光模组的使用寿命,从而提高显示器的使用寿命。本发明提供的水汽氧气阻隔层的制备方法制备出的薄膜,厚度更加均匀,性能更优异,稳定性好。

附图说明

图1为本发明提供的一种水汽氧气阻隔膜的结构示意图。

其中101是水汽氧气阻隔层,102是有机高分子层,103是抗粘连层。

具体实施方式

为了更易理解本发明的结构及所能达成的功能特征和优点,下文将本发明的较佳的实施例,并配合图式做详细说明如下:

如图1所示,本发明提供的水汽氧气阻隔膜包括了水汽氧气阻隔层101,有机高分子层102,抗粘连层103。

本发明提供的水汽氧气阻隔膜的制备方法包括以下步骤:

(1)制备有机高分子层

(2)在有机高分子层的表面涂布抗粘连层

(3)在有机高分子层的另一表面沉积水汽氧气阻隔层。

实施例中水汽氧气阻隔膜的光学性能是通过光透过率和雾度进行评价的,光透过率越高,雾度越低,表示透光性能越好。使用英国Diffusion公司的EEL 57D雾度仪测量光透过率(也称为透光率)和雾度。

实施例中水汽氧气阻隔膜的阻隔性是通过水蒸气透过率和氧气透过率进行评价的。采用MOCON公司的水氧气透过率测试仪,在23℃,90%RH的条件下测试了水蒸气透过率与氧气透过率。水蒸气透过率与氧气透过率的数值越低,表示水汽氧气阻隔膜的水氧阻隔率越高、水氧阻隔性越好。

实施例1

本发明提供的水汽氧气阻隔膜包括有机高分子层、水汽氧气阻隔层和抗粘连层。其中,有机高分子层为ABA三层共挤工艺制备而成的透明薄膜,A层材料选用PE,B层材料选用PET,有机高分子层的厚度为50μm,其中A层的厚度为2μm,B层的厚度为46μm。水汽氧气阻隔层的材料为Al2O3,厚度为2nm,沉积温度为80℃。抗粘连层中的抗粘连粒子为二氧化硅颗粒,粒径为0.5-2μm。抗粘连层厚度为2μm,抗粘连粒子通过水溶性聚丙烯酸酯粘接在有机高分子层的下表面。抗粘连层的原料先配制成涂布液,涂布液包括了1%的水溶性聚丙烯酸酯和0.1%的胶体硅,其余为纯净水,通过单面涂布、干燥后形成抗粘连层。所得水汽氧气阻隔膜的相关性能及测试结果见表1。

实施例2

如实施例1提供的水汽氧气阻隔膜。其中,有机高分子层为ABA三层共挤工艺制备而成的透明薄膜,A层材料选用PVDF,B层材料选用PET,有机高分子层的厚度为50μm,其中A层的厚度为2μm,B层的厚度为46μm。水汽氧气阻隔层的材料为Al2O3,厚度为5nm,沉积温度为200℃。抗粘连层中的抗粘连粒子为二氧化硅颗粒,粒径为0.5-2μm。抗粘连层厚度为3μm,抗粘连粒子通过水溶性聚丙烯酸酯粘接在有机高分子层的下表面。抗粘连层的原料先配制成涂布液,涂布液包括了2%的水溶性聚丙烯酸酯和0.2%的胶体硅,其余为纯净水,通过单面涂布、干燥后形成抗粘连层。所得水汽氧气阻隔膜的相关性能及测试结果见表1。

实施例3

如实施例1提供的水汽氧气阻隔膜。其中,有机高分子层为ABA三层共挤工艺制备而成的透明薄膜,A层材料选用PEN,B层材料选用PET,有机高分子层的厚度为100μm,其中A层的厚度为3μm,B层的厚度为94μm。水汽氧气阻隔层的材料为SiO2,厚度为10nm,沉积温度为150℃。抗粘连层中 的抗粘连粒子为二氧化硅颗粒,粒径为0.5-2μm。抗粘连层厚度为3μm,抗粘连粒子通过水溶性聚丙烯酸酯粘接在有机高分子层的下表面。抗粘连层的原料先配制成涂布液,涂布液包括了3%的水溶性聚丙烯酸酯和0.3%的胶体硅,其余为纯净水,通过单面涂布、干燥后形成抗粘连层。所得水汽氧气阻隔膜的相关性能及测试结果见表1。

实施例4

如实施例1提供的水汽氧气阻隔膜。其中,有机高分子层为ABA三层共挤工艺制备而成的透明薄膜,A层材料选用PBT,B层材料选用PET,有机高分子层的厚度为100μm,其中A层的厚度为3μm,B层的厚度为94μm。水汽氧气阻隔层的材料为SiO2,厚度为15nm,沉积温度为220℃。抗粘连层厚度为4μm,抗粘连层中的抗粘连粒子为二氧化硅颗粒,粒径为0.5-2μm。抗粘连粒子通过水溶性聚丙烯酸酯粘接在有机高分子层的下表面。抗粘连层的原料先配制成涂布液,涂布液包括了4%的水溶性聚丙烯酸酯和0.4%的胶体硅,其余为纯净水,通过单面涂布、干燥后形成抗粘连层。所得水汽氧气阻隔膜的相关性能及测试结果见表1。

实施例5

如实施例1提供的水汽氧气阻隔膜。其中,有机高分子层为ABA三层共挤工艺制备而成的透明薄膜,A层材料选用PE,B层材料选用PP,有机高分子层的厚度为150μm,其中A层的厚度为5μm,B层的厚度为140μm。水汽氧气阻隔层的材料为SiO2,厚度为25nm,沉积温度为300℃。抗粘连层厚度为5μm,抗粘连层中的抗粘连粒子为二氧化硅颗粒,粒径为0.5-2μm。抗粘连粒子通过水溶性聚丙烯酸酯粘接在有机高分子层的下表面。抗粘连层的原料先配制成涂布液,涂布液包括了5%的水溶性聚丙烯酸酯和0.5%的胶体硅,其余为纯净水,通过单面涂布、干燥后形成抗粘连层。所得水汽氧气阻隔膜的相关性能及测试结果见表1。

实施例6

如实施例3提供的水汽氧气阻隔膜。其中,A层材料选用PE,B层材料选用PP。

实施例7

如实施例3提供的水汽氧气阻隔膜。其中,A层材料选用PET,B层材料选用PEN。

实施例8

如实施例3提供的水汽氧气阻隔膜。其中,A层材料选用PET,B层材料选用PBT。

对比例1

如实施例2提供的水汽氧气阻隔膜,其中,采用PECVD(等离子增强化学气相淀积)方式沉积SiO2的水汽氧气阻隔层。所得水汽氧气阻隔膜的相关性能测试结果见表1。

对比例2

如实施例2提供的水汽氧气阻隔膜,其中,采用PVD(物理气相淀积)方式沉积SiO2的水汽氧气阻隔层。所得水汽氧气阻隔膜的相关性能测试结果见表1。

对比例3

如实施例2提供的水汽氧气阻隔膜,其中,采用PVD(物理气相淀积)方式沉积Al2O3的水汽氧气阻隔层。所得水汽氧气阻隔膜的相关性能测试结果见表1。

表1实施例1-8与对比例1-3提供的水汽氧气阻隔膜的水蒸气透过率、氧气透过率、光透过率和雾度的检测结果

从表1所示的检测结果可以得出,本发明中的水汽氧气阻隔膜的光透过率较高,大于88%,雾度较低,且对水汽氧气的阻隔性较好。相对PECVE和PVD制备的水汽氧气阻隔层的水汽氧气阻隔膜,本发明中的水汽氧气阻隔膜的阻隔性更好,从而增加了显示器的使用寿命。其中,实施例2-4、和实施例7提供的水汽氧气阻隔膜的综合性能更好,阻隔性较好且光透过率较高。而实施例3提供的水汽氧气阻隔膜的综合性能最好。

以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1