有机氯农药在纳米二氧化钛上光催化降解方法

文档序号:179829阅读:372来源:国知局
专利名称:有机氯农药在纳米二氧化钛上光催化降解方法
技术领域
本发明涉及一种有机氯农药,尤其是涉及一种可适用于污染物中有机氯农药的降解和转化的方法。
背景技术
在农药家族中,有机氯类农药占有相当的比例。有机氯农药急性毒性小,但由于其化学性质稳定,在环境中降解十分缓慢,容易残留并通过动植物体内的蓄积和食物链的作用进入人体,造成对人体健康的危害。特别是六六六和滴滴涕农药,这两种农药不象其他有机污染物那样易于分解和转化,而是长期残留在环境中,并可通过食物链进入人体,对人体健康造成极大的危害。我国已于1983年禁止此类农药的使用,但目前在蔬菜、茶叶栽培生产中仍然有使用含氯或产生含氯代谢产物农药的现象。除六六六和滴滴涕这两种常见的有机氯农药外,还有狄氏剂、艾氏剂、异狄氏剂和七氯等都是具有高毒性的物质。因此对有机氯农药的降解转化具有重要意义。
建立一种能快速转化有机氯农药的方法,不仅有利于保护环境,而且对我们生活水平的提高提供保障。目前常见的有机氯农药的降解方法为利用微生物对有机氯农药进行降解,王国惠等(王国惠,有机氯农药高效降解菌的筛选及其降解能力的研究,环境保护,2004,812-14;方玲,降解有机氯农药的微生物菌株分离筛选及应用效果,应用生态学报,2000,11(2)249-252)利用有机氯降解菌实现对有机氯除草剂2,4-D的降解,但该菌种只能对单一的有机氯农药降解,而且有机氯农药处于较高浓度时菌种的活性会受到抑制,同时菌种的培养非常麻烦,菌种在降解时对温度的要求比较严格,只有在其最佳的温度下才有较高的降解率。张绍园等(张绍园等,臭氧氧化在降解废水中有机污染物的应用,国外环境科学技术,1997,232-34)利用臭氧氧化降解废水中的污染物,利用臭氧氧化降解农药废水,虽然也可以对多种农药进行降解,但是降解时间比较长,要3~5h,而且臭氧的制造费用比较高。脱氯法也是消除有机氯农药,降低其毒性的一种方法。Annegret K.Hall等(Annegret K.Hall,et al,Mechanochemical reaction of DDT with calcium oxide,Environmentalscience & Technology,1996,30(12)3401-3407)利用机械球磨技术,将CaO和DDT(滴滴涕)混合在一起,在氩气氛围中,在钢瓶中球磨,经过12h后,DDT可基本脱氯,具有较高的脱氯率。但此方法耗时比较长,而且要处于氩气氛围中,费用比较昂贵。因此发展一种快速、简便、低成本的有机氯农药转化方法,使其降解为小分子或者低毒性的物质的研究受到人们的关注。
近些年来,国内外已有不少有关于使用氧化物来光催化降解有机氯物质的文献报道,有PtO2,SiO2,TiO2以及一些多种氧化物结合使用的催化剂,由于纳米TiO2具有无毒和催化效率高等优点,因此使用TiO2做光降解催化剂居多。E.Moctezuma等(E.Moctezuma,et al.Photocatalytic degradation of the herbicide“paraquat”,Chemoshere,1999,39(3)511-517)使用TiO2在UV下降解百草枯(二氯-1,1’-二甲基-4.4’-吡啶鎓),M.Hügül等(M.Hügül,et al.Photocatalytic decomposition of 4-chlorophenol over oxide catalysts,Journal of HazardousMaterial B,1999,64313-322)使用PtO2/TiO2在UV下降解4-氯苯酚,而且催化时间比较短。Alessandra Bianco Prevot等(Alessandra Bianco Prevot,et al.Analytical monitoring ofphotocatalytic treatments.Degradationof 2,3,6-trichlorobenzoic acid in aqueous TiO2 dispersions,Talanta,1999,48847-857)使用TiO2水相悬浮体系在可见光下催化降解2,3,6-三氯苯甲酸,转化为无机氯离子。

发明内容
本发明的目的在于针对现有的对有机氧农药进行降解的方法存在的不足,提供一种快速简便、低成本,在常温下就可以实现对有机氯农药的快速转化的方法。
本发明的步骤为1)取用丙酮配制的农药标准品,置于反应装置中,在N2气吹扫下将溶剂丙酮吹干;2)在反应装置中加入纳米TiO2粉体和水,混合得TiO2和农药混合悬浮液,控制TiO2的浓度为0.25~1.0mg/mL,农药标准品的浓度为0.1~1.0μg/mL,将TiO2和农药混合悬浮液超声振荡,使TiO2颗粒分散均匀,所述的纳米TiO2粉体的直径为20~50nm,所述的纳米TiO2可选用锐钛矿;3)将TiO2和农药混合悬浮液通入空气,用紫外杀菌灯直接照射在TiO2和农药混合悬浮液上,经光催化降解,空气的流速最好为80~150mL/min,光催化时间最好为15~90min;4)将经光催化降解的TiO2和农药混合悬浮液,用过滤器过滤除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相为目标产物,所述的过滤器最好采用≤0.45μm的针头过滤器。
所得目标产物可经检测、分析、处理和计算,获得其降解率。
与现有的对有机氯农药进行降解的方法相比,本发明的突出优点是(1)光催化降解有机氯农药对环境友好,成本低;(2)整个降解过程方法简便,耗时短,在30min之内基本可以满足有机氯农药降解的要求,有望应用于污水或者其他方面的有机氯农药处理;(3)本发明可以对多种有机氯农药进行降解转化。


图1和2为有机氯农药降解率与光降解时间的关系。在图1和2中,横坐标表示光催化降解时间t/min,纵坐标表示各种农药的光降解率n/%。
图3为各种农药在光催化和光照条件下的降解率。在图3中,横坐标表示光催化降解时间t/min,纵坐标表示各种农药的光降解率n/%。
图4为TiO2浓度与有机氯农药降解率的关系。在图4中,横坐标表示TiO2浓度mg/mL,纵坐标表示各种有机氯农药的光降解率n/%。
具体实施例方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1将有机氯农药注射到含有直径为35nm的粉末状纳米TiO2蒸馏水中,使溶液中有机氯农药的浓度为100ppb,纳米TiO2浓度为0.50mg/mL,通入流速为100mL/min的空气,将此溶液超声混匀之后,在磁力搅拌器上强烈搅拌,并用紫外灯照射光催化降解30min,紫外线源为30W的紫外杀菌灯,其辐射波长为254nm,紫外灯置于溶液上方9~10cm处。反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相经GC-ECD检测分析降解后的产物,表面大部分的有机氯农药经反应后其降解产率可达90%以上,其他难降解的,如β-BHC(β-六六六),δ-BHC(δ-六六六),其降解率也达到40%以上。α-BHC、β-BHC、γ-BHC、δ-BHC、艾氏剂、狄氏剂和异狄氏剂的降解率参见图1。所采用的纳米TiO2为锐钛矿。
实施例2将α-BHC、β-BHC、γ-BHC、δ-BHC、艾氏剂、狄氏剂、异狄氏剂、联苯菊酯、高效氟氯氰菊酯、氯氰菊酯、氰戊菊酯和七氯等12种有机氯农药以及含有氯元素的菊酯,其中高效氟氯氰菊酯浓度为400ppb,其他均为100ppb,TiO2用量为0.50mg/mL,直径为50nm,空气流量为90mL/min,选择光降解时间分别为15,30,60min,进行光催化降解。反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得的有机相经GC-ECD检测分析降解后的产物。以α-BHC(α-六六六)为例,经分析和计算,在15,30,60min的降解率分别为83.67%,90.17%,97.19%,对于狄氏剂降解率分别为41.87%,84.14%,86.47%;而对难降解的β-BHC,其降解率的增长更为明显,降解率分别为12.52%,37.67%,75.02%;对于菊酯、七氯、艾氏剂等极其容易降解的物质,其降解率在15min时就已经达到90%以上,并且随光照时间增加其降解率变化很小。农药降解率与光照时间的关系参见图1和2。
实施例3将上述12种有机氯农药以及含有氯元素的菊酯,其中高效氟氯氰菊酯浓度为为160ppb,其他均为40ppb,空气流量为120mL/min,进行光照(没有纳米TiO2)和光催化降解(TiO2用量为0.25mg/mL)的比较,降解时间30min。直接光照后的溶液用正己烷萃取。光催化降解反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得的有机相经GC-ECD检测分析降解后的产物。以狄氏剂和异狄氏剂最为明显,它们在光照条件下的降解率分别为6.57%和2.90%,而在光催化降解中降解率分别可以达到94.08%和93.57%,因此说明有TiO2参与的光催化降解对农药降解非常有利,这主要是因为活泼羟基自由基和超氧离子自由基对农药的氧化作用引起的。同时由于这些农药本身在紫外区有很强的吸收光谱,而紫外杀菌灯的主要辐射波长又在254nm,正好落在这个吸收区域,因此即使没有催化剂时,菊酯以及艾氏剂等的降解也比较明显。各种农药在光催化和光照条件下的降解率见图3。
实施例4将上述12种有机氯农药以及含有氯元素的菊酯,其中高效氟氯氰菊酯浓度为400ppb,其他均为100ppb,空气流量为100mL/min,光降解时间分别为30min,选择TiO2用量分别为为0.25mg/mL,0.50mg/mL,1.0mg/mL,进行光催化降解。反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得的有机相经GC-ECD检测分析降解后的产物。经计算,以α-BHC为例,在TiO2用量为0.25mg/mL,0.50mg/mL,1.0mg/mL时,其降解产率分别为85.40%,90.17%,93.83%;对于β-BHC,降解产率分别为22.93%,37.67%,47.86%;对异狄氏剂,降解产率分别为83.71%,84.21%,92.92%;对于七氯、艾氏剂和菊酯类,TiO2的浓度对其降解率影响不大,在所选择的几个浓度内,其降解率基本都达到90%以上,氰戊菊酯可以完全降解。各种农药在不同浓度的TiO2条件下的降解率见图4。
实施例5与实施例1类似,其区别在于空气的流速为80mL/min,粉末状纳米TiO2的直径为40nm,紫外灯照射光催化降解80min。
实施例6
与实施例1类似,其区别在于空气的流速为150mL/min,粉末状纳米TiO2的直径为20nm,紫外灯照射光催化降解90min。
本发明所说的锐钛矿型的纳米TiO2可通过水解法自行合成。纳米TiO2合成过程是以TiCl4作为前驱体,在冰水浴和搅拌下,将TiCl4逐滴缓慢滴入蒸馏水中,然后将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶液中,搅拌,混合过程中温度控制在0~15℃。将混合物升温至沸水浴并保温1~2h后,加入浓氨水调节pH值至8~9。陈化10~20h,过滤后用蒸馏水洗去会影响实验结果的氯离子(用0.1mol/L的AgNO3溶液检验)后,用无水乙醇洗涤一遍以上,过滤后室温条件下将沉淀真空干燥,最后将真空干燥后的粉体于700~900℃下煅烧,即得到所需要的纳米氧化钛粉体,实验控制TiCl4与蒸馏水以及浓盐的体积比为1∶8∶0.4~1∶12∶0.6,TiCl4和硫酸铵按照物质的量之比为1∶1.8~1∶2.0。
权利要求
1.有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于其步骤为1)取用丙酮配制的农药标准品,置于反应装置中,在N2气吹扫下将溶剂丙酮吹干;2)在反应装置中加入纳米TiO2粉体和水,得TiO2和农药混合悬浮液,控制TiO2的浓度为0.25~1.0mg/mL,农药标准品的浓度为0.1~1.0μg/mL;3)将TiO2和农药混合悬浮液通入空气,用紫外杀菌灯直接照射在TiO2和农药混合悬浮液上,经光催化降解;4)将经光催化降解的TiO2和农药混合悬浮液,用过滤器过滤除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相为目标产物。
2.如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于在步骤2)中,在反应装置中加入纳米TiO2粉体和水后,将TiO2和农药混合悬浮液超声振荡,使TiO2颗粒分散均匀。
3.如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于所述的纳米TiO2粉体的直径为20~50nm。
4.如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于所述的纳米TiO2为锐钛矿。
5.如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于通入空气的流速为80~150mL/min。
6.如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于光催化时间为15~90min。
7.如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于所述的过滤器采用≤0.45μm的针头过滤器。
全文摘要
有机氯农药在纳米TiO
文档编号A01N25/32GK1843113SQ20061007086
公开日2006年10月11日 申请日期2006年3月15日 优先权日2006年3月15日
发明者陈曦, 余彬彬, 黄沙, 袁宁, 肖来龙 申请人:厦门大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1