对伊马替尼治疗敏感的胶质母细胞瘤亚群的鉴定和表征的制作方法

文档序号:439911阅读:235来源:国知局
专利名称:对伊马替尼治疗敏感的胶质母细胞瘤亚群的鉴定和表征的制作方法
技术领域
本发明涉及利用特定遗传标记物以体外诊断哺乳动物细胞增殖性疾病、预测患有细胞增殖性疾病的哺乳动物对利用至少一种血小板衍生生长因子(PDGF)受体拮抗剂的药物治疗的反应行为、以及选择患有细胞增殖性疾病且预测可对利用至少一种PDGF受体拮抗剂的药物治疗有反应的哺乳动物的方法。
背景技术
根据世界卫生组织的标准可将胶质瘤分为四个级别。分级基于组织学标准如核异形性、有丝分裂活性、血管内血栓形成、微血管增生和坏死。根据细胞类型起源,一般可将II级肿瘤分为星形细胞瘤、少突胶质细胞瘤以及混合的少突星形胶质细胞瘤。III级可分为间变性星形细胞瘤和间变性少突胶质细胞瘤。最高形式IV级即为一般所知的多形性胶质母细胞瘤(GBM)。
因此,胶质母细胞瘤(GBM)为成人最常见的恶性脑部肿瘤。目前治疗基于手术、放射疗法和化学疗法。然而,这些治疗手段的反应极差。GBM患者的两年生存率小于7.5%(Maher等人,2001)。因此很需要鉴定新的治疗策略。
根据该病的临床过程和对其遗传改变的特征描述,GBM可粗略地分为原发性和继发性GBM(如Maher等人,2002综述)。原发性GBM与突变性改变的EGF受体的扩增有关,而继发性GBM的特征在于p53突变以及PDGF和PDGF受体的过度表达。与原发性GBM相比,继发性GBM见于更年轻的患者。最近的研究也鉴定了继发性GBM中的一种新亚型,其特征在于染色体12q13-14上基因的过度表达(Mischel等人,2003)。
GBM亚型中PDGF和PDGF受体的联合表达,与自分泌PDGF受体信号传导在GBM中的功能环节相一致。这一提法已经得到了实验支持。首先,小鼠大脑中过度产生PDGF可在小鼠中诱导出类似GBM的肿瘤(Dai等人,2001;Uhrbom等人,1998)。其次,采用不同类型的PDGF受体抑制剂进行的实验性治疗研究显示,通过干扰PDGF受体信号传导可以阻断GBM衍生细胞系的生长(Kilic等人,2000;Shamah等人,1993;Strawn等人,1994)。
可用于临床的PDGF受体拮抗剂(如化合物I)的有效性,证实了通过干扰肿瘤中PDGF受体信号传导而获得治疗效果的可能性(Pietras等人,2003综述)。化合物I为可口服利用的酪氨酸激酶抑制剂,该抑制剂除PDGF受体外也阻断c-Kit、c-Abl、Bcr-Abl和Arg的活性(Capdeville等人,2002综述)。在对患有CML和GIST的病人(分别与Bcr-Abl和c-Kit的变异有关)的研究中已经很好地证实了化合物I的临床功效(Demetri等人,2002;O′Brien等人,2003)。
如上所述,由于至今尚无令人满意的GBM治疗,需要寻找可成功治疗患有GBM、及更广泛而言患有细胞增殖性疾病的哺乳动物(优选人)的新治疗策略。
此处所用的“哺乳动物”为温血哺乳动物,包括人类。
本发明中的“生物样品”是指从分离自哺乳动物身体的任一生物材料中获取的哺乳动物样品,包括组织、细胞、血浆、血清、细胞或组织裂解物,且优选肿瘤组织。此类样品可通过如活组织检查得到。
此处的表述“血小板衍生生长因子(PDGF)受体拮抗剂”是指可阻断PDGF受体信号传导的任一试剂,包括如针对PDGF配体或受体的抗体、可阻止PDGF与受体结合的重组可溶性受体或适体,以及直接干扰PDGF受体激酶活性的低分子量化合物,如化合物I(见下)和其他有相似作用机制的试剂,及其可药用盐。优选用于实施本发明的PDGF受体拮抗剂为下文的化合物I,或其可药用盐。
表述“可药用”是指可用于制备药物组合物,一般安全、无毒、无生物学或其他非期望作用,也包括那些可用于哺乳动物(优选人)制药用途。
“可药用盐”是指保留具体化合物(例如,化合物I或其他PDGF受体拮抗剂)中游离酸和碱生物学有效性的盐,且并非生物学或其他方面不可接受。可药用盐的实例包括硫酸盐、焦硫酸盐、硫酸氢盐、亚硫酸盐、重亚硫酸盐、磷酸盐、磷酸氢盐、磷酸二氢盐、偏磷酸盐、焦磷酸盐、氯化物、溴化物、碘化物、醋酸盐、丙酸盐、癸酸盐、辛酸盐、丙烯酸盐、甲酸盐、异丁酸盐、己酸盐、庚酸盐、丙炔酸盐、草酸盐、丙二酸盐、琥珀酸盐、辛二酸盐、癸二酸盐、延胡索酸盐、马来酸盐、丁炔-1,4-二醇盐、己炔-1,6-二醇盐、安息香酸盐、氯苯甲酸盐、甲基苯甲酸盐、二硝基苯甲酸盐、羟基苯甲酸盐、甲氧基苯甲酸盐、邻苯二甲酸盐、磺酸盐、二甲苯磺酸盐、乙酸苯酯、苯丙酸盐、苯丁酸盐、柠檬酸盐、乳酸盐、γ-羟丁酸盐、乙醇酸盐、酒石酸盐、甲基磺酸盐、丙基磺酸盐、萘-1-磺酸盐、萘-2-磺酸盐和扁桃酸盐。
可以通过本领域已知的任一合适方法制备所需的盐,包括用无机酸(如盐酸、氢溴酸、硫酸、硝酸、磷酸等)或有机酸(醋酸、苹果酸、琥珀酸、扁桃酸、延胡索酸、丙二酸、丙酮酸、草酸、乙醇酸、水杨酸、吡喃糖苷酸(如葡萄糖醛酸或半乳糖醛酸)、α-羟酸(如柠檬酸或酒石酸)、氨基酸(如天冬氨酸或谷氨酸)、芳香酸(如安息香酸或苯乙烯酸)、磺酸(如对甲苯磺酸或乙磺酸)等)处理PDGF受体拮抗剂(如化合物I)的游离碱基。
对于固体的化合物、盐或溶剂化物而言,本领域技术人员理解这些化合物、盐或溶剂化物可以以不同的结晶形式存在,所有这些形式均包括在本发明及具体化学式的范围内。
“药物组合物”此处也以同义术语“药物制剂”或“药物”指代。
包括化合物I在内的PDGF受体拮抗剂及其可药用的盐或溶剂化物,适于以任一技术人员认可合适的制药形式的药物组合物施用。合适的药物形式包括固体、半固体、液体或冻干制剂,如片剂、粉剂、胶囊、栓剂、悬浮液、脂质体及气溶胶。根据特定用途或施用方式,药物组合物也可包含合适的赋形剂、稀释剂、溶媒和载体,以及其他药用活性试剂。
可用于制备药物组合物的合适药物形式的方法通常由本领域技术人员确定。例如,可按照常规药物化学技术制备药物制剂,其步骤包括如混合、填充以及恰当溶解其成分,从而得到口服、胃肠外、局部、阴道内、肛内、气管内、眼内、耳内和/或直肠施用所需的产品。
药物组合物中可使用固体或液体可药用载体、稀释剂、溶媒或赋形剂。示例性固体载体包括淀粉、乳糖、硫酸氢钙、硬石膏(terra alba)、蔗糖、滑石、凝胶、果胶、阿拉伯胶、硬脂酸镁和硬脂酸。示例性液体载体包括糖浆、花生油、橄榄油、盐溶液和水。载体或稀释剂中可含有合适的延长释放材料,如单独使用或联合蜡质使用的单硬脂酸甘油酯或二硬脂酸甘油酯。当使用液体载体时,制剂形式可为糖浆、酏剂、乳剂、软凝胶胶囊、无菌注射液(如溶液),或为非水或水悬浮液。
可根据本领域技术人员可用的任一通常接受的模式施用PDGF受体拮抗剂(特别是化合物I)及其可药用盐和溶剂化物。施用方法的示范性实例如经口、经鼻、胃肠外、局部、经皮和经直肠。
一剂药物组合物中含有至少为治疗有效量的活性化合物(如化合物I或其可药用盐或溶剂化物),且优选由一个或多个药物剂量单位组成。所选择的剂量可以任一已知或适于施用该剂型的方法施用于需要该治疗的哺乳动物,优选人患者,包括局部(例如以油膏或霜剂形式);口服;经直肠(如以栓剂形式);胃肠外(通过注射);或经阴道、经鼻、经气管或眼内连续施用。
“治疗有效量”是指当施用于有需要的哺乳动物时,足以产生治疗细胞增殖性疾病的活性剂的量。某一化合物的治疗有效量根据具体的化合物、疾病状况及其严重程度、需要该治疗的哺乳动物等因素而有所不同,剂量惯例由技术人员决定。
“治疗”某一疾病状态包括
(1)预防疾病,即避免可能暴露于或易感于疾病状态但还没有经历或表现出该疾病症状的哺乳动物(优选人)个体中出现疾病状态的临床症状;(2)抑制疾病状态,即阻断疾病状态或其临床症状的发展;或(3)缓解疾病状态,即使疾病状态或其临床症状暂时或永久消退。
上文中使用的“疾病状态”是指细胞增殖性疾病,也即某一类型的细胞发生累积,包括所有肿瘤、癌症、癌瘤、肉瘤、淋巴瘤、胚细胞瘤等。细胞增殖性疾病优选为胶质母细胞瘤。
术语“遗传标记”、“生物标记”、“标记”和“特征”为同义词,在此处可交互使用。
化合物I为4-(4-甲基哌嗪-1-基甲基)-N-[4-甲基-3-(4-吡啶-3-基)嘧啶-2-基氨基]苯]-苯甲酰胺,分子式如下 化合物I的游离碱基、其可药用盐及其制剂,公开于已授权的欧洲专利EP 0564409中,此处引用作为参考。化合物I游离碱基为其活性部分。化合物I为血小板衍生生长因子受体α和β(PDGFRα和β)、Bcr-Abl和c-kit酪氨酸激酶的抑制剂。
化合物的甲基磺酸加成盐(此下称为“盐I”)及其优选的结晶形式(如β结晶形式),公开于已授权的欧洲专利EP 0998473中,此处引用作为参考。
因此,本发明的第一方面涉及在体外诊断哺乳动物中细胞增殖性疾病的方法,包括至少a)提供所述哺乳动物的生物样品;并b)测定所述样品中至少2至40个选自表3的遗传标记的表达和/或磷酸化谱。
在步骤b)中可以方便地只测定至少3至5个选自表3的遗传标记的表达和/或磷酸化谱。
可以通过任一常规技术测定生物样品中遗传标记的表达水平和/或磷酸化状态,所述常规技术基于如,利用如RT-RNA技术测定RNA表达,或基于如利用如Western印迹、免疫组织化学或ELISA(酶联免疫吸附测定),包括免疫测定、免疫沉淀和电泳测定中的任一技术测定蛋白质表达。优选技术人员将测定样品中的遗传标记的表达水平和/或其磷酸化水平。
例如,可以使用对非磷酸化形式、或磷酸化形式、或非磷酸化形式和磷酸化形式两种遗传标记均具有特异性的抗体,通过标准免疫测定测量所述标记的表达和/或磷酸化水平。也可以通过利用如单克隆或多克隆抗体进行的ELISA类型的测定、免疫沉淀类型的测定、常规的Western印迹测定和免疫组织化学测定,来确定标记的表达水平和/或磷酸化。
本发明的第二方面涉及预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为的方法,包括至少a)提供所述哺乳动物的生物样品;并b)测定所述样品中至少2至40个选自表3的遗传标记的表达和/或磷酸化谱。
c)将步骤b)中得到的表达和/或磷酸化谱,与根据表3计算得到的平均值±标准差进行比较,得出反应性和无反应性表达和/或磷酸化谱;并d)如下预测所述哺乳动物的行为-若步骤b)中得到的表达和/或磷酸化谱,处在计算的反应性表达和/或磷酸化状态的平均值±标准差范围内,则预测所述哺乳动物对该治疗有反应。
-若步骤b)中得到的表达和/或磷酸化谱,处在计算的无反应性表达和/或磷酸化状态的平均值±标准差范围内,则预测所述哺乳动物对该治疗无反应;且
-若步骤b)中得到的表达和/或磷酸化谱,处在计算的反应性和无反应性表达和/或磷酸化状态的平均值±标准差的范围之外,则不能确定所述哺乳动物对该治疗的反应行为。
在具体的实施方案中,步骤b)中可以只测定至少3至5个选自表3的遗传标记的表达和/或磷酸化谱。
本发明的第三方面涉及选择患有细胞增殖性疾病的哺乳动物的方法,所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应,所述方法包括至少a)利用上述方法预测所述哺乳动物的行为;且b)若预测所述哺乳动物对治疗有反应,则选择该哺乳动物。
选择该哺乳动物可有很多目的,例如进入一项临床试验,或向其施用使用至少一种PDGF受体拮抗剂或其可药用盐的药物治疗。
本发明的第四方面涉及用于体外分析哺乳动物中遗传标记的表达和/或磷酸化谱的试剂盒,所述试剂盒含有选自表3中至少2至40个、优选3至5个遗传标记的cDNA和/或抗体。
第五方面,本发明涉及用于体外分析哺乳动物中遗传标记的表达和/或磷酸化谱的微阵列或生物芯片,其中含有选自表3中至少2至40个、优选3至5个遗传标记的cDNA和/或抗体。
本发明的第六方面涉及将选自表3的至少一个基因和/或至少一个基因产物作为遗传标记用于-体外诊断哺乳动物的细胞增殖性疾病;和/或-预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为;和/或-选择患有细胞增殖性疾病的哺乳动物,其中所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应。
在这一方面,可方便使用对应于所述基因的cDNA,和/或对所述基因产物(其磷酸化形式、或非磷酸化形式、或两者同时)具有特异性的抗体。
本发明的第七方面涉及将前述试剂盒、微阵列或生物芯片用于
-体外诊断哺乳动物的细胞增殖性疾病;和/或-预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为;和/或-选择患有细胞增殖性疾病的哺乳动物,其中所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应。
本发明的第八方面涉及至少一种PDGF受体拮抗剂在药物制造中的用途,该药物用于治疗患有细胞增殖性疾病的反应性哺乳动物,其中所述反应性哺乳动物的选择根据上述方法进行。
本发明也公开了治疗需要该治疗的反应性哺乳动物的细胞增殖性疾病的方法,包括向其施用治疗有效量的PDGF受体拮抗剂,所述反应性哺乳动物的选择根据上述方法进行。
在具体实施方案中,所述PDGF受体拮抗剂含于药物组合物中。
通过以下


但并非限制本发明图1.GBM培养物的生长速率和化合物I敏感性(A)以4000细胞/孔接种24孔平板,培养4天后确定其细胞数目,从而确定23个GBM培养物的生长速率。该值为培养期间的生长倍数,是两项独立实验的平均值。(B)为确定对化合物I的敏感性,将除去7组生长最慢的培养物剩下的16个GBM培养物,各接种4000细胞于96孔平板的孔内,令其在存在或缺乏1μM化合物I的情况下生长4天。通过结晶紫染色和光度测量,确定培养终末时的细胞数目。用经化合物I处理而诱发的生长抑制百分比来表示对化合物I的敏感性。结果(包括标准差)来自3个独立实验,其中各组培养物均进行4次分析。(C)将结果显示于散布图(Pearson相关系数为0.39)中,说明生长速率和化合物I敏感性间的相关性。
图2.GBM培养物中的PDGF受体的表达和活化利用识别PDGFRα、PDGFRβ和磷酸化酪氨酸的抗体,对GBM培养物中的WGA级分进行连续免疫印迹,确定不同细胞培养物中PDGFα-和β-受体的表达水平和活化状态。来自表达任一种受体的细胞的样品用作特异性对照,并用于不同滤器的标准化。(A)GBM培养物和对照细胞中的代表性免疫印迹分析实例。GBM培养物中PDGFα-受体(B)和PDGFβ-受体(C)的表达。根据PDGFα-受体的表达水平对细胞系进行排序。将GBM培养物21值任意设定为1。插图显示根据免疫印迹和mRNA表达分析确定的PDGF α-和β-受体表达间的相关性(Pearson相关,PDGFα-受体r=0.86,PDGFβ-受体r=0.52)。(D)由磷酸化酪氨酸免疫印迹确定的PDGFR的酪氨酸磷酸化。分析对应于PDGFα-和β-受体联合迁移位置的过滤面积。细胞系排列同B和C。将GBM培养物21中的总PDGF受体磷酸化水平任意设定为1。
图3.化合物I敏感性与PDGFR状态的相关性显示了化合物I敏感性与PDGFα-受体表达的相关性(上方左图)、与PDGFβ-受体表达的相关性(上方右图)、与PDGFα-和PDGFβ-受体联合表达的相关性(下方左图),以及与总PDGF受体酪氨酸磷酸化之间的关系(下方右图)。除去在化合物I敏感性实验中显示最大实验内差异的5个GBM培养物,对剩下的11个GBM培养物进行分析。
图4.GBM培养物中ERK和Akt的磷酸化水平以及这些参数与化合物I敏感性或PDGF受体状态间的相关性利用可识别p44/42MAPK、磷酸化p44/42MAPK Thr202/Tyr204、Akt和磷酸化Akt Ser473的抗体,通过免疫印迹测定ERK和Akt的特异性磷酸化。定量ECL信号,并利用对照裂解物来标准化滤器间转移效率的不同。10个GBM培养物中ERK(A)和Akt(C)的相对磷酸化以及ERK、Akt磷酸化与化合物I敏感性(B、D,上方左图),PDGF受体表达(B、D,上方右图),以及PDGF受体磷酸化(B、D,下图)的相关性。
图5.化合物I对Akt和ERK磷酸化的影响分析,以及这些参数与化合物I敏感性和PDGF受体状态间的相关性通过比较未处理细胞和在1μM化合物I中预孵育1小时的细胞中ERK和Akt的磷酸化,监测化合物I在ERK和Akt中引发的改变。化合物I引发的10个GBM培养物中ERK(A)和Akt(C)的磷酸化改变以及这些参数与化合物I敏感性(B、D,上方左图),PDGF受体表达(B、D,上方右图),以及PDGF受体磷酸化(B、D,下图)的相关性。图6.根据用于集群(hierarchical clustering)分析中选择特征的3条不同标准,对23组胶质母细胞瘤细胞培养物进行分级集群(A)根据与含有88个元件的基因列表的Pearson′s相关性进行分级集群,所述基因ANOVA检验p值小于0.05,且在至少3个GBM培养物中上调大于2倍,在另外至少3个GBM培养物中下调2倍。(B)根据包括2795项特征的列表集群GBM培养物,通过在ANOVA检验设定显著性水平为0.05而得到所述列表。(C)同B,在得到包括311项特征的列表后集群,但设定ANOVA检验的显著性为p<0.000000001。利用色彩编码说明不管使用何种标准选择特征列表,形成了三个主要集群,它们显示了23个GBM培养物中的17组在任一情况下的相同分布,例如GBM培养物5、7、8和11总是集群在一起。
图7.定义GBM培养物三种亚型的基因的集群根据Pearson′s相关性,对图6A中显示的用于GBM细胞集群的特征进行分级集群,得出这些特征的关系树。根据跨越23个GBM培养物表达模式相似性,这一集群对分析了若干组基因。红色和绿色分别指示单个GBM培养物中基因的高表达和低表达。
图8.获得23个GBM培养物的生物表征及表达谱结果后的汇编所显示的集群为选择ANOVA检验中p值小于0.05的特征后得到的结果,所述特征还在至少3个GBM培养物中上调大于2倍,在另外至少3个GBM培养物中下调2倍(图6A)。生长速率的描述如图1A,其中数字表示在4天的培养期间细胞数目增加倍数。关于化合物I敏感性,16个分析过的GBM培养物分成6个反应者(+,表示生长抑制大于40%)、7个无反应者(-,表示生长抑制小于20%)以及3个中度反应者(*;生长抑制为20-40%)。关于PDGF受体表达和磷酸化,将21个分析过的GBM培养物分成两组,分别为高(+;10个GBM培养物)或低(-;11个GBM培养物)PDGF受体表达或磷酸化。
图9.化合物I反应者和无反应者在留一法(leave-one-out test)测试中的的加权表决(weighted-voting)分类表现选择细胞系6、7、9和31为反应者,而5、18、21、30、35和38为无反应者进行分类。x轴描述了用于分类的特征数目(1-250),y轴描述了在留一法中误分类的培养物分数。
图10.分类器在训练集排除的5个GBM培养物中的表现利用由3-5项特征组成的分类器预测另外5个GBM培养物的反应,所述特征为来自10个胶质母细胞瘤细胞的信噪比排行基因列表中列于榜首者。分类图表显示了如图1B所确定的培养物的化合物I敏感性。每一栏下给出了根据由3、4或5项特征组成的特征列表而得到的这5个GBM培养物的分类。利用不同分类器对每种细胞培养物进行预测的能力以置信值所示。
通过以下对实验(包括实施例)的详细描述能更好地理解本发明。然而,技术人员应当知道该实验描述并无限制性,可以不背离本发明的范围而进行多种修饰、替代、省略和改变。
实施例I-材料和方法I-1组织培养及GBM培养物生长速率和化合物I敏感性的测定根据标准方法(Ponten和Westermark,1978)建立原发性GBM培养物。将来自胶质母细胞瘤的原代细胞培养物,于37℃下含5%CO2的大气中接种于添加10%FBS、10U/ml青霉素和10μg/ml链霉素的MEM中。
为确定生长速率,将细胞以每孔4000个细胞的密度接种于24孔平板上(Sarstedt)。培养4天后,通过胰蛋白酶消化收获细胞,并以Coulter细胞计数器计数。生长速率用培养期间细胞的倍增数来表示。所提供的数据来自两个独立实验,其中每一分析都以一试两份进行。
I-2-化合物I诱导的生长抑制从Novartis Pharmaceticals获取化合物I。对于每一实验而言,将6mg化合物I溶解于10ml PBS中,然后用45μm滤器无菌过滤,制备新鲜的1mM化合物I储备溶液。对于在4天期间生长速率没有超过1.2倍的细胞培养物,不检测其中化合物I诱导的生长抑制。为确定化合物I对细胞生长的影响,以每孔4000细胞的密度将细胞接种于96孔平板上(Sarstedt)。第二天将培养基换为含或不含1μM化合物I的培养基。培养4天后(包括2天后更换培养基),于含4%多聚甲醛(PFA)的冷PBS中固定细胞30分钟,并于4%乙醇中用0.01%结晶紫染色30分钟。用自来水洗涤样品3次,空气下干燥至少30分钟。将染色细胞溶解于100μl 1%SDS中,并用Biomek 1000(Beckman)光度工具(600nm滤器)定量其吸光度。
用处理4天期间细胞数目增长的减少百分数来表示化合物I的作用,因此100%生长减少相当于在培养期结束时和开始时细胞数目相同。每一实验中包括曾显示化合物I敏感性生长的细胞作为阳性对照(Sjblom等人,2001)。显示的数据来自两个或三个对化合物I在每一GBM培养物中作用的独立分析,均以一试两份/一试四份进行。
1-3-用于分析PDGF受体--ERK和Akt的表达和磷酸化状态的对照细胞裂解物的制备利用标准培养条件,将稳定转染PDGFα或β受体(分别为PAE/Rα和PAE/Rβ细胞(Claesson-Welsh等人,1988;Claesson-Welsh等人,1989))的猪主动脉内皮细胞以高密度接种于10cm盘(Sarstedt)中。16小时后,除尽细胞中的血清,换为含有0.1%FBS的培养基24小时。然后于37℃下含或不含100ng/ml PDGF-BB的0.1%FBS的培养基中处理细胞5分钟。用冰冷的PBS洗涤后,将细胞于1ml溶解缓冲液中冰上溶解10分钟,所述溶解缓冲液中含有0.5%Triton X-100、0.5%脱氧胆酸、150mMNaCl、20mM Tris pH 7.5、10mM EDTA、30mM焦磷酸钠十水合物、1%抑肽酶、0.5%苯甲基磺酰氟(PMSF)和0.5%NaVO3。在15000xg下离心15分钟后,收集细胞裂解物并用BCA蛋白质测定试剂A试剂盒(Pierce)测量蛋白质浓度。对蛋白质浓度标准化后,于4℃下与小麦细菌凝集素(WGA)-琼脂糖孵育16小时,分离糖蛋白。在15000xg下离心样品15分钟,以沉淀WGA-琼脂糖珠。移去上清留做分析ERK和Akt的对照。用1ml高盐溶解缓冲液洗涤WGA珠3次,所述缓冲液中含有0.5%Triton X-100、0.5%脱氧胆酸、500mM NaCl、20mM Tris pH 7.5、10mM EDTA、30mM焦磷酸钠十水合物、1%抑肽酶、0.5%PMSF和0.5%NaVO3。将细胞裂解物上清或WGA-琼脂糖级分的糖蛋白与Laemmli缓冲液(0.0625M Tris-HCl、10%甘油、2%SDS、5%β-巯基乙醇、0.0125%溴苯酚蓝)混合,加热至95℃持续5分钟,并贮存于-20℃。
I-4-PDGF受体表达和磷酸化的分析如上从保存于含10%FCS培养基的分会合培养物中,制备约500,000个GBM细胞的细胞裂解物。如上分离细胞裂解物中具有标准化蛋白质含量的WGA级分。
利用7%聚丙烯酰胺凝胶对样品进行SDS-PAGE。在每块胶上放置来自未刺激或PDGF-BB刺激的PAE/Rα和PAE/Rβ细胞的对照样品。然后电泳将蛋白质转移至Hydrobond-C-Extra滤器(Amersham Life Science)。为检测PDGFRβ,将滤器在含5%BSA的TBS中封闭1小时,然后与一级PDGFRβ抗体溶液、含1μg/ml 958(Santa Cruz Biotechnologies)的TTBS(10mM Tris-HCl pH 7.4、150 mM NaCl、0.02%Tween-20)孵育过夜。进行3次10分钟洗涤后,将滤器与1∶25000稀释的辣根过氧化物酶耦联的驴抗兔抗体(Amersham Life Science)孵育1小时,并在TTBS中洗涤3次。利用Lumi-Light加上Western印迹底物(Roche),根据生产商的说明用Intelligent Darkbox II数码扫描仪(FUJIFILM)通过强化化学发光检测抗原。检测后,在50℃下的剥离缓冲液(2%SDS、62.5mM TrisHCl pH 6.7和100mM β-巯基乙醇)中剥离滤器30分钟,在TTBS中洗涤一次并于含5%BSA的TBS中封闭1小时。为检测PDGFRα,用含1μg/mlPDGFRα抗体338(Santa Cruz Biotechnologies)的TTBS再次结合滤器并孵育过夜。如上所述实施操作并检测。为检测磷酸化PDGFR,用含1μg/ml磷酸酪氨酸特异性抗体PY99(Santa Cruz Biotechnologies)的TTBS再次结合滤器,并孵育过夜。如上所述实施操作并检测,但使用于TTBS中1∶50000稀释的辣根过氧化物酶耦联的羊抗小鼠抗体(Amersham LifeScience)为第二抗体。
使用AIDA软件3.10.039版本(FUJIFILM)定量受体表达和磷酸化。通过联系GBM培养物的值与对照样品的值,标准化滤器间不同的转移效率,任一将GBM培养物21的PDGFRα和PDGFRβ表达水平以及受体磷酸化的值定为1。
I-5-在含或不含化合物I时生长的GBM培养物中Akt和ERK表达和磷酸化的分析将胶质母细胞瘤细胞培养物铺满置于12孔平板(Falcon)的孔内。第二天细胞接受或不接受1μM化合物I处理1小时。如上制备细胞裂解物。
利用12%凝胶对标准化蛋白质含量的样品进行SDS-PAGE。在每块胶上放置来自未刺激或PDGF-BB-刺激的PAE/Rα和PAE/Rβ细胞的对照裂解物。然后电泳将蛋白质转移至Hydrobond-C-Extra滤器(AmershamLife Science)。为检测磷酸化形式的ERK和Akt,将滤器在含5%BSA的Tris缓冲盐水pH 7.6(TBS)、0.137 MNaCl和0.0035M Tris-HCl中封闭1小时,然后与含1μg/ml抗磷酸-p44/42 MAPK Thr202/Tyr204(CellSignaling Technology)或1μg/ml抗磷酸化-Akt Ser473(Cell SignalingTechnology)的TBS及0.001%Tween-20(TTBS)孵育过夜。进行3次10分钟TTBS洗涤后,将滤器与1∶25000稀释的辣根过氧化物酶耦联的羊抗兔抗体(Amersham Life Science)孵育1小时,并在TTBS中洗涤3次,每次10分钟。利用Lumi-Light加上Western印迹底物(Roche),根据生产商的说明用Intelligent Darkbox II数码扫描仪(FUJIFILM)检测抗原。检测后,在0.4M NaOH中剥离滤器10分钟,在TTBS中洗涤一次并于含5%BSA的TBS中封闭1小时。为检测ERK和Akt表达,用含1μg/ml抗p44/42 MAPK(Cell Signaling Technology)和1μg/ml抗Akt(CellSighaling Technology)的TTBS再次探测滤器并孵育过夜。如上所述实施操作并检测。使用AIDA软件3.10.039版本(FUJIFILM)定量。
通过使用来自PAE/Rβ细胞的参照样品,确定ERK和Akt在不同GBM培养物中的相对表达和磷酸化。用ERK和Akt特异性磷酸化倍数改变来表示对化合物I处理的反应。
I-6-用于基因表达分析的RNA提取根据生产商的说明、利用RNAeasy试剂盒(Qiagen),从23个GBM培养物中每一个的75cm2分会合培养盘内提取RNA。分光光度法评估RNA的量,显示不同的培养物中可产出10-100μgRNA。通过琼脂糖凝胶电泳证实RNA的结构完整性。
I-7-扩增和标记RNA以进行竞争性杂交利用来自各细胞系的5μgRNA进行具有一些变化的线性扩增(VanGelder等人,1990)。简言之,于42℃下,含5μg RNA、1μl细菌RNA混合物、1μl dT-T7引物(1μg/ml,SEQ ID No 1AAA CGA CGG CCAGTG AAT TGT AAT ACG ACT CAC TAT AGG CGC TTT TTT TTTTTT TTT)、4μl 5X SuperscriptII反应缓冲液(Invitrogen)、2μl DTT(Invitrogen)、1μl Ultrapure dNTP混合物(Clontech)、1μl RNA酶抑制剂(Ambion)、1μl模板转换寡聚引物(1μg/ml,SEQ ID No 2AAA CAGTGG TAT CAA CGC AGA GTA CGC GGG)和2μl Superscript II(Invitrogen)的混合物中逆转录cDNA 1小时。为合成第二链,加入106μl水、15μl Advantage 10X PCR缓冲液(Clontech)、3μl Ultrapure dNTP混合物、1μl RNase H(Promega)和3μl cDNA聚合酶(Clontech)。然后将样品在PCR机器(Applied Bio9systems)中、37℃下孵育2分钟完成RNaseH降解。然后将样品于94℃下孵育3分钟变性、65℃下孵育3分钟以使引物退火、75℃下通过cDNA聚合酶延伸。加入7.5μl 1M NaOH和2mMEDTA并在65℃下孵育10分钟,中止反应。通过用350μl水和500μl25∶24∶1的苯酚∶氯仿∶异戊醇为(Sigma)进行苯酚抽提,来清洁反应混合物,在Microcon YM-100离心滤器中以500μl水洗涤3次,最后浓缩至体积为16μl。利用体外转录试剂盒(Ambion)体外转录产生反义RNA。如上所述,在Superscript II反应中从该反义RNA再次逆转录cDNA,然后于DNA聚合酶反应中产生双链DNA。在扩增的第二步,UTP核苷酸混合物部分被1∶3混合的UTP和Cy-dye-UTP(Ambion)所取代。并行地,扩增由所有培养物的等量RNA组成的集合,以用作以下杂交实验的参考。I-8-Cy-dye-标记的反义RNA与正义cDNA芯片的杂交与集合培养物的参考样品一起,杂交每一细胞培养物,进行双重荧光交换得到四份样品。对于每一杂交而言,将体积为66μl的4μg标记样品和4μg标记集合,与4μl cotDNA(1mg/ml,Invitrogen)、4μl聚腺苷酸(2μg/ml,Sigma)、8μl 70%乙醇和7μl 3M醋酸钠pH 5.2混合。沉淀后于-70℃下孵育30分钟,将样品于15000xg、4℃下离心20分钟。用70%乙醇洗涤沉淀并在空气中干燥60分钟,然后溶解于8μl水和40μl杂交缓冲溶液(5×SCC、6×Denhardt′s溶液、60mM Tris-HCl pH 7.6、0.12%N-十二烷基肌氨酸钠、48%福尔马林、无菌过滤后),于100℃下加热5分钟并冷却至室温。将样品置于预先冷却的微阵列芯片(The WelcomeTrust Sanger Institute,人类版1.2.1,大约含有10 000个元件,对应约6000个单个基因,http://www.sanger.ac.uk/Projects/Microarrays/)上,盖上玻璃盖,并在含有47℃的40μl 40%福尔马林和2×SSC溶液的Corning杂交室中,于47℃下孵育16小时。用2×SSC一次洗涤芯片5分钟,用0.1×SSC和0.1%SDS洗涤30分钟共三次,再用0.1×SSC洗涤一次10分钟。最后在1000rpm下离心2分钟干燥芯片。
I-9-芯片的阵列扫描和数据选取利用ScannArray 3.1版本软件(Packard BioChip Technologies),用ScanArray 5000(GSI Lumonics)扫描芯片。采用QuantArray 3.0.0.0版本的软件(Packard BioChip Technologies)量化表达强度值。手工标记不可靠的点,并以柱状图方法定量信号。
I-10分级式集群将数据导入GeneSpring软件并进行LOWESS均一化。通过方差分析(即ANOVA)或任一设定取舍值,产生含有差异表达基因的列表。为在GeneSpring中使用方差分析,需放弃整体误差的模型,因为假定样品不会具有相同的方差,且采用Bonferroni模型来进行多重测试校正。有几种不同的方法产生特征列表,但最终选择3个版本进行最终展示。在第一份基因列表中,特征在ANOVA测试中的p值小于0.05,且须满足标准即在至少3个样品中上调超过2倍并在至少3个样品中下调超过2倍,共得到88个特征基因。第二份和第三份基因列表含有2795和311个特征基因,分别为采用ANOVA p值小于0.05或0.000000001的纳入标准得到。随后根据Pearson相关性,将这三个基因列表用于细胞培养物的分级集群。
I-11-监督(supervised)分析以鉴定化合物I反应性的标记基因将加权表决法(Golub等人,1999)用于在生长抑制实验值上含有最小实验间差异的10个细胞培养物。将来自10个细胞培养物的表达数据导入GeneCluster 2.1.3 β测试版本(http://www-EMI21.1qenome.wi.mit.edu/cancer/sofiware/qeneduster2/qc2.html)(见Golub等人,1999;Tamayo等人,1999)。用“留一法”交叉验证测试不同长度特征列表的分类表现。分类性特征的选择是基于使用具有最高中位信号与噪音比值的特征的允许数目。设定GeneCluster用于选取具有最高的绝对信号与噪音比值的特征,该列表中不必含有与信噪比基因排序表正反面相同数量的特征。
为评估独立GBM培养物的分类器,建立具有3-5个特征的分类器。特征选择是基于训练集(training set)中的反应者和不反应者之间的最高信噪比值。然后基于加权表决过程,将这些分类器用于5个独立GBM培养物的分类,其化合物I敏感性已经验性决定。
II-结果II-1-GBM培养物的化合物I-敏感性描述在描述23个不同培养物对化合物I敏感性之前,通过确定4天期间在含有10%FCS的培养基中细胞数目的增长,分析各个培养物的生长特性。如图1A,可见生长速率有很大的差异。生长最慢的培养物在4天期间细胞数目仅增加了1.2倍,而生长最快的培养物细胞数目则增加了18倍。
通过比较没有或有化合物I时生长4天后的细胞数目,分析化合物I处理诱导的生长抑制。用4天处理期间细胞数目增长的减少百分数来表示化合物I的作用。在该分析中除去了7组生长最慢的培养物。对剩下16组培养物的3个体独立实验的结果如图1B所示。不同的培养物对化合物I处理的反应有很大区别。细胞培养物5、18、21、30、34、35和38的生长抑制均小于15%。相反培养物6、7、9、11、31和45的生长都减少了40%以上。培养物8、13和27反应居中,生长抑制为20-40%。
为了分析生长抑制是否与生长速率有关,计算这两个参数之间的相关性。如图1C所示,这一分析并未提供在生长速率和对化合物I处理的反应之间有很强的相关性。
II-2-GBM培养物中PDGF受体的表达和活化,及其与化合物I敏感性间的相关性PDGF受体是介导化合物I诱导GBM培养物生长抑制的生长抑制作用的最有可能的靶。因此,分析PDGF受体的表达和活化,并且这些参数与生长抑制相关(图2和3)。
利用针对PDGFα和β受体的抗体以及针对磷酸化酪氨酸的抗体,通过对培养GBM细胞WGA级分的免疫印迹分析PDGF受体活化和表达。使用配体刺激或未刺激的转染PDGFα和β受体的猪主动脉内皮细胞作为阳性对照(图2A)。随意设定培养物21中受体表达以及总PDGF受体磷酸化的值为1。
如图2B和C所示,这些培养物中PDGFα和β受体表达的差异大于100倍。将PDGF受体蛋白质表达的估计值与基因表达分析的数据(见下)相比较,得出PDGFα和β受体的r值分别为0.86和0.52(图2B和C,插图)。此外,通过定量PDGFα和β受体的联合迁移位点处磷酸化酪氨酸的信号,确定PDGF受体的磷酸化(图2A、D)。总之,这一分析得出了组合PDGFα和β受体表达中得到的相似模式。因此,这一分析指示培养物中各受体具有相似的磷酸化。
这些数据与分析过的16个培养物中11个的化合物I敏感性之间相关性的结果如图3所示。由于培养物11、45、8、27和34在生长抑制实验中的巨大差异,这一分析省略了这些培养物。所有4个分析的PDGF受体相关参数与化合物I敏感性间具有高相关性,r值的范围为0.85(PDGFα受体表达)至0.73(PDGFα受体表达)。
因此,这些分析显示在GBM培养物中PDGF受体的表达具有广泛的差异,同时也指示在PDGF受体表达和化合物I敏感性之间,以及总PDGF受体磷酸化和化合物I敏感性之间具有强相关性。
II-3-没有或有化合物I时ERK和Akt的活化状态蛋白激酶ERK和Akt为PDGF受体信号传导的重要介质,但也参与了由其他细胞表面受体(如整合素)触发的下游信号传导。这两种酶都通过磷酸化而活化,因此利用对活化磷酸化形式特异的抗体进行的免疫印迹,可用于确定这些酶的活化状态。于11个在生长抑制实验中有强结果的培养物中,确定这些酶的活化状态。ERK和Akt的活化状态在细胞培养物之间均显示很大的差异(图4A和C)。当联系活化状态与化合物I反应时(图4B和D,上方左图),未观测到总PDGF受体表达(图4B和D,上方右图)或PDGF受体磷酸化(图4B和D,下图)间的相关性。
分析化合物I处理1小时所引发的ERK和Akt中的特异性磷酸化改变,以研究药物引发的这些路径的改变是否与化合物I反应或受体表达相关。总体而言,药物处理后仅观察到ERK和Akt磷酸化的轻度改变(图5A和C)。在化合物I引发的Akt磷酸化改变和化合物I反应性或PDGF受体状态间未观测到相关性(图5D)。然而,化合物I引发的生长抑制和ERK磷酸化减少之间存在相关性(r=-0.47)。
因此,这些分析显示,在细胞培养物间ERK和Akt活化有很大差异,指示这些路径的基础活化水平与PDGF受体状态或化合物I敏感性无关。它们还确定,化合物I处理与这些信号传导分子净活化状态的强改变并无关系。然而,生长反应和化合物I引发的ERK磷酸化改变之间确实存在一些联系。
II-4-来自GBM的原代培养物的基于基因表达集群为描述来自23个GBM的原代培养物之间基于基因表达的不同和相似处,绘制基因表达谱。从在10%FCS中生长的低通量培养物中分离RNA。为获得足量RNA进行微阵列分析,进行两轮RNA扩增。在第二轮扩增时RNA中掺入了荧光染料。利用含有约10000个人cDNA的cDNA阵列(http://www.sanger.ac.uk/Projects/Microarrays/),对每一培养均进行一试四份的分析。参照RNA由来自所有培养物的RNA库组成。
分级性集群的结果见图6。如图所示,使用不同的统计学标准确定哪些基因应用于集群。不论采用何种标准,都可以观测到涉及23个样品中17个的某些固定模式。培养物18、21、35和38在所有的分析中都为一个集群(集群1)。同样培养物5、7、8和11在所有分析中同时出现(集群2)。最后,不论采用何种选择基因的统计学标准,都可见包括培养物9、10、15、16、31、34、37、43和45的组(集群3)。
图7显示了集群图表,其为分析在3个样品中至少调节2倍的基因而获得,其中包括同样列于表1和2的集群定义的基因。
表1中根据如基因本体论项目(ontology program)所述的其分子功能,将差异表达的基因分组。用于集群细胞的88个杂交信号代表了75个独特的基因。这些基因中,有47个属于基因本体论项目中的功能;而基因中的大多数则属于信号传导蛋白质、转录调节者以及与黏附和增殖相关的蛋白质类别。
表2中按照它们在定义3个培养物集群的基因集群中的出现情况进行分类。突出它们在3个培养物集群中的平均表达,以说明其相对于这三个培养物集群的表达模式。一般而言,基因集群组III和VI是分别由在培养物集群2和3中上调的基因组成的。
除了一些例外,基因集群组I在培养物集群组1中几乎总为高表达。与之相反,基因集群IV和V则含有在培养物集群1中下调的基因,而基因集群II由培养物3中低表达的基因组成。
II-5-基于基因表达的GBM培养物集群中生长性质和PDGF受体状态的比较将分析GBM培养物生长速率及其化合物I敏感性的结果,与培养物基于基因表达的分级集群结果联合(图8)。可以观察到一些有意义的趋势。在7个生长最慢的培养物中,有6个(用黑体字表示)见于集群3。6个反应者集中于集群2和3。而属于集群2者均出现在亚集群2b。在7个无反应者中,4个培养物(18、21、35、38)组成了亚集群1b的全集。
同样,也将来自PDGF受体状态的结果与基于基因表达的培养物分组进行比较(图8)。根据PDGF受体表达和磷酸化将培养物分为两类,其中10个培养物具有高表达或磷酸化,而11个培养物为低表达或磷酸化。集群1中显然富集了低受体表达和磷酸化的培养物,而集群2和3则均由两类的混合物组成。这一数据汇集也强调了所有6个强化合物I无反应组均显示低受体表达和磷酸化,而与之相反,所有具有显著反应者的特征都在于高受体表达和磷酸化。
II-6-与化合物I反应性相关的基因表达模式的监督鉴定鉴于基因表达模式和化合物I反应性之间存在相关性的指示,实施监督分析以鉴定与化合物I反应性之间最具相关性的基因表达模式。为此,将在化合物I敏感性分析中具有最显著结果的10个培养物分为反应者(培养物6、7、9和31)以及无反应者(培养物5、18、21、30、35和38)(图1B)。
利用加权表决的方法实施监督分析,包括“留一法”证实。如图9所示,当利用2-40项特征分类时,所有10个培养物都可在留一法证实中正确分类。总体而言,在由4和10项特征组成的列表中分别使用8个及16个基因用于分类。在留一法检测中所用的基因列于表3中。
利用来自10个培养物的表达数据,生成了具有3-5项特征的分类器(表4)。利用该分类器,可将用于建立该分类器的所有10个培养物正确地分为反应者和无反应者。为扩展这一分析,用该分类器对不包括在训练集中的5个培养物(培养物8、11、27、34和45)进行初步测试(图10)。将这些分类器用于初步测试的结果见于图10。有趣的是,与生长抑制实验结果一致,培养物11、45在所有3个分类器中都被定义为反应者。同样与生长抑制实验结果一致的是,培养物34一直都被分为无反应者。具有中度反应的培养物8和27,在所有3个分类器中都被分别定义为无反应者和反应者。
如上所示,原发性GBM培养物在化合物I敏感性上差异很大。通过描述PDGF受体的状态,显示在化合物I敏感性和PDGF受体表达和磷酸化之间具有显著的相关性(图1-3、8)。化合物I敏感性或ERK和Akt的基础磷酸化之间未见显著相关(图4)。化合物I敏感性与化合物I诱导的ERK磷酸化减少之间存在一定的相关性(图5)。基因表达谱指示存在在化合物I敏感性、生长速率以及PDGF受体磷酸化上有所不同的独特GBM亚型(图6-8)。最后,通过基因表达数据的监督分析,可产生能预测化合物I反应性的短基因列表(图9、10)。
虽然先前的研究已经报道了对GBM细胞系的抑制,但此处首次描述了PDGF受体抑制对GBM生长影响的系统性分析。
PDGF受体状态和化合物I反应性之间的相关性(图3)令人惊异。对PDGF受体表达和磷酸化的分析指示这些参数之间存在很强的相关变异,指示培养物中的配体生成并无显著差异。
在下游信号传导分子Akt和ERK基础活化状态与PDGF受体状态之间不存在相关性(图4),指示这些GBM培养物中Akt和ERK的活化处于多重信号传导路径的控制之下。此处应当注意生长抑制实验以及Akt和ERK活化的分析都是在保存于10%FCS中的细胞中实施的。因此,PDGF受体信号传导对这些路径的潜在影响,有可能在其它培养条件下更易于检测。
对化合物I引发的Akt和ERK磷酸化变化的分析,集中在10个选择GBM培养物上,它们是具有明显生长抑制反应的培养物6、7、9和31以及6个无反应培养物。考虑到Akt信号传导在PDGF受体信号传导中的重要性,在不存在Akt活化持续性降低的情况下能观测到生长抑制效应(可能是通过PDGF受体抑制达到的)有些令人惊异(图5)。这些发现的一种可能解释是,存在受PDGF受体抑制影响的PDGF受体依赖性pAkt,但当血清成分可提供通过PDGF非依赖性途径的Akt高活化时,该培养条件下保存的细胞内不会检测到该pAkt。还应当注意到,用于分析化合物I诱导的信号传导变化的细胞裂解物来自仅在化合物I中暴露1小时的细胞。因此,必须在良好表征的PDGF依赖性对照系统中确认该时间长度足以引发ERK和Akt PDGF受体依赖性磷酸化的可检测改变。
对基因表达谱和生物化学表征的组合分析揭示了一系列有意义的关系(图6和8)。简言之,集群1富集了具有低PDGF受体表达和低化合物I敏感性的培养物,集群2则富集了具有高PDGF受体表达的化合物I反应物,而集群3主要是由不具备一致的PDGF受体表达的低生长率培养物组成。对在GBM培养物集群2(富集了化合物I反应物)中过度表达的包含在基因集群III、IV和V中的基因的初步分析(图7,表2)并未提示该GBM亚群的具体发育来源或特定生物学性质。
利用基于对化合物I敏感性表征和该GBM组基因表达分析的监督分析,产生了描述反应者和无反应者的分类器(图9,表3)。一般而言,所述分类器具有至少两种功能。首先,它们可用作发展诊断性或预后性工具的起始点。只要分类器的表现良好,可以发展分类器的这一功能而不关注组成分类器基因的生物学显著性。其次,分类器能够指明导致由该分类器鉴别的两种表型(此处为化合物I敏感或耐受)的生物学关系。
参考文献Barbero,S.,Bajetto,A.,Bonavia,R.,Porcile,C.,Piccioli,P.,Pirani,P.,Ravetti,J.L.,Zona,G.,Spaziante,R.,Florio,T.,和Schettini,G.(2002).Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in h uman brain tumors and their involvement in glialproliferation in vitro.Ann.N.Y.Acad.Sci.973,60-69.
Capdeville,R.,Buchdunger,E.,Zimmermann,J.,和Matter,A.(2002).Glivec(ST1571,imatinib),a rationally developed,targeted anticancerdrug.Nat.Rev.Drug Discov.1,493-502.
Claesson-Welsh,L.,Eriksson,A.,Moren,A.,Severinsson,L.,Ek,B.,Ostman,A.,Betsholtz,C.,和Heldin,C.-H.(1988).cDNA cloning andexpression of a human platelet-derived growth factor(PDGF)receptorspecific for B-chain-containing PDGF molecules. MoL Cell. Biol.8,3476-3486.
Claesson-Welsh,L.,Eriksson,A.,Westermark,B.,和Heldin,C.-H.(1989).cDNA cloning and expression of the human A-typeplatelet-derived growth factor(PDGF)receptor establishes structuralsimilarity to the B-type PDGF receptor.Proc.Natl.Acad.Sci.USA86,4917-4921.
Dai,C.,Celestino,J.C.,Okada,Y.,Louis,D.N.,Fuller,G.N.,和Holland,E.C.(2001).PDGF autocrine stimulation dedifferentiatescultured astrocytes and induces oligodendrogliomas andoligoastrocytomas from neural progenitors and astrocytes in vivo.GenesDev.15,1913-1925.
Demetri,G.D.,von Mehren,M.,Blanke,C.D.,Van den Abbeele,A.D.,Eisenberg,B.,Roberts,P.J.,Heinrich,M.C.,Tuveson,D.A.,Singer,S.,Janicek,M.,Fletcher,J.A.,Silverman,S.G.,Silberman,S.L.,Capdeville,R.,Kiese,B.,Peng,B.,Dimitrijevic,S.,Druker,B.J.,Corless,C.,Fletcher,C.D.,和Joensuu,H.(2002).Efficacy and safety ofimatinib mesylate in advanced gastrointestinal stromal tumors.N Engl JMed 347,472-80.
Golub,T.R.,Slonim,D.K.,Tamayo,P.,Huard,C.,Gaasenbeek,M.,Mesirov,J.P.,Coller,H.,Loh,M.L.,Downing,J.R.,Caligiuri,M.A.,Bloomfield,C.D.,和Lander,E.S.(1999).Molecular classification ofcancerclass discovery and class prediction by gene expressionmonitoring.Science 286,531-7.
Kilic,T.,Alberta,J.A.,Zdunek,P.R.,Acar,M.,lannarelli,P.,O′Reilly,T.,Buchdunger,E.,Black,P.M.,和Stiles,C.D.(2000).Intracranialinhibition of platelet-derived growth factor-mediated glioblastoma cellgrowth by an orally active kinase inhibitor of the2-phenylaminopyrimidine class.Cancer Res.60,5143-5150.Lazarini,F.,Tham,T.N.,Casanova,P.,Arenzana-Seisdedos,F.,和Dubois-Dalcq,M.(2003).Role of the a-chemokine stromal cell-derivedfactor(SDF-1)in the developing and mature central nervous system.Glia42,139-148.
Maher,EA.,Furnari,FB,Bachoo,RM,Rowitch,DH.,Louis,DN.,Cavanee,WC.和DePinho,RA.(2002)Malignant gliomagenetics andBiology of a grave matter.Genes and Dev.15,1311-1333 Mischel,P.S.,Shai,R.,Shi,T.,Horvath,S.,Lu,K.V.,Choe,G.,Seligson,D.,Kremen,T.J.,Palotie,A.,Liau,L.M.,Cloughesy,T.F.,and Nelson,S.F.(2003).Identification of molecular subtypes of glioblastoma by gene expressionprofiling.Oncogene 22,2361-73.
O′Brien,S.G.,Guilhot,F.,Larson,R.A.,Gathmann,I.,Baccarani,M.,Cervantes,F.,Cornelissen,J.J.,Fischer,T.,Hochhaus,A.,Hughes,T.,Lechner,K.,Nielsen,J.L.,Rousselot,P.,Reiffers,J.,Saglio,G.,Shepherd,J.,Simonsson,B.,Gratwohl,A.,Goldman,J.M.,Kantarjian,H.,Taylor,K.,Verhoef,G.,Bolton,A.E.,Capdeville,R.,和Druker,B.J.(2003).Imatinib compared with interferon and low-dose cytarabine fornewly d iagnosed c hronic-phase c hronic m yeloid I eukemia.N Engl JMed 348,994-1004.
Pietras,K.,Sjblom,T.,Rubin,K.,Heldin,C.-H.,和Ostman,A.(2003).PDGF receptors as cancer drug targets.Cancer Cell 3,439-443.Ponten,J.和Westermark,B.(1987).Properties of human malignantglioma cells in vitro.Med.Biol.56,184-193.Rempel,S.A.,Dudas,S.,Ge,S.,和Gutierrez,J.A.(2000).Identificationand localization of the cytokine SDF1 and its receptor,CXC chemokinereceptor 4,to regions of necrosis and angiogenesis in human glioblastoma.Clin.Cancer Res.6,102-111.
Rubin,J.B.,Kung,A.L.,Klein,R.S.,Chan,J.A.,Sun,Y.,Schmidt,K.,Kieran,M.W.,Luster,A.D.,和Segal,R.A.(2003).A small-moleculeantagonist of CXCR4 inhibits intracranial growth of primary braintumors.Proc.Natl.Acad.Sci.USA 100,13513-13518.
Shamah,S.M.,Stiles,C.D.,和Guha,A.(1993).Dominant-negativemutants of platelet-derived growth factor revert the transformedphenotype of human astrocytoma cells.Mol.Cell.Biol.13,7203-7212.Sjblom,T.,Shimizu,A.,O′Brien,K.P.,Pietras,K.,Dal Cin,P.,Buchdunger,E.,Dumanski,J.P.,Ostman,A.,和Heldin,C.-H.(2001).Growth inhibition of dermatofibrosarcoma protuberans tumors by theplatelet-derived growth factor receptor antagonistSTI571 throughinduction of apoptosis.Cancer Res.61,5778-5783.Strawn,L.M.,Mann,E.,Elliger,S.S.,Chu,L.M.,Germain,L.L.,Niederfellner,G.,Ullrich,A.,和Shawver,L.K.(1994).Inhibition ofglioma cell growth by a truncated platelet-derived growth factor-;receptor.J.Biol.Chem.269,21215-21222.
Tamayo,P.,Slonim,D.,Mesirov,J.,Zhu,Q.,Kitareewan,S.,Dmitrovsky,E.,Lander,E.S.,和Golub,T.R.(1999).Interpretingpatterns of gene expression with self-organizing mapsmethods andapplication to hematopoietic differentiation.Proc Natl Acad Sci USA96,2907-12.
Uhrbom,L.,Hesselager,G.,Nister,M.,和Westermark,B.(1998).Indnction of brain tumors in mice using a reeombinant platelet-derivedgrowth factor B-chain retrovirus.Cancer Res.58,5275-5279.
Van Gelder,R.N.,von Zastrow,M.E.,Yool,A.,Dement,W.C.,Barchas,J.D.,和Eberwine,J.H.(1990).Amplified RNA synthesized fromlimited quantities of heterogeneous cDNA.Proc.Natl.Acad.Sci.USA87,1663-1667。
表1集群分组产物生物功能的本评论123解释全体基因

来自用于产生图6A和图7中所示GBM集群的特征列表的差异表达基因的列表。根据基因本体论定义的功能来分类基因。
表2细胞培养物集群组产物解释123生物加工的本评伦整体基因

来自用于产生图6A和图7中所示GBM集群的特征列表的差异表达基因的列表。根据差异表达基因(图7)的集群分析结果来分类基因。
表2细胞培养物集群组产物解释123 生物加工的本评论整体基因

来自用于产生图6A和图7中所示GBM集群的特征列表的差异表达基因的列表。根据差异表达基因(图7)的集群分析结果来分类基因。
表3用于留一法测试中4特征列表的基因

用于留一法测试中10特征列表的基因

包含在4特征(上部)和10特征(下部)的分类器中的特征列表,所述分类器用于10个GBM培养物的加权表决分类。
显示了分析中包括的10个GBM培养物中这些特征的相对表达。
表4

具有3、4或5个特征的分类器的组成,这些特征位于来自10个胶质母细胞瘤细胞培养物的以信噪比排列基因列表的顶部。显示了训练集的10个GBM培养物中以及测试集的5个GBM培养物中这些特征的相对表达。信噪比基于基于两组中平均表达的差异。决定界线是反应者和无反应者中表达平均数的平均数。
权利要求
1.用于体外诊断哺乳动物细胞增殖性疾病的方法,包括至少a)提供所述哺乳动物的生物样品;b)测定所述样品中至少2至40个选自表3的遗传标记的表达和/或磷酸化谱,c)将病人的基因表达谱与表3中的平均无反应性表达谱进行比较;d)根据(b)中的比较确定两个基因表达谱中的相似性;e)通过(c)中确定的相似性程度,确定病人的GBM状况对药物有反应性的可能性。
2.如权利要求1的方法,其中在步骤b)中测定至少3至5个选自表3的遗传标记的表达和/或磷酸化谱。
3.预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为的方法,包括至少a)提供所述哺乳动物的生物样品;b)测定所述样品中至少2至40个选自表3的遗传标记的表达和/或磷酸化谱;c)将步骤b)中得到的表达和/或磷酸化谱,与根据表3计算的反应性和无反应性表达和/或磷酸化谱的平均值±标准差进行比较;并d)如下预测所述哺乳动物的行为-若步骤b)中得到的表达和/或磷酸化谱,处在计算的反应性表达和/或磷酸化谱的平均值±标准差范围内,则预测所述哺乳动物对该治疗有反应;-若步骤b)中得到的表达和/或磷酸化谱,处在计算的无反应性表达和/或磷酸化谱的平均值±标准差范围内,则预测所述哺乳动物对该治疗无反应;且-若步骤b)中得到的表达和/或磷酸化谱,处在计算的反应性和无反应性表达和/或磷酸化谱的平均值±标准差的范围之外,则不能确定所述哺乳动物对该治疗的反应行为。
4.如权利要求3的方法,其中步骤b)中测定至少3至5个选自表3的遗传标记的表达和/或磷酸化谱。
5.选择患有细胞增殖性疾病的哺乳动物的方法,所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应,所述方法包括至少a)利用如权利要求3或4的方法预测所述哺乳动物的行为;并b)若预测所述哺乳动物对治疗有反应,则选择该哺乳动物。
6.如权利要求1至5中任一项的方法,其中所述哺乳动物为人。
7.用于体外分析哺乳动物中遗传标记的表达和/或磷酸化谱的试剂盒,所述试剂盒含有选自表3中至少2至40个遗传标记的cDNA和/或抗体。
8.如权利要求7的试剂盒,其中包括选自表3中至少3至5个遗传标记的cDNA和/或抗体。
9.如权利要求7或8的试剂盒,其中所述哺乳动物为人。
10.用于体外分析哺乳动物中遗传标记的表达和/或磷酸化谱的微阵列或生物芯片,其中含有选自表3中至少2至40个遗传标记的cDNA和/或抗体。
11.如权利要求10的微阵列或生物芯片,其中含有选自表3中至少3至5个遗传标记的cDNA和/或抗体。
12.如权利要求10或11的微阵列或生物芯片,其中所述哺乳动物为人。
13.将选自表3的至少一个基因和/或至少一个基因产物作为遗传标记用于-体外诊断哺乳动物的细胞增殖性疾病;和/或-预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为;和/或-选择患有细胞增殖性疾病的哺乳动物,其中所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应。
14.如权利要求13的用途,其中使用的是对应于所述基因的cDNA和/或对所述基因产物具有特异性的抗体。
15.如权利要求7至9中任一项的试剂盒的用途,用于-体外诊断哺乳动物的细胞增殖性疾病;和/或-预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为;和/或-选择患有细胞增殖性疾病的哺乳动物,其中所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应。
16.如权利要求10至12中任一项的微阵列或芯片的用途,用于-体外诊断哺乳动物的细胞增殖性疾病;和/或-预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为;和/或-选择患有细胞增殖性疾病的哺乳动物,其中所述哺乳动物经预测对利用至少一种PDGF受体拮抗剂的药物治疗有反应。
17.至少一种PDGF受体拮抗剂在制造药物中的用途,该药物用于治疗患有细胞增殖性疾病的反应性哺乳动物,其中所述反应性哺乳动物的选择如权利要求5的方法进行。
18.如权利要求13至17中任一项的用途,其中所述哺乳动物为人。
全文摘要
本发明涉及利用特定遗传标记体外诊断哺乳动物细胞增殖性疾病、预测患有细胞增殖性疾病的哺乳动物对利用至少一种PDGF受体拮抗剂的药物治疗的反应行为、以及选择患有细胞增殖性疾病且预测可对利用至少一种PDGF受体拮抗剂的药物治疗有反应的哺乳动物的方法。
文档编号C12Q1/68GK1997755SQ200580015410
公开日2007年7月11日 申请日期2005年5月13日 优先权日2004年5月14日
发明者莫尼卡·尼斯特, D·黑格斯塔拉德, G·海塞拉格, A·奥斯特曼 申请人:路德维希癌症研究所, 乌普萨拉大学医院, 莫尼卡·尼斯特
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1