构建基因重组运动发酵单胞菌应用于乙醇发酵的制作方法

文档序号:564106阅读:974来源:国知局

专利名称::构建基因重组运动发酵单胞菌应用于乙醇发酵的制作方法
技术领域
:本发明涉及纤维素类物质向燃料和化学物质的生物转化,特别涉及提高运动发酵单胞菌对多种逆境的抗性、提高其发酵温度、降低其生长的营养需求,同时还涉及运动发酵单胞菌利用戊糖生产乙醇。
背景技术
:本发明涉及对运动发酵单胞菌进行基因工程改造的方法,用于增加其对多种逆境的抗性、提高其发酵温度、降低其生长的营养需求,同时还使运动发酵单胞菌能利用戊糖生产乙醇。在高温条件下,细胞的分解代谢能力增强,发酵时间縮短,生产能力提髙;氧溶解度降低;发酵液的粘度降低,搅拌所需动力减少;发酵料液在灭菌后冷至适当发酵温度所需的时间减少。高温发酵可以利用发酵反应所产生的热量,省去传统发酵所需要的大量冷却水;高温发酵有利于提高发酵效率和乙醇的分离。每一种生物有一个耐热极限温度域值一超过这一温度,生物就将死亡。生物的耐热温度域值可能由一系列的条件所决定例如细胞膜的组成和参与生命基本活动的酶系的稳定性。将生物置于亚致死热状态,可以使其获得额外的稳定的热耐受力。这种"热耐受"被认为来源于亚致死高温诱导产生的热休克蛋白(HSP)。针对提髙的温度,所有的生物均能特异性地诱导表达一系列新的热休克蛋白HSPS。HSPS的功能特点来源于其分子伴侣样作用一促进蛋白的折叠、预防性地抑制其它蛋白的变性、介导蛋白的降解。除了用热压力以外,许多HSP能用其它方式进行诱导产生,包括用亚砷酸盐、乙醇、重金属、氨基酸类似物fL的,ete/.,WanfW,ysto力0:240"48,W96〗。正常细胞也可以在无压力(而不是因为热压力)状态下,产生与HSP保守序列相关的同类物。HSPJI供逆境抗性的机制,是基于HSP具有促进蛋白形成髙级结构(蛋白折叠)的功能。也就是说,HSP能够与因逆境而变性而变得无法形成正确高级结构的蛋白结合,将其折叠成正确的高级结构,恢复该蛋白的正常功能。大量的研究结果表明,多种热休克蛋白,通过预防蛋白聚集,赋予细菌在其极限生存温度以上继续生存的能力。因此,热休克蛋白应该有可能用于提高细菌的培养温度、发酵产量、以及应用于其它多种多样的生物处理过程。运动发酵单胞菌最早是Linder于1924年从龙舌兰酒中分离得到的。运动发酵单胞菌为革兰氏阴性、厌氧细菌,能够耐一定的氧气。与其他微生物相比.该菌代谢途径相对简单,没有多种可供选择的代谢途径。运动发酵单胞菌通过ED途径专一代谢葡萄糖、果糖、蔗糖。利用葡萄糖和果糖时,能够得到近似理论产量的乙醇,单糖的利用效率极高。该菌具有高耐糖能力(400g/L),髙耐乙醇能力(100g/L)、低生物量和高乙醇收率。运动发酵单胞菌乙醇发酵时,磷酸化的葡萄糖经ED途径产生丙酮酸,再脱羧还原为乙醛,继而再还原形成乙醇;而酒精酵母发酵时,葡萄糖经EMP途径生成了丙酮酸。EMP与ED途径相比,EMP途径1M葡萄糖可生成2MATP,而ED途径只生成1MATP。相同的菌体量所消耗的葡萄糖,运动发酵单胞菌比酵母少,因此运动发酵单胞菌发酵的乙醇得率高。长期以来人们已经知道,培养运动发酵单胞菌需要添加赖氨酸、甲硫氨酸和一些维生素。运动发酵单胞菌全基因组序列的测定结果,揭示了这些缺陷的具体原因。对于运动发酵单胞菌,合成赖氨酸和合成甲硫氨酸唯一缺失的基因分别为yfdz和me氾,通过从另一个来源引入这些基因,用yft(z和meffl的基因序列重组运动发酵单胞菌,将可以使运动发酵单胞菌获得自行合成赖氨酸和甲硫氨酸的能力,可以降低其生长过程的营养要求。原核生物大多数基因表达调控是通过操纵子机制实现的。除个别基因外,原核生物绝大多数基因按功能相关性成簇地串联、密集于染色体上,共同组成一个转录单位一操纵子,如乳糖(lac)操纵子、阿拉伯糖(ara)操纵子及色氨酸(trp)操纵子等。操纵子机制在原核基因调控中具有较普遍的意义。一个操纵子经常含数个可转录的编码基因(通常为2~6个,有的多达20个以上)。在同一操纵子可转录出多顺反子mRNA。转座子是一段可以在转座酶的催化下,在DNA分子上"跳跃"或者转移位置的DNA序列。利用转座子进行转座的技术已经非常成熟,转座的技术可以将目的片段随机插入耙位点中,进行测序、诱导突变和缺失、基因表达调控等等。转座子系统可以简单快速而又可靠的在体内外应用,高效地产生大于10e的插入克隆。转座的插入随机,不受克隆DNA中预置的限制性酶切位点制约,3转座子的获得并不需要预先知道宿主细胞染色体的基因组和蛋白质组的信息。本专利涉及构建可以在运动发酵单胞菌内表达的多顺反子操纵子,用多顺反子操纵子重组运动发酵单胞菌基因。操纵子包含编码至少一种热休克蛋白的基因序列,用于增加运动发酵单胞菌对逆境的耐受性和提高发酵温度;操纵子包含编码至少一种微生物的赖氨酸合成代谢酶ywz的基因序列,包含编码至少一种甲硫氨酸合成代谢酶me氾的基因序列,用于降低运动发酵单胞菌生长过程中对培养物的营养要求;多顺反子操纵子包含编码至少一组使运动发酵单胞菌能利用戊糖生成乙醇的基因序列,使运动发酵单胞菌能利用戊糖生产乙醇。
发明内容本发明包括,构建可以在运动发酵单胞菌细胞内表达的操纵子,采用质粒转化、DNA转座的技术,向运动发酵单胞菌体内导入以上操纵子,使运动发酵单胞菌对逆境的耐受性增加、能在较高的温度下发酵生成乙醇、对培养物的营养要求降低、同时还能利用戊糖生成乙醇、经过200次传代仍然稳定保留上述遗传特点。本发明涉及构建在运动发酵单胞菌细胞内表达多顺反子操纵子,至少包括一种下列的操纵子其一是包含编码热休克蛋白的操纵子,该操纵子能增加运动发酵单胞菌对多种逆境的抗性,提髙运动发酵单胞菌的发酵温度;其二是包含编码赖氨酸和甲硫氨酸合成代谢酶的多顺反子操纵子,该操纵子能使运动发酵单胞菌获得赖氨酸和甲硫氨酸的能力,降低其生长所需添加的营养成分。其三是包含编码利用戊糖分解与代谢酶的多顺反子操纵子,该操纵子能使运动发酵单胞菌能利用戊糖发酵生产乙醇。本发明还提供了构建转座子的方法,使外源多顺反子操纵子稳定插入细菌的基因组。在一些实施例中,转座子包括①至少一个可以在运动发酵单胞菌中调控结构基因表达的启动子的编码序列;②至少一个酶结构基因的编码序列,所述酶至少包含HSP、meffl、yfcfe、xy旧4、araEAD、man/LTAL/7K沖的一种;③一对反向插入序列。编码序列①和编码序列②位于插入序列之间。经过转座改进的运动发酵单胞菌菌株,在非选择培养基中(即缺乏抗生素),能够稳定的表达所编码酶的结构基因。本发明还提供一种构建穿梭质粒的方法,该穿梭质粒携带目的多顺反子操纵子经过转化,进入运动发酵单胞菌菌体内。在一些实施例中,穿梭质粒包含至少一个具有编码酶结构基因的操纵子,所述酶至少包含HSP、mefS、yf也、xy旧yA、araftA。、man/UTAi/TKT中的一种;具有至少一个可以在运动发酵单胞菌中调控结构基因表达的启动子的编码序列。经过穿梭质粒转化的运动发酵单胞菌菌株,能稳定的表达结构基因,快速生成特定产物并具有较高的转化效率。具体实施方法在构建可在运动发酵单胞菌中表达的操纵子的过程中,细菌培养、细菌染色体DNA的提取、DNA片段的回收纯化、质粒DNA的提取、PCR、DNA的酶切、连接、转化等参照《分子克隆实验指南(第三版)》(.J.萨姆布鲁克,D.W.拉塞尔,著黄培堂等译北京,科学出版社.)进行。具体实施方法一启动子基因的克隆(构建过程示意图,见图1)1、可被运动发酵单胞菌识别的启动子的克隆(以启动子g邻为例)①运动发酵单胞菌在含有1"i4的酵母提取物、0.2%的磷酸二氢钾、5。/4的葡萄糖、30'C、C02环境中,缓慢摇动混匀。培养5ml的细菌培养物至饱和状态。取1.5mL的培养物离心2分钟。沉淀物加入500ijL的TE缓冲液,用吸管反复吹打使之重悬。加入3(HiL10W的SDS和3ijL20mg/mL的蛋白酶K,混匀,37'C温育1小时。加入100jjL5mol/LNaCI,充分混匀,再加入80(jLCTAB/NaCI溶液,混匀,于65'C温育10分钟。加入等体积的氯仿/异戊醇混匀。离心45分钟。将上清转入一个新管中,如果难以移出上清.先用牙签除去界面物质。加入等体积的酚/氯仿/异戊醇,混匀,离心,将上清液转入一只新管中。加入O.6体积异丙醇,轻轻混合直到DNA沉淀下来,离心5分钟后弃上清。用70%乙醇洗涤沉淀。离心5分钟,弃上清,用冻干机稍加干燥,重溶于10(HjL的te缓冲液,在紫外检测仪上,检查染色体dna的纯度,00欲/00280大于1.8。②以第1步获得的运动发酵单胞菌染色体DNA为模板,加入g邻启动子上下游引物,进行PCR扩增。扩增使用lnvitrog胡公司的高保真KODDNA聚合酶,反应条件为预变性94'C,5分钟;变性温度94'C,45秒,复性温度45。C,30秒,延伸温度为72'C,45秒,循环30次,最后72'C延伸10分钟。获得长度为310bp的g邻启动子基因片段。其中,上游引物的5'端加上BamHI酶切位点,下游引物的5'端加上EcoRI、Pacl、Hindll鹏切位点。上游引物5'GGTGG4rCCAGATCTGTTCGATCAACMCCCGAATC3'下游引物5'A/WWGC7T7TA47T/WGGAG/W7TCCTMCTTATTAAGTAGCTATTATATTC③将PCR扩增获得的310bp的g邻启动子基因和载体pUC19质粒均用BamHI和EcoRI酶切后连接,克隆gap启动子至!jpUC19的BamHI和EcoR鹏切位点间,获得质粒pUC"pra。在具体实施结构基因的克隆过程中,pUC-pra作为载体被反复使用。g邻启动子基因的基因序列为1GTTCGATCMCAACCCGAATCCTATCGTAATGATGTTTTGCCCGATCAGC51CTCAATCGACMTTTTACGCGTTTCGATCGMGCAGGGACGACAATTGGC101TGGGAACGGTATACrGGAATAAATGGTCTTCGTTATGGTATTGATGmT151TGGTGCATCGGCCCCGGCGAATGATCTATATGCTCATTTCGGCTTGACCG201CAGTCGGCATCACGAACMGGTGTTGGCCGCGATCGCCGGTAAGTCGGCA251CGTTAAAAAATAGCTATGGMTATAATAGCTACTTAATAAGTTAG④在不影响本发明结果的条件下,操纵子启动子基因至少包含下列13种启动子中的一种。13种启动子均以同样的方法,首先用PCR扩增获得启动子基因,用BamHI和EcoRI酶切后,克隆启动子到pUC19的BamHI和EcoR,切位点间。表一,克隆于pUC19的B抓HI和EcoRI之间的启动子<table>tableseeoriginaldocumentpage5</column></row><table>具体实施方法二结构基因的克隆1、结构基因--热休克蛋白基因的克隆(构建过程示意图,见图2)能在运动发酵单胞菌中表达、结构基因为热休克蛋白的操纵子,导入运动发酵单胞菌内可以增加运动发酵单胞菌对多种逆境的抗性和乙醇的产量。具体实施时,在不影响本发明结果的条件下,操纵子结构基因HSP包含至少一种下列热休克蛋白HSP,用于增加运动发酵单胞菌的逆境耐受性YP_446459;P_446432;ABC46256;ABC44504;AF256212;AAV48030;AAZ73229;NP_962635;AAS06251;YP—195752;AAW02711;NP—839948;AAB28591;AAB28590;NP—853922;CAD93121;NP—214765;CAA17343;YP_976387;CAL70273;YP—001281539;YP—001126179;YP—336589;YP_905227;NP_049441;ABQ71977;AB067434;ABL03756;YP—567053;BAE93221;ABA51979;ABX60218;ABD92701;ABD59337;ABD59336;ABD59335;AAK06409;AAK06407;AAB07020;YP_467916;YP—332976:YP_764249;YP_446459;YP_446432;YP—083624;YP—083635;YP—036374;YPJ36363;ED091691;EDO84610;CAD97602;AB旧3612;CAJ71923;CAJ71313;CAJ71312;CAJ72872;&AJ73635;ABC89189;ABC46256;ABC44504;NP—919293;NP—051028;NP—051024;ABA49980;AAU18224;MU18212;AAT62212;AAT59777;AAQ75170;AAL32036:AAF04361:AAF04359:AAF04352;AAD39038;NP—057878;NP—001036984;CAC30748;CAM63543;ZP—02551251;ZPJ)2249597;NP_302218;XP—952848;YP—0012861的;P42930;ABR04597;EBA44254;ABC46712;EAY61697;CAA27525;BAD74195;CAI76223;CM61675;CAA27527:BAB09509;CM25731;AAN87003;P0A5B7:P19036;P04792;P14602;Q03928;P12809;P13853;P19037;Q3T149;Q5S1U1;013224;P42929;Q00649;P15991;Q08275;P0A5B8;P12810;Q05832;P19243:P05478:P04795;P04794;P04793;P02519;Q53595;P42931;P02513;P34696;NP—001532;NP—569115;035878:AAZ42349:AAB82758;M朋2757:NPJ14176;NP—038588;NP一001069495;NPJ)01105583;NP—855707;NP一2化547;2BYU—L;2BYU—K;2BYUJ:2BYUJ;2BYU—H;2BYU_G;2BYU—F;2BYU一E;2BYU一D;2BYU—C.2BYU—B;2BYU—A:RNPJ)01007519:BAF79634;ZP—01502473;EAU97838;CM17245;ABK34454;AAB29536;AAB29956;CAD96910;AAK54445;CM92771;CM92770;P06581;P06582:YP—951151;Q96331;YP—092046;YP—637434;ABW89472;ABW89471;ABW89470;ABW89469;ABW89468;ABW89467;P34328;ABM11145;ABG06378;ABV68944;ABV68943;030851;P04120;ABC68342;NP—200780;NPJ90209;NP—175759:ABC41131;ABA29610;cm25732:abf01017;bae94664;aas68347;caa72613:5aA67022;caa67206;caa65020;aar01534;MR01533;AAR01532;AAR01531;AARO纖AAR01529;AAR01528;AAR01527;MR01526;MR01525;AAR01524;AAR01523;AAR01522;AAR01521:AARO跳AAR01519;AAR01518;AAR01517;AAR01516;MR01515;AAR01514;AAR01513;AAR01512;AAR01511:AAR01510;AAR01509;MR01508;AAR01507;AAR01506;MR01505:AAR01504;AAR01503;AAR01502;AAR01501;AAR01500;CAB55634;AAU41353;CM26348;CAA26347:AAM90297;AM33477:AAG00233:AAC36312:AAB38795;CM45902;AAA34294;Q16082;NP—179521:AAC49861;MC79726:YP—008803;ABV48740;AB032163;CAF24528;BAB40930;NP—010456;NP—009628;MQ19681;AAQ19680;NPJ)01876;NP—000385;YP—109512;NP—394323;ABJ55914;NP—190209;ABO60880;ABJ55915;AAS82861:BAD91165;BAD91164;AAY78951;CAH36928;CAC11993;CAC69546:CAC33095:CAA12389;CAE48491。以AF256212为例进行热休克蛋白结构基因的克隆,AF256212编码fyococcusfurfosus的小分子热休克蛋白。具体步骤如下①从ATCC购买/yococcusft/riiwusDSM3638,按照(AppliedandEnvironmentalMicrobiotogy,Aug.1989,p.2086-2088)的方法,在人工海水中加入0.1%的酵母提取物和0.5°/4胰蛋白胨。98'C环境中,培养50mL的细菌培养物至饱和状态。取10mL的培养物离心2分钟。沉淀物加入500(JL的TE缓冲液,用吸管反复吹打使之重悬。加入30pL10X的SDS和3yL20mg/mL的蛋白酶K,混习,37'C温育1小时。加入100(JL5mol/LNaCI,充分混匀,再加入80pLCTAB/NaCI溶液,混匀,于65'C温育10分钟。加入等体积的氯仿/异戊醇.混匀。离心45分钟。将上清转入一个新管中,如果难以移出上清.先用牙签除去界面物质。加入等体积的酚/氯仿/异戊醇,混匀,离心,将上清液转入一只新管中。加入O.6体积异丙醇,轻轻混合直到DNA沉淀下来,离心5分钟后弃上清。用70%乙醇洗涤沉淀。离心5分钟,弃上清,用冻干机稍加干燥,重溶于100(JL的TE缓冲液,在紫外检测仪上,检査染色体DNA的纯度。OD26o/OD加大于1.8。②以第1步获得的Pjwcoccusfiiribsus染色体DNA为模板,加入编码Pyrococcusfuriosus的小分子热休克蛋白AF256212的上下游引物,进行PCR扩增。扩增使用lnvitrogen公司的高保真KODDNA聚合酶,反应条件为预变性94'C,5分钟;变性温度94'C,45秒,复性温度45'C,45秒,延伸温度为72'C,90秒,循环30次,最后72'C延伸10分钟。获得长度为0.5kb的pfu-sHSP基因片段。其中,上游引物的5'端加上EcoRI酶切位点以及SD序列(SD序列为在起始密码子ATG上游9"13个核苷酸处,可与核糖体16SrRNA配对结合的、富含嘌呤的3-9个核苷酸的一段共同序列,一般为AGGA。)下游引物的5'端加上Pacl酶切位点。上游引物5'GGTGAA7TCGAGGMGAAATGGTGAGGAGAATAAGAAG3'上游弓l物5'GGTGG4rCCG/iGGMGAAATGGTGAGGAGMTAAGAAG3'下游引物5'AAATnVW77VWTTMGATCTGAGTTCAACTTTAACTTCG3'将PCR扩增获得的长度为0.5kb的pfu-sHSP基因片段和载体pUC19"pro质粒用EcoRI和Pac膀切后,克隆到pUC-pro的EcoRI和Pac嗨切位点间;或克隆到pUOpra的BamH两Pac瞎切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChang幼系列定点突变试剂盒进行PCR定点诱变(Dpn瞎),定点诱变去掉结构基因上所有的EcoRI、BamH和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆pfu-sHSP编码的蛋白序列为MVRRIRRWDIM3PFDI<IREIQEEIDAMFDEFFSRPRLWTYRRWSEPAMYE50ERVGEVWREPFVDIFDNO)EFV1TAEIiPGVRKEDIKVRVTEDTVYIEATV100KREKELEREGAVRIERYFTGYSRAIRLPEEVIPEKAKAKYNMGVLEIRVP150KKHPTKKESEGFEVKVELEIL2、结构基因--yfdz基因的克隆(构建过程示意图,见图3)能在运动发酵单胞菌中表达、结构基因为yfdz的操纵子,导入运动发酵单胞菌内使运动发酵单胞菌可以自行合成赖氨酸,用于降低运动发酵单胞菌生长过程中对培养物的营养要求。具体实施时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列转羟乙醛酶赖氨酸合成代谢酶yfdz(EC2,6.1,):A3YKL6—CAMJE;A5旧V0—LEGPC:A6TC30—KLEP7:A9(QS1—9B0RD;Q0TF81—ECOL5;Q57LV1一SALCH;Q5PNF6_SALPA;Q5ZVI1—LEGPH;FE4—ECOL6。以i.coliK12的yfdz为^,进行yfdz结构基因的克隆&具体步骤如下0^.0)111<12在含有1%的酵母提取物,0.5%胰蛋白胨,1。/。氯化钠中,37'C环境中,200rpm摇动,过夜培养。培养5ml的细菌培养物至饱和状态。取1.5mL的培养物离心2分钟。沉淀物加入50(HiL的TE缓冲液,用吸管反复吹打使之重悬。加入30pL10X的SDS和3jjL20mg/mL的蛋白酶K,混习,37'C温育1小时。加入100pL5mol/LNaa充分混匀,再加入80pLCTAB/NaCI溶液,混匀,于65'C温育10分钟。加入等体积的氯仿/异戊醇.混匀。离心45分钟。将上清转入一个新管中,如果难以移出上清.先用牙签除去界面物质。加入等体积的鼢/氯仿/异戊醇,混匀,离心,将上清液转入一只新管中。加入O.6体积异丙醇,轻轻混合直到DNA沉淀下来,离心弃上清。用70%乙醇洗漆沉淀。离心5分钟,弃上清,用冻干机稍加干燥,重溶于100pL的TE缓冲液,8)在紫外检测仪上,检查染色体DNA的纯度,OD26o/OD加大于1.8。②以第1步获得的E.coli染色体DNA为模板,加入yftte上下游引物,进行PCR扩增。扩增使用lnvitrogen公司的高保真KODDNA聚合酶,反应条件为预变性94'C,5分钟;变性温度94'C,45秒,复性温度45'C,45秒,延伸温度为72'C,90秒,循环30次,最后72'C延伸10分钟。获得长度为1.2kb的yfdz基因片段。其中,上游引物的5'端加上EcoRI酶切位点以及SD序列(在起始密码子ATG上游9-13个核苷酸处,一段可与核糖体16SrRNA配对结合的、富含嘌呤的3-9个核苷酸的共同序列,一般为AGGA,此序列称SD序列。)下游引物的5'端加上Pacl酶切位点。上游引物5'GGTGAATTCGAGGMGAAATGGCTGACACTCGCCCTG3'上游引物5'GGTGGATCCGAGGMGAAATGGCTGACACTCGCCCTG3'下游引物5'AAAT7TAA7TM/lGArcrcCGCGTnTCGTGAATATGTTTG3'将PCR扩增获得的长度为1.2kb的yfdz基因片段和载体pUC19-pro质粒用EcoRI和Pac瞎切后,克隆yfdz基因到pUC"pro的EcoR和Pac瞎切位点间;或克隆yfdz基因到pUOpro的BamH两Pac瞎切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChang總系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆yfdz编码的蛋白序列为MADTRPERRFTRIDRLPPYVFNITAELKMAARRRGEDIIDFSM6NPDGAT50PPHZVEKLCTVAQRPDTHGYSTSRGIPRLRRAISRWYQDRYDVEIDPESE100AIVTIGSKEGLAHUlLATLDHGDTVLVFNPSypiHIYGAVIAGAQVRSVP150LVE6VDFFNELERAIRESYPKFKMMILGFPSNPTAQCVELEFF&KVVALA200KRYDVLWHDLAYADIVYDGWKAPSIMQVPGARDVAVEFFTLSKSYNMAG250冊IGFMVGNKTLVSALARIKSYHDYGTFTPLQVAAIAALEGDQQCVRDIA200EQYKRRRDVLVKGLHKAGWMVEMPI0VSMXWAKIPEPYAAM8SLEFAKKL350LNEAKVCVSPGIGFCTnfGDTHVRFALIENRDRIRQAIRGIKAMFRADGLL400PASSKHIHENAE3、结构基因一me旧基因的克隆(构建过程示意图,见图4)能在运动发酵单胞菌中表达、结构基因为me氾的操纵子,导入运动发酵单胞菌内使运动发酵单胞菌可以自行合成赖氨酸。具体实施时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列转羟乙醛酶甲硫氨酸合成代谢酶me氾[EC42的g使运动发酵单胞菌能够自行合成甲硫氨酸,用于降低运动发酵单胞菌生长过程中对培养物的营养要求P38675,M£T7_NEUCR;0743",MET7—SCHPO;P47164,MET7—YEAST;P55217,METB_ARATH;P00935,METB一ECOLI:P44502,METB一HAEIN;09ZMW7.METB_HELPJ;P56069,METB_HELPY;P24601,METB—HERAU;P66876,METB—MYCBO;P46807,METB_MYCLE;P66875,METB_MYCTU;Q12198,METW_YEAST;Q04533,METX一YEAST参照结构^因yfdz基因的克隆的方法,具体实施时,合成me氾上下游引物进行PCR扩增。将PCR扩增获得的me氾基因片段和载体pUC19-pro质粒用EcoRI和Pac瞎切后,克隆yfdz基因到pUC-pro的EcoRI和Pac鹏切位点间;或克隆基因到pUC-pro的BamHI和Pad酶切位点间。对于结构基因的内部有EcoRI、BamH湘Pac鹂切位点的结构基因,采用德国默克公司QuikChang劝系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。以E.coliK12的me旧为例,进行me旧结构基因的克隆上游引物5'GGTGM7TCGAGGMGAMTGACGCGTAAACAGGCCACC3'上游引物5'GGTGG4rCCG/AGGMGAAATGACGCGTAMCAGGCCACC3'下游引物5'AAAT77VW7T/UWG/irc7TrACCCCTTGTTTGCAGCCCGGMG3'将PCR扩增获得的长度为1.2kb的me旧基因片段和载体pUC19-pra质粒用EcoRI和Pacl酶切后,克隆metB基因到pUC-pro的EcoR两Pac瞎切位点间或克隆me氾基因到pUC"pro的BamH和Pac鹏切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChangeS系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆metB编码的蛋白序列为MTRKQATIAVRSGLNDDEQY6CWPPIHLSSTYNFTGFNEPRAHDYSRRG50仰TRDWQRALAELEGGAGAVLTNTGMSAIHLVTTVFLKP6DLLVAPHDC100Y6GSYRLFDSLAKRGCYKVLFVDQ(a3EQALRAALAEKPKLVLVESPS仰L150LRWDIAKICHLAREVGAVSWDNTFLSPALQNPLALGADLVLHSCTKYL200NGHSDWAGWIAKDPDWTELA柳AMMIGVTGGAFDSYLLLRGLRTLVP250BMELAQBNAiQAIVICrLQTQPLVKKLYHPSIiPENQG腿IAARQQKGFGAML200SFELD③EQTLRRFLGGLSLETLAESLG6VESLISHAATMTHAGMAPEAR350AAAGISETLLRISTGIEDGEDLIADLENGFRAANKG4、结构基因一-五碳糖代谢相关结构基因的克隆(构建过程示意图,见图5)可以在运动发酵单胞菌中表达,由8个结构基因xylA、xy旧、araA、araB、araD、manA、TAL、TKT共同构成的操纵子,赋予运动发酵单胞菌同时利用木糖、阿拉伯糖和甘露糖产生乙醇的能力。编码戊糖利用和代谢酶的基因序列,包括有关木糖分解的2个基因、有关阿拉伯糖分解的3个基因、有关甘露糖分解的l个基因、有关戊糖磷酸化途径的2个基因。有关木糖分解的2个基因为xylA(xyloseisomerase,木糖异构酶,E.C.5.3.1.5)和Xyffi(xylulosekinase,木酮糖激酶,EC2.7丄17):有关阿拉伯糖分解的3个基因为araA(L-阿拉伯糖异构酶,EC5,3丄4)、araB(L-核酮糖激酶,EC3丄U5)、araD(L-核酮糖-5-磷酸斗差向异构酶,EC4.2.1.43);有关甘露糖分解的基因为manA(甘露糖-6-磷酸异构酶,EC5.3.1.8);有关戊糖磷酸化的2个基因为TAL(transaldolase,转二羟丙酮基酶,£02.2.1.2)和710\&加3&改01肪6,转羟乙醛酶,EC2.2.1.1)}。①具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列木糖异构酶XYLA(Xyloseisomerase,E.C.5.3.1.5):Q8PLL9,XYLA1—XANAC;Q4UTU6,XYLA1_XANC8;Q8P9T9,XYLA1—XANCP;Q5GYQ7,XYLA1_XANOR;Q8PEW5,XYLA2_XANAC;Q4UNZ4,XYLA2一XANC8;Q8P3H1,XYLA2_XANCP;Q5GUF2,XYLA2一XANOR;P12851,XYLA—ACTMI;A3N3K2,XYLA—ACTP2;A6VLM8,XYLA_ACTSZ;Q8U7G6,XYLA_AGRT5;P10654,XYLA—AMPSP;Q9FKK7,XYLA—ARATH;A0JXN9,XYlJ—ARTS2;P12070,XYLA—ARTS7;A7Z522,XYLA—BACA2;Q739D2,XYLA一BACC1;Q5LCV9,XYLA—BACFN;Q64U20,XYLA一BACFR;Q9K993,XYLA_BACHD;P77832,XYLA—BACLD;008325,XYLA_BACME;A8FE33,XYLA_BACP2;Q5WKJ3,XYLA—BACSK;P54273,XYLA_BACST;P04788,XYLA—BACSU;P54272,XYLA_BACSW;08A9M2,XYLA—BACTN;A6L792,XYLA—BACV8;A1A關,XYLA—BIFAA;Q8G3Q1,XYLA_BIFLO;Q89VC7,XYLA—BRAJA:Q2YMQ2,XYLA—BRUA2:Q57EI4,XYLA_BRUAB;08YFX5,XYLA_BRUME;A5VPA1,XYLA_BRU02;Q8G204,XYLA_BRUSU;Q1BG90,XYLA—BURCA;A0KE56,XYLA_BURCH;Q0B1U7,XYLA—BURCM;Q2SW40,XYLA一BURTA;A4JSU5,XYLA—BURVG;Q13RB8,XYLA_BURXL;8A5CPC1,XYLA_CLAM3;P29441,XYLA—CLOTS;A7ZTB2,XYLA一EC024;Q7A9X4,XYLA—EC057;A8A623,XYLA_ECOHS;Q0TBN7,XYLA一ECOL5:Q8FCE3,XYLA—ECOL6;TO0944,XYLA_ECOLI:A4W5明,XYLA—ENT38;Q7C3R3,XYLA—ENTFA;A7MNI5,XYLA—ENTS8;Q6DB05.XYLA_ERWCT;Q6T6K9,XYLA—FERGO:Q5KYS6,XYLA—GEOKA;A4IP67,XYLA—GEOTN;Q4QLI2,XYLA一图8;A5UCZ3,XYLA—HAEIE;A5匿,XYLA—HAEIG;P44398,XYLA_HAEIN;Q40082,XYLA_HORVU;P29442,XYLA—KLEPN;Q03TX3,XYLA—LACBA;P29443,XYLA—LACBR;Q9CFG7,XYLA—LACLA;P21938,XYLA_LACPE;A0AF79,XYLA—LISW6;Q65PY0,XYLA一國SM;Q11EH9.XYLA一MESSB;Q2GAB9,XYLA—NOVAD;Q8ELU7,XYLA_OCEIH;A6X4G3,XYLAJXHA4;Q03HN1,XYLA—PEDPA;Q7N4P7,XYLA—PHOLL;06,,XYLA_PHOPR;Q48J73,XYLA_PSE14;Q15PG0,XYLA—PSEA6;Q3KDW0,XYLA—PSEPF;Q880Z4,XYLA—PSESM;Q4ZSF5,XYLA—PSEU2;Q2K433.XYLA_RHIEC;Q1MBL8,XYLA—RHIL3;Q98CR8,XYLA—RHILO;Q92LW9.XYLA—RHIME;Q7UVG2,XYLA—RHOBA;A3PNM4,XYLA—RHOS1;Q3瞧,XYLA—RHOS4;A4WVT8,XYLA—RHOS5;Q162B6,XYLA—ROSDO;Q9S306,XYLA_RUMFL;Q57IG0,XYLA—SALCH;Q5PLM6,XYLA—SALPA;Q7C637,XYLA_SALTI;Q8ZL90,XYLA—SALTY;A8G7W8,XYLA_SERP5:Q31V53,XYLA—SH旧S:Q3YW0,XYLA一SHISS;Q5LV46,XYLA—SILPO;01GKQ4,XYLA—SILST;A6UD89,XYLA_SINMW;Q022S9,XYLA_SOLUE;P27157,XYLA_STAXY;P24299,XYLA—STRAL;Q93HF3.XYLA—STRAW;Q9S3Z4.XYLA—STRCK;Q9L0B8,XYLA—STRCO;P50910.XYLA—STRDhQ9RFM4,XYLA_STRLI;P37031,XYLA_STRMR;Q93RJ9,XYLA—STROI;P15587,XYLA_STROL;P22857,XYLA—STRRO;P24200,XYLA—STRRU;P19149,XYLA—STRS8;Q9L558,XYLA—STRTM;P14405,XYLA—STRVN;TO9033,XYLA—STRVO;082845,XYLA—TETHA;P56681,XYLA—THECA:P22842,XYLAJ"HEET;Q9X1Z5,XYLAJ"HEMA;P45687,XYLA—THENE:A5ILR5,XYLA—THEP1;P30435,XYLA—THESA:P26997,XYLA—THET8;P19148,XYLAJ"HETU;Q9KGU2,XYLA—THEYO;Q3BMF2,XYLA_XANC5;Q2NXR2,XYLA一XA,;A1JT10,XYLA—YERE8;A7FP68,XYLA—YERP3;Q1C0D3,XYLA—YERPA;Q8Z9Z1,XYLA—YERPE;Q1CDB8,XYLA—YERPN;A4TS63,XYLA—YERPP;Q663Y3,XYLA—YERPS。参照结构基因yfdz基因^克隆的方法,具体实施W,合成XYLA上下游弓I物进行PCR扩增。将PCR扩增获得的XYLA基因片段和载体pUC19-pro质粒用Ecom和Pacl酶切后,克隆XYLA基因到pUC-pro的EcoRI和Pac瞎切位点间;或克隆基因到pUC-pra的BamHI和Pad酶切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChange⑧系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。以E.coliK12的xylA为例,进行xylA结构基因的克隆上游引物5'GGTG/W7TCG>AGG>AAGAAATGCAAGCCTATnTGAC3'上游引物5'GGTGGATCCGAGG/\AGAAATGCAAGCCTATTTTGAC3'下游引物5'AAAT7TA47TyAA4G/47"CrrTATTTGTCGAACAGATAAT3'将PCR扩增获得的长度为1.3kb的xylA基因片段和载体pUC19-pro质粒用EcoRI和Pacl酶切后,克隆XYLA基因到pUC-pro的EcoRI和Pacl酶切位点间;或克隆xylA基因到pUC-pra的BamHI和Pacl酶切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChang^系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆xylA编码的蛋白序列为.-MQAYFDQLDKVRYEGSKSSNPLAFRHYN咖LVLGKSMEEHLRFAACYWH50TFCWMGADMFGVGAFNRFWQQP6EALALAKRKADVAFEFFHKLHVPFYCF100HDVDVSPEGASLKEYINHFA^IVDVLAGKQEES6VKLLWGTANCFTNPRY1506AGAATNPDPEVFSWAATQWTAMEATHKL6GENYVLWG6RE6YETLLNT20CDLRQEREQLGRFMQHWEHKHKIGFQGTIiIEPKPQEPTKHQyDYDAATV250YGFLKQFGLEKEIKLNIEANHATLA6HSFH腿IATAIALGLFGSVDANRG200DAQL6HDTDQFPNSVEEHALVMYEILKAGGFTT66U4FDAKVRRQSTDiar350DLFYGHI6AMDTMALALKIAARMIEDGELDKRIAQRYS6WNSELGQQILK400G^tSLADLAKYAQE冊LSFVHQSGRQEQLENLVNHYLFDK②具体实施时,如图5所示,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列木酮糖激酶XYLB(Xylulosekinase,EC2.7.1.17):P12867,XYLB—ACTMI:P54271,XYLB—AMPSP:P26909,XYLB_ARTS7:P392",XYLB_BACSU;Q3SYZ6,XYLB_BOVIN;P09099,XYLB_ECOLI;P44401,XYLB_HAEIN;075191,XYLB—HUMAN;P29444,XYLB一KLEPN;P35850,XYLB_LACBR;Q9CFG8,XYLB—LACLA;P21939,XYLB_LACPE;Q3TNA1,XYLB_MOUSE;Q5R830,XYLB—PONPY;Q3MIF4,XYLB_RAT;P27155,XYLB—STAXY;Q9RK00,XYLB_STRCO;P27156,XYLB—STRRU。^E.COlik12的XYLB为;iJ,进行XYLB结构基因的克隆上游引物5'TGAATTCGAGGAAGAAATGTATATCGGGATAGAT3'上游引物5'TGGATCCGAGGMGAAATGTATATCGGGATAGAT3'下游引物5'AAATTTAATTAAAGATCTnTACGCCATTAATGGCAGAAG3'将PCR扩增获得的长度为1.4kb的XYLB基因片段和载体pUC19-pra质粒用EcoRI和Pacl酶切后,克隆XYLB基因到pUC-pro的EcoRI和Pacl酶切位点间;或克隆XYLB基因到pUC-pra的BamHI和Pac瞎切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChang沸系列定点突变试剂盒进行PCR定点诱变(DpnI法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆XYLA编码的蛋白序列为鄉IGIDLGTS6VKVILLNEQ6EWASQTEKLTVSRPHPLWSEQDPEQWWQ50ATDRAMKALO)(2HSLQDVKAL6IAGK94H6ATLLDAQQRVLRPAILWNDGR100CAQECALLEARVPLSRVIT6NLMMPGFTAPKLLWQRHEPEIFRQIDKVL150LPKDYLRLBMTGEFASDMSDAAGIMHLDVAKRDWSDVMLQACDLS幼^4P200ALYEGSEIT6ALLPEVAKAWGM^TVFWAGG6DNAAGAVGVGMVDANQAM250IiSL6TS6VYFAVSEGFLSKPESAVHSFCHALPQR冊UISVMLSAASCLDW200AAKLTGLSNVPALIAAAQQADESAEFVWFLPYIiSGERTPHNNPQAK6VFF350GLTHQHGPNEIARAVLEGVGYALADGMDWHACGIKPQSVTLIGGGARSE400YWRQMLADISGQQLDYRTGGDVGPALGAABLAQIAANPEKSLIELLPQLP450LEQSHLPDAQRYAAYQPRRETFRRLYQQLLPLM^③具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列转二羟丙酮基酶TAL(Transaldolase,EC:2.2.1.2):Q簡3,TAL1—BACAN;Q81HW6,TAL1—BACCR;Q6D8W0,TAL1—ERWCT;P34214,TAL1_KLMLA;Q927A3,TAL1—USIN;Q7糊,TAL1JJSMF;Q8Y3T8,TAL1JJSm5;P17440,TAL1—PICJA;Q5丌P8,TAL1—SALCH;Q5PDM6,TAL1—SALPA;042700,TAL1_SCHP0;Q3Z606,TAL1_SHISS;Q82M93,TAL1—STRAW;O88018,TAL1—STRCO;P15019,TAL1_YEAST;P48993,TAL2—ANASP;081MY9,TAL2一BACAN;Q濯1,TAL2一BACCR;Q6D0B2,TAli_ERWCT;P66958,TAL2JJSIN;Q723W2,TAL2JJSMF;P66957,TAL2JJSM0;P48983,TAL2—NOSPU;Q57LN7,TAL2—SALCH;Q5PCU4,TAL2—SALPA;Q3YZ89,TAL[SHISS;Q829U5,TAL2—STRAW:Q9XAC0,TAL2—STRCO;P53228,TAL2_YEAST:P17441,TAL3—PICJA;P0A卿,TALA—EC057;P0A868,TALA_ECOL6:P0A867,TALA_ECOLI;Q9画,TALA_PASMU;Q8Z4T0,TALA—SALTI;Q8ZN83,TALA—SALTY;Q83QM8,TALA_SHIFL;P0A871,TALB—EC057;Q8FLD1.TALB—ECOL6;P0A870,TALB_ECOLI;Q9CKH9,TALB_PASMU;P鹏56,TALB—SALTI;P66955,TALB_SALTY;P0A872,TALBJHIFL;Q2TBL6,TALDO_BOVIN;P80427,TALDO—CARMA;08VI73.TALl5o—CRIGR;Q9W1G0,TALDO—DROME;P37837,TALDO_HUMAN;Q93092,taldo—mouse:q29593,taldo—PIG;q9eqs0,taldo—rat;a1tkq3,tal—aciac:A(JtY8,tal—acic1;A1W3W5,TAL_ACISJ;A3MYD4,TAL_ACTP2;A6VLW0,TAL_ACTSZ;A4^K74,TAL—AERS4;Q8U7I5,TAL—AGRT5;A6TK31,TAL—ALKMQ;A8MJZ5,TAL—ALKOO;P58561,TAL_ANASP;P51778,TAL_ANAVT;Q66;20,TAL一AQUAE;A0JWQ6,TAL_ARTS2;Q73DH4,TAL_BACC1;Q63FX6,TAL_BACCZ;Q9K6E4,TAL—BACHD;Q6小时NE4,TAL_BACHK;Q5WB47,TAL—BACSK;P19669,TAL_BACSU;Q8A767,TALBACTN:Q謂O,TALBAUCH:Q7VRT4,TAL—BLOFL;Q2KVT3,TAL—BORA1;Q7WME6,TAL—BORBR;Q7WAY2,TAL—BORPA;07VY99,TAL—BORPE;02YLI1,TAL_BRUA2;Q57B82,TAL一BRUAB;Q8YJ42,TAL_BRUME;A5VSE7,TAL—BRU02;Q8FYQ9,TAL—BRUSU;P57194,TAL—BUCAI:Q8&27,TAL—BUCAP;■Y3,TAL—BUCBP;Q058B4,TAL—BUCCC;01BUS8,TAL—BURCA;A0K9A9,TAL—BURCH;Q0BD43,TAL_BURCM;A3MHY5.TALBURM7:Q62ID7,TAL_BURMA;A1V2A0,TAL_BURMS;A3NSY2,TAL—BURPO;Q3JML7,TAL—BURP1:A3N794,TAL—BURP6;Q63W00,TAL—BURPS;Q39E45,TAL_BURS3;Q2SZY3,10TAL_BURTA;A4JGM1,TAL_BURVG;Q142S4,TAL—BURXL;A4XL36,TAL_CALS8;A8FK69,TAL_CAMJ8;A7H591,TAL_CAMJD;Q9PIL5,TAL—CAMJE;A1画,TAL_CAMJJ;0;圆6,TAL_CAMJR:Q9A2F1,TAL—CAUCR;Q5L5I5,TAL_CHLAB:Q822J3,TAL_CHLCV;Q255E4,TAL—CHLFF;Q9P咖,TAL_CHLMU;Q9Z998,TAL—CHLPN;Q3KM49,TAL_CHLTA;Q8KGF8,TAL—CHLTE;084315,TAL_CHLTR;Q1QZV1,TAL—CHRSD;Q97JD9,TAL_CLOAB;Q185K3,TAL—CL0D6;Q8XMJ6,TAL—CLOPE;Q899F3,TAL—CLOTE;Q47網,TAL—COLP3:Q9RUP6,TAL—DEIRA;A4J9C4,TAL—DESRM;A7HME3.TAL一FERNB;Q0RH18,TAL_FRAAA;Q2JCG8,TAL—FRASC;Q39YD4,TAL_GEOMG;Q748M4,TAL_GEOSL;A4ITL5,TAL一GEOTN;Q7NK81,TAL—GLOVI;Q7VP02,TAL—HAE叫;Q4QLG9,TAL—HAE旧;A5UCY0.TAL—HAEIE;A5UIP9,TAL_HAEIG;P45055,TAL—图N;Q0I1U0,TAL—HAES1;Q1CRD7,TAL一HELPH:Q9ZJC5,TAL一HELPJ;P56108,TAL—HELPY;Q88S98,TAL_LACPL;Q6AF36,TAL—LEIXX;Q72RT8.TAL_LEPIC;Q8F3W3,TALLEPIN-Q65PZ8,TAL_MANSM;A1U1Y1,TAL—MARAV;Q0AQJ7,TAL—MARMM;Q11DE1,TAL_MESSB;A6UTP5,TAL_META3;Q^S0X4,TAL—METAM;Q602L8,TAL_METCA;Q1H0R4.TAL_METFK;058370,TALMETJA-A4FWM6,TAL_METM5;A6VGP5,TALMETM7:Q6LXP1,TALMETMP:A2SKF9,TAL_METPP;A6UPV2,TAL—MEWS:P59955,TAL—MYCBO;A1KIN7,TAL—MYCBP:P55193.TAL—MYCLE;A5U2F1,TAL_MYCTA;O06812,TAL—MYCTU;A0PPP5,TAL_MYCUA;Q5F6E9,TALNEIG1:Q9JSU1,TAL_NEIMA;Q9K139,TAL—NEIMB:A1固,TAL_NEIMF;Q86(76,TAL—OCEIH;A6\^XW5,TALJXHA4;Q6MAI4,TAL_PARUW;A1AKQ8,TAL—PELPD;Q7N8Z1,TAL_PHOLL;Q6LLF0,TAL—PHOPR;Q6L178,TAL—PICTO;A1VJZ5,TAL-POLNA;Q12R4,TAL_POLSJ;Q7MXG0,TAL_PORGI;A3PBP3.TAL_PROM0;A2C0X8,TAL—PROM1;A2BVM,TALPROM5:Q31C15,TAL—PROM9;Q7VD64,TAL—PROMA;Q7V;B8,TAL—PROMM;Q7V2G1,TAL_PROMP;Q46GQ7,TAL_PROMT:Q48KH5,TAL—PSE14;015PR4.TAL_PSEA6;A6V3U3,TAL_PSEA7;Q02NV3,TAL—PSEAB;Q9I047,TAL_PSEAE;Q1I7G7,TAL_PSEE4;Q4KF恥,TAL_PSEF5;A4XTM7,TAL—PSEMY;Q3&9H0'TAL_PSEPF;Q88KX1,TAL—PSEPK;Q884H4.TAL—PSESM;Q4ZV64,TAL—PSEU2;A4VK43,TAL—PSEU5;Q^K979,TAL—RALEH;Q46ZK0.TAL—RALEJ;Q窗8,TAL—RALME;Q8Y014,TAL-RALSO;Q2K414,TAL_RHIEC;Q98EV0,TAL_RHILO;Q92LK3,TAL一RHIME;021ZD6,TAL—RHOFD;Q2隨7,TAL—RHORT;A1S414,TAL—SHEAM;A3D1F5,TAL—SHEB5;A6WKC4,TAL—SHEB8;Q12J<L3,TAL—SHEDO;Q07—Z25,TAL—SHEFN:A3QBW2,TAL—SHELP:Q8EBH2.TAL—SHEON;A4Y494,TAL_SHEPC;AOL啦,TAL—SHESA;Q0HFX9,TAL—SHESM:Q0HS72,TAL_SHESR;A1RI^N6,TAL_SHESW;Q32;L3,TALSH旧S;Q32KB0,TAL一SHIDS;A6UDM7,TAL_SINMW;Q2NS86,TAL_SODGM;08E3B1,TAL_STRA3;Q8DXP1,TAL—STRA5;P明鄉,TAL—STRP1;P66960,TAL—STRP3;Q5XAK4,TAL—STRP6;P66961,TAL—STRP8;Q1J;F7,TAL_STRPB;Qj"扁,TAL一STRPC;Q1JFK0,TAL_STRPD;01J5E9,TAL—STRPF;A2RD32,TAL—STRPG;Q48RY1,TAL—STRPM;。k)LL7,TAL—SYNEL;05卩127,TAL—SYNP6;Q7U一5E8,TAL一SYNPX;P72797,TAL_SYNY3;09—HKI3,TAL—THEAC;Q47ND3,TALJ"HEFY;A6LNG2,TAL—THEM4;Q9WYD1,TALJ"HEMA;A5IKB4,TAL—THEP1;Q8R8S6,TAL—THETN;Q97AZ4,TAL—THEVO;Q3SL03,TALJ"HIDA;Q118F4,TAL_TREI;A1WIS6,TAL_VEREI:A5F咖,TAL—V旧C3;Q9KLW8,TAL—V旧CH;Q5DZP1,TAL—V旧F1;A7N1Z7,TALJ/旧HB;Q87GY5,TAL—V旧PA;Q8D6;时9,TAL—V旧VU;Q7"DD5,TAL—V旧VY;Q85lX3,TAL_WIGBR;Q8PNY6,TAL—XANAC;Q3BX43.TAL_XANC5;Q4UR79,TAL—XANC8;Q8PCA4,TALXANCP:Q2NZS1,TALXANOM:05GWL8.TAL—XANOR;A1JJD0,TAL_YERE8;A7FME9,TAL—YERP3;Q8ZIN2,TAL_YERPE:Q66ET5,TAL_YERPS。以E.coliK12的TAL为例,进行;AL结构基因的克隆上游引物5'TGAATTCGAGGAAGAAATGTATATCGGGATAGAT3'上游引物5'TGGATCCGAGGAAGAAATGTATATCGGGATAGAT3'下游引物5'AAATTTAATTAMGATCTTTTACGCCATTAATGGCAGAAG3'将PCR扩增获得的长度为1.4kb的TAL基因片段和载体pUC19-pra质粒用EcoRI和Pac鹏切后,克隆XYLA基因至iJpUC-pro的EcoRI和Pacl酶切位点间或克隆TAL基因到pUC-pro的BamHI和Pacl酶切位点间。对于结构基因的内部有EcoRI、BamH间Pacl酶切位点的结构基因,采用德国默克公司QuikChang沸系列定点突变试剂盒进行PCR定点诱变(DpnI法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl嗨切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆TAL编码的蛋白序列为MTDKIjTSLRQYTTWADTGDIAAMKIiYQPQDATTNPSIjILNAAQIPEYRK50LIDDAVAWAKQQSNDRAQQIVDATDKLAWIGLEILKLVPGRISTEVDAR100LSYDTEASIAKAKRLIKLYNDAGISNDRILIKLASTWQGIRAAEQLEKEG150INCNLTLLFSFAQARACAEAGVFLISPFVGRILDWYKANTDKKEYAPAED200PGWSVSEIYQYYKEHGYETWMGASFRNIGEIIiEIjAGCDRLTIAPAIiLK250ELAESEGAIERKLSYTGEVKARPARITESEFLWQHNQDPMAVDKLAEGIR200KFAIDQEKLEKMIGDLL④具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列转羟乙醛酶TKT(Transketolase,EC:2.2.1.1):094039,TKT1—CANAL;P27302,TKT1_EC0LI:012630,TKT1—KLMLA;P57927,TKT1_PASMU;Q9KUP2,TKT1—V旧CH;Q5E7R1,TKT1J/旧F1;Q87LK8,TKT1_WBPA;Q8DCA2,TKT1—V旧VU;Q7MHK7,TKT1J/旧VY;P23254,TKT1—YEAST;P33570,TKT2—ECOU;P57958,TKT2—PASMU;Q9KLW7,TKT2—V旧CH;O5DZP0,TKT2—V旧F1;Q87GY4,TKT2—V旧PA;Q8D6小时8,TKT2—V旧VU:Q7MDD4,TKT2—V旧VY;P33315.TKT2—YEAST;042677,TKT7—CRAPL;Q42675,TKTA—CRAPL;042676,TKTC—CRAPL;q7sic9,TKTC_MAIZE;q58092,TKt61mETJA;p21725,TKTC—RALEH;043848,TKTC—SOLTU:020250,TKTC—SPIOL;Q2NL26,TKTL1_B0VIN;P51854,TKTL1—HUMAN;Q4R6M8,TKTL1_MACFA;Q99MX0,TKTL1_M0USE;Q2NIKZ4,TKTL2_B0VIN;Q9H0I9,TKTL2_HUMAN;Q9D4D4,TKTL2—MOUSE;Q58094,TKTN—METJA;P21726,TKTP—RALEH;067642,TKT—AQUAE;Q9KAD7,TKT—BACHD:P45694,TKT—BACSU;Q6B855,TKT—BOVIN;P57195,TKT_BUCAI:08KA26,TKT—BUCAP;Q89AY2,TKT—BUCBP;P43757,TKT_HAEIN;P29401,TKT一國AN;Q60HC7,TKT—MACFA;P40142,TKT—MOUSE;P59956.TKT—MYCBO;P47312,TKT_MYCGE:P46708,TKT—MYCLE;P75611,TKT_MYCPN;006811,TKT—MYCTU:Q5R1W6,TKT—PANTR;P34736,TKT—PICST;Q5R4C1,TKT_PONPY;P84540,TKT—POPEU;P50137,TKT—RAT;P58333,TKT—RHIME;Q52723,TKT—RHOCA;P29277.TKT—RHOSH;Q9URM2,TKT—SCHPO;P56900,TKT—S國W;Q5HG77,TKT_STAAC;P66962,TKT_STAAM:P99161,TKT一ST纖Q6GH64,TKT—STAAR;Q6G9L6,TKT_STAAS;P66963,TKT—STAAW;Q5HPJ9,TKT—STAEChQ8CPC7,TKT—STAES;Q5^AK5,TKT—STRP6;Q8NZX4,TKT_STRP8;P22976,TKT—STRPN;083571,TKT—TREPA;P51010,TKT_XANFL。以E.coliK12的TKT为例,进行TKT结构基因的克隆上游引物5'TGAATTCGAGGAAGAAATGTCCTCACGTAAAGAG3'上游弓l物5'TGGATCCGAGGAAGAAATGTCCTCACGTAAAGAG3'下游引物5'AAATTTAATTAAAGATCTTTACAGCAGTTCTnTGC3'将PCR扩增获得的长度为0.9kb的TKT基因片段和载体pUC19-pro质粒用EcoRI和Pacl酶切后,克隆TKT基因到pUC-pro的EcoRI和Pacl酶切位点间或克隆TKT基因到pUC-pro的BamHI和Pacl酶切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChange⑧系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆TKT编码的蛋白序列为MSSRKELANAIRALSMDAVQKAKSGHPGAPMGMADIAEVLWRDFLKHNPQ50NPSWADRDRFVLSNGHGSMLIYSIiLHIiTGYDLPMEELKNFRQLHSKTPGH100PEVGYTAGVETTTGPLGQGIANAVGMAIAEKTLAAQFNRPGHDIVDHYTY150AFMGDGCMMEGISHEVCSIiAGTIiKLGKLIAFYDDNGISIDGHVEGWFTDD200TAMRFEAYGWHVIRDIDGHDAASIKRAVEEARAVTDKPSLLMCKTIIGFG250SPNKAGTHDSHGAPLGDAEIALTREQLGWKYAPFEIPSEIYAQWDAKEAG200QAKESAWNEKFAAYAKAYPQEAAEFTRRMKGEMPSDFDAKAKEFIAKLQA350NPAKIASRKASQNAIEAFGPLLPEFLGGSADLAPSNLTLWSGSKAINEDA400AGNYIHYGVREFGMTAIANGISLHGGFLPYTSTFIiMFVEYARNAVRMAAL450MKQRQVMVYTHDSIGIjGEDGPTHQPVEQVASIjRVTPNMSTWRPCDQVESA500VAWKYGVERQDGPTALILSRQNLAQQERTEEQIANIARGGYVLKDCAGQP550ELIFIATGSEVELAVAAYEKLTAEGVKARWSMPSTDAFDKQDAAYRESV600LPKAVTARVAVEAGIADYWYKYVGLNGAIVGMTTFGESAPAELLFEEFGF650TVDNWAKAKELL(D具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列转羟乙醛酶L-阿拉伯糖异构酶(araA,EC5.3.1.4)中的一种12Q65GC0,ARM1_BACLD;Q97JE4.ARAA1—CLOAB;Q65J10,ARAA2—BACLD;Q97JE0,ARAA2_CLOAB;Q1IUW9,ARAA一AC旧L;A0LT86,ARAA一ACIC1;A6VLM2,ARAA一ACTSZ;AOKJIO,ARM—AERHH;A4SNH3,ARAA一AER沐A1RAY5,ARAA_ARTAT:A0JRF5,ARAA一ARTS2;Q9KBQ2,ARAA—BACHD;Q训L05,ARAA-BACSK;Q9S467.ARM—BACST:P94523,ARM_BACSU;Q8AAW1,ARAA_BACTN;A6L2R5,ARM—BACV8;A1A3A8,ARAA_BIFAA;Q8G7J3,ARM—BIFLO;A8ALP0,ARAA一C眺A5CPB7,ARM—CLAM3;A7ZHF3,ARM—EC024;P58538,ARAA_EC057;A7ZW12,ARAA_ECOHS;A1A7A9,ARAA_ECOK1;Q0TLS8,ARM—ECOL5;Q8FL89,ARM—ECOL6;P08202,ARAA_ECOLI;01RGD7,ARAA_ECOUT;A4W6G6,ARM_ENT38;Q6D4W5,ARAA_ERWCT:05KYP7,ARM—GEOKA;A4IPA1,ARAA_GEOTN;A0LZ81,ARM—GRAFK;A6T4K0,ARAA_KLEP7:Q48433,ARAA_KLEPN;Q03PR5,ARAAJACBA;Q88S84,ARAA—U\CPL;038UH2,ARM—LACSS;Q03XW2,ARAA一LE圆;Q65WJ5,ARAA—MANSM;A0QT53,ARM—MYCS2;Q9RHG2,ARAA_MYCSM;A1SDP0,ARAA一NOCSJ;Q8EMP4,ARAA—OC曰H;Q03HQ0,ARAA_PEDPA;Q21MP3,ARM—SACD2;Q5丌F9,ARM_SALCH;Q5PDF2,ARAA—SALPA;P58539,ARAA—SALTI;P06189,ARM_SALTY;A8GE04,ARAA_SERP5;A0KWX7,ARAA—SHESA;Q0HIR5,ARAA_SHESM;Q0HV71,ARAA—SHESR;A1RJD6,ARAA_SHESW;Q326小时3,ARAA—SH旧S:Q32K31,ARM—SHIDS;Q0T8D5,ARAA_SHIF8;Q7UDT4,ARAA_SHIFL;Q3Z5U9,ARAA—SHISS;Q9WYB3,ARAA—THEMA;A5IKE5,ARAA—THEP1;Q87FK3,ARAAJ/旧PA;A1JMB6,ARAA—YERE8;A7F眺ARAA—YERP3;Q1C7J3,ARAA—YERPA;P58540,ARAA—YERPE;Q1CIX9,ARAA_YERPN:A4TJ19,ARM一YERPP-,Q66AF8,ARAA_YERPS。&E.coliK12的araA为例,进行araA结构基因的i隆上游引物5'TGAATTCGAGGAAGAAATGACGATTTTTGATAATTAT3'上游引物5'TGGATCCGAGGAAGAAATGACGATTTTTGATAATTAT3'下游引物5'AAATTTAATTAAAGATCTCTTAGCGACGAAACCCGTAA3'将PCR扩增获得的长度为1.5kb的araA基因片段和载体pUC19-pra质粒用EcoRI和Pad酶切后,克隆araA基因到pUC-pra的EcoRI和Pacl酶切位点间;或克隆araA基因到pUC-pro的BamHI和Pac鹏切位点间。对于结构基因的内部有Ecom、BamHI和Pac聰切位点的结构基因,采用德国默克公司QuikChange⑧系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pad酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆araA编码的蛋白序列为MTIFDNYEVWFVIGSQHLYGPETLRQVTQHAEHWNALNTEAKLPCKLVL50KPLGTTPDEITAICRDANYDDRCAGLWWIiHTFSPAKMWINGLTMIjNKPL100LQFHTQFNAAIiPWDSIDMDFMNLNQTAHGGREFGFIGARMRQQHAWTGH150WQD罪HERIGSWMRQAVSKQDTRHLKVCRFGDNMREVAVTDGDKVAAQI200KFGFSVNTWAVGDLVQWNSISDGDVNAIjVDEYESCYTMTPATQIHGKKR250QNVLEAARIELGMKRFLEQGGFHAFTTTFEDLHGLKQLPGLAVQRLMQQG200YGFAGEGDWKTAAIiLRIMKVMSTGLQGGTSFMEDYTYHFEKGNDLVLGSH350MLEVCPSIAAEEKPILDVQHLGIGGKDDPARLIFNTQTGPAIVASLIDLG400DRYRLLVNCIDTVKTPHSLPKLPVANALWKAQPDLPTASEAWILAGGAHH450TVFSHALNliNDMRQFAEMHDIEITVIDNDTRLPAFKDALRWNEVYYGFRR500⑥具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子包含至少一种下列转羟乙醛酶L-核酮糖激酶(araB,EC3.1.1.15)中的一种ARAB2—STAS1(Q49V87);ARAB—BACHD(Q9KBQ3);ARAB—BACLD(Q65GC1);ARAB—BACSK(Q5WL06);ARAB_BACST(Q9S468);ARAB一BACSU(P94524);ARAB—CITK8(A8ALN9):ARAB_EC024(A7ZHF4);ARAB_EC057(P58541);ARAB_ECOHS(A7ZW13);ARAB—ECOK1(A1A7B0);RAB_ECOL5(Q0TLS7);ARAB-ECOL6(Q8FL88);ARAB_ECOLI(P08204);ARAB_Eb0UT(Q1RGD6):ARAB_ENT38(A4W6G7);ARAB—ERWCT(Q6D4W6);ARAB—GEOKA(Q5KYP6);ARAB_GEOTN(A4IPA2);ARAB_KLEP7(A6T4K1);ARAB—MYCSM(Q9LBQ3):ARAB—SALPA(Q5PDF1)ARAB_SALTI(P58542);ARAB—SALTY(P06188);ARAB一SERP5(A8GE05);ARAB—SH旧S(Q326h2);ARAB—SHIDS(Q32K30);ARAB一SHIF8(Q0T8D4);ARAB_SHFL(Q83MG5);ARAB:SHISS(Q3Z5U8);ARAB_STAA1(A7WYY2);ARAB—STAA3(Q2FJ88);ARAB_STM8(Q2G0M6);ARAB—STAAB(Q2YSA9);ARAB_STAAC(Q5HIC3);ARAB_STAAE(A6QEK4);ARAB_STAAM(P63549);ARAB一STAAN(P63550);ARAB_STAAR(Q6GJB6);ARAB_STAAS(Q6GBT5);ARAB—STAAW(Q8NXY1);ARAB—STAEQ(Q5HLQ6);ARAB—STAES(Q8CRC6);ARAB一STRAT(P52659);ARABJ/旧PA(Q87FK5);ARAB—YERPA(Q1C7J2);ARAB—YERPE(P58543);ARAB_YERPN(Q1CIX8);ARAB—YERPS(Q66AF7)&E.coliK12的araB为例,进行araB结构基因的克隆上游弓l物5'TGAATTCGAGGAAGAAATGGCGATTGCAATTGG3'上游弓l物5'TGGATCCGAGGAAGAAATGGCGATTGCAATTGG3'下游引物5'AAATTTAATTAAAGATCTCTTATAGAGTCGCAACGG3'将PCR扩增获得的长度为1.4kb的araB基因片段和载体pUC19-pro质粒用EcoRI和Pacl酶切后,克隆araB基因到pUC-pro的EcoR间Pacl酶切位点间;或克隆araB基因到pUC-pro的BamHI和Pacl酶切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChange⑧系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆araB编码的蛋白序列为MAIAIGLDFGSDSVRALAVDCATGEEIATSVEWYPRWQKGQFCDAPNNQF50RHHPRDYIESMEAALKTVLAE1jSVEQRAAWGIGVDSTGSTPAPIDADGN100VLALRPEFAENPNAMFVLWKDHTAVEEAEEITRLCHAPGNVDYSRYIGGI150YSSEWFWAKILHVTRQDSAVAQSAASWIELCDWVPALLSGTTRPQDIRRG200RCSAGHKSLWHESWGGLPPASFFDELDPILNRHLPSPLFTDTWTADIPVG250TLCPEWAQRLGIiPESWISGGAFDCHMGAVGAGAQPNALVKVIGTSTCDI200LIADKQSVGERAVKGICGQVDGSWPGFIGLEAGQSAFGDIYAWFGRVLG350WPLEQLAAQHPELKTQINASQKQIiljPAIjTEAWAKNPSIjDHIiPVVIjDWFNG400RRTPNANQRIjKGVITDIiNLATDAPIjIiFGGLIAATAFGARAIMECFTDQGI450AVNNVMAIjGGIARKNQVIMQACCDVLNRPLQIVASDQCCALGAAIFAAVA500AKVHADIPSAQQKMASAVEKTLQPCSEQAQRFEQLYRRYQQWAMSAEQHY550IjPTSAPAQAAQAVATIj⑦具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列转羟乙醛酶L-核酮糖-5-磷酸4-差向异构酶(araD,EC4.2.1.43)中的一种ARAD_BACHD(Q9KBQ4);ARAD一BACST(Q9S469);ARAD_BACSU(P94525);ARAD_ECOLI(P08203);ARAD_SALT^(P06190)以"kcoliK12的araD为例,i^行araD结构基因的克隆上游引物5'TGAA丌CGAGGAAGAAATGTTAGAGGATCTCAAAC3'上游引物5'TGGATCCGAGGAAGAAATGTTAGAGGATCTCAAAC3'下游引物5'AAATTTAATTAAAGATCTTTACTGCCCGTAATATGCC3'将PCR扩增获得的长度为o.7kb的araD基因片段和载体pUC19-pro质粒用EcoRI和Pacl酶切后,克隆araD基因到pUC-pro的EcoRI和Pacl酶切位点间;或克隆araD基因至iJpUC-pro的BamHI和Pacl酶切位点间。对于结构基因的内部有EcoRI、BamHI和Pacl酶切位点的结构基因,采用德国默克公司QuikChang^系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆araD编码的蛋白序列为MLEDLKRQVLEANLALPKHNLVTLTWOilVSAVDRER6VFVIKPS6VDYSV50MTADDMWVSIETGEWEGTKKPSSDTPTHRLLYQAFPSIG6IVHTHSRH100ATIWAQAGQSIPATGTTHAOYFYGTIPCTRKMTDAEINGEYEWETGNVIV150ETFEKQGIDAA^IP6VLVHSHGPFAW6KNAEDAVHHAIVLEEVAYMGIFC200RQLAPQLPD^QTLLDKHYLRKHGAKAYY6Q⑧具体实施时,如图5所示,构建利用戊糖生成乙醇的操纵子时,在不影响本发明结果的条件下,操纵子结构基因包含至少一种下列甘露糖利用酶mannose-6-phosphateisomerase[manA,EC5.3.1.8中的一种P07874,ALGA—PSEAE;P59785,ALGA—PSEFL;Q88ND5,ALGA—PSEPK;Q887Q9,ALGA—PSESM;Q75AB5,MANA—ASHGO;Q66WM4,MANA—ASPFU;P39841,MANA_BACSU;Q3SZI0,MANA—BOVIN;P34650,MANA_CAEEL;P34948,MANA_CANAL;Q76IQ2,MANA_CANGA:Q9HFU4,MANA—CRYNE;Q9GP38,MANA_ECHMU;P00946,MANA_ECOLI;P29951,MANA—EMENI;P34949,MANA—HUMAN;Q8HXX2,MANA_MACFA;Q924M7,MANA_MOUSE;Q870Y1,MANA—NEUCR;A5A6K3,MANA—PANTR;14Q8J093,MANA_PICAN;Q68FX1,MANA_RAT;P29954,MANA_RHIME;P25081,MANA_SALTY;043014,MANA_SCHPO;Q83KZ1,MANA_SHIFL;Q59935,MANA_STRMU:P29952,MANA—YEAST;Q9YE01,PGMI—AERPE;Q44407,PGMI_ANATH;066954,PGMI_AQUAE;Q8ZWV0,PGMI—PYRAE;Q4JCA7,PGMLSMLAC:Q97WE5,PGMI—SMLSO;Q96YC2,PGMI—SMLTO;Q9HIC2,PGMI—THEAC;Q978F3,PGMI—THEVO;P29956,XANB—XANCP。^lE.coliK12的manA为例,进行manA结构基因的克隆上游引物5'TGAATTCGAGGAAGAAATGCAAAMCTCATT3'上游引物5'TGGATCCGAGGAAGAAATGCAAAAACTCATT3'下游引物5'AAATTTAAnAAAGATCTTTACAGCTTGTTGTA3'将PCR扩增获得的长度为1.2kb的manA基因片段和载体pUC19-pro质粒用EcoRI和Pac嘴切后,克隆manA基因到pUC-pra的EcoRI和Pacl酶切位点间;或克隆manA基因到pUC-pro的BamHI和Pac嘴切位点间。对于结构基因的内部有EcoRI、BamHI和Pac瞎切位点的结构基因,采用德国默克公司QuikChange⑧系列定点突变试剂盒进行PCR定点诱变(Dpnl法),定点诱变去掉结构基因上所有的EcoRI、BamHI和Pacl酶切位点而不改变结构基因编码的原有氨基酸序列。经过DNA测序,克隆manA^码的蛋白序列为MQKLINSVQNYAWGSKTALTELYGMENPSSQEMAELWMGAHPKSSSRVQN50AAGDIVSLRDVIESDKSTLL6EAVAKRF6ELPFLFKVLCAAQPLSIQVHP100NKHNSEIGFAKEHAAGIFMDAAERNYKDFNHKPELVFALTPFIAMNAFRE150FSEIVSLLQFVAGAHPAIAHFLQQPDAERLSELFASLIiNMQGEEKSRALA200ILKSALDSQQGEFWQTIRLISEFYPEDSGLFSPLLLNWKLNPGEAMFLF250AETPHAYLQGVALEVMANSDNVLRAGLTPKYIDIPELVANVKFEAKPANQ200LLTQFVKQ6AELDFPIPVDDFAFSLHDLSDKETTISQQSAAILFCVE6DA350TLWKGSQQLQLKPGESAFIAANESFVTVKGHGRLARVYNKL具体实施方法三操纵子的构建1、单顺反子操纵子的构建(构建过程示意图,见图6)以启动子gap调控结构基因yfdz为例,见图6,构建可被运动发酵单胞菌识别的操纵子。pUOgap启动子经EcoRI和Pacl酶切后作为载体,与结构基因的EcoRI和Pacl片断进行连接,获得可被运动发酵单胞菌识别的操纵子gap-yfdz。其它启动子与结构基因均以相同的方式进行重组。用BamHI和Pac鹏切,可以将该操纵子完整的分离出来。2、双顺反子操纵子的构建(构建过程示意图,见图7)①1个启动子控制1个结构基因的双顺反子操纵子的构建BamHI和Bglll酶切后能产生相互匹配的粘性末端而可以相互连接.连接后BamHI和Bglll酶切位点均消失。在此,我们对含有一个结构基因的操纵子用Bglll和Pacl进行酶切后作为载体;对另一个操纵子用BamHI和Pacl进行酶切后作为插入片段,连接后获得含双结构基因的双顺反子操纵子。图7,为结构基因metB和结构基因yfdz双顺反子操纵子构建的过程。该双顺反子操纵子进入运动发酵单胞菌细胞内,可使其能够自行合成赖氨酸和甲硫氨酸,可以降低运动发酵单胞菌生长过程中对培养物的营养要求。②1个启动子控制2个结构基因的双顺反子操纵子的构建(构建过程示意图,见图8):对含有一个启动子和一个结构基因的操纵子用Bglll和Pacl进行酶切后作为载体;对无启动子序列的结构基因用BamHI和Pacl进行酶切,连接后获得一个启动子控制2个结构基因的双顺反子操纵子,各个结构基因有自己独立的SD序列。图8,为1个neo启动子控制2个结构基因me氾和yfdz的双顺反子操纵子的构建过程。该双顺反子进入运动发酵单胞菌细胞内,可使其能够自行合成赖氨酸和甲硫氨酸,可以降低运动发酵单胞菌生长过程中对培养物的营养要求。3、三顺反子操纵子的构建(构建过程示意图,见图9)将上述2顺反子Bglll和Pacl进行酶切后作为载体,将其它含有结构基因的操纵子用BamHI和Pacl进行酶切后回收,与上述载体连接后可以获得含3个结构基因的操纵子。如此循环操作,可以逐渐将一个个独立的结构基因串联到已有的操纵子上。图9,为用g邻启动子调控HSP、yfdz和me旧的操纵子的构建过程。该3顺反子操纵子重组运动发酵单胞菌,能增加其对逆境的耐受性,能够使其自行合成赖氨酸和甲硫氨酸而降低运动发酵单胞菌对培养物的营养要求。4、多种启动子控制多个结构基因的复合多顺反子操纵子的构建(构建过程示意图,见图10)将含有一个启动子和一个结构基因的操纵子用Bglll和Pacl进行酶切后作为载体;将无启动子15序列的单个结构基因用BamHI和Pacl进行酶切,连接后获得一个启动子控制2个结构基因的2顺反子操纵子。将2顺反子操纵子用Bglll和Pacl进行酶切后作为载体;将无启动子序列的单个结构基因用BamHI和Pacl进行酶切,连接后获得3顺反子操纵子。将3顺反子操纵子用Bglll和Pacl进行酶切后作为载体;将无启动子序列的单个结构基因用BamHI和Pacl进行酶切,连接后获得4顺反子操纵子。如此循环操作,可以逐渐将一个个独立的结构基因串联到已有的操纵子上,操纵子中的顺反子数也不断增加。图10图解了由1个neo启动子(或gap启动子)调控1个结构基因T7RNAPolymerase,由T7启动子调控3个结构基因me旧、yfdz、HSP的多顺反子操纵子的构建过程。这种由1个n的启动子、2个T7启动子、4个结构基因组成的多顺反子操纵子,进入运动发酵单胞菌细胞内使其能够增加其对逆境的耐受性,降低运动发酵单胞菌生长过程中对培养物的营养要求。具体实施方法四操纵子导入运动发酵单胞菌1、操纵子转座Tn5、Tn10和Mu是本领域所熟知的转座子,广泛用于诱变和将DNA随机插入到多种细菌的染色体中。本发明采用Tn5、Tn10和Mu转座系统,来完成操纵子导入运动发酵单胞菌过程。以Tn5为例,转座的具体过程包括以下步骤①转座载体的构建(构建过程示意图,见图11):如图11所示,两个反相的Tn5转座IS之间有一段DNA具有多克隆位点,多克隆位点便于今后的克隆。(IS:是转座子插入序列的縮写。)②构建含有目的基因片段的转座基因片段(构建过程示意图,见图12):将目的基因插入到转座载体中,目的基因位于BamHI、Pacl位点之间。Pacl、Notl切点间为一个抗性基因(例如CAT基因,CAT编码氯霉素抗性蛋白),抗性基因的表达,能方便我们筛选出目的基因转座阳性的细菌。通过酶切或PCR,可以获得目的基因转座子基因片段。③通过转座系统的介导,将目的基因随机插入到运动发酵单胞菌的染色体上在OD600-0.4-0.6时收集运动发酵单胞菌细胞,用冰预冷的无菌水清洗细胞一次随即用10%甘油处理,并浓缩至约1000倍;将细胞等分并保存于-80'C下,从而制备好了运动发酵单胞菌的感受态细胞。在试管中将Tn5转座酵、含有目的基因片段的转座DNA混合,37'C10分钟反应后、随即进行电穿孔(BioRad基因脉冲发生器,0.1cm间隙容器,1.6kV,200ohms,25pFD),电转化运动发酵单胞菌。在氯霉素平板上筛选出的阳性菌落,进行生物表型的分析或进行染色体的DNA测序。(构建过程示意图,见图13)④筛选目的基因转座阳性的运动发酵单胞菌对氯霉素抗性的菌种,选用耐高温、耐强酸、耐高盐等多项指标,进行进一步的筛选。2、操纵子质粒转化穿梭质粒的构建将多顺反子操纵子的DNA片段克隆至穿梭载体pZB188中(MetabolicEngineeringofaPentoseMetabolismPathwayinEthanologenicZymom.Zh油getal.Science13January1995:240-243),来构建权力要求l所述的多顺反子操纵子的穿梭质粒。运动发酵单胞菌感受态细胞的制备1)、接种单菌落于5mLLB培养基,37'C温和振摇培养5h或过夜。2)、将25mL培养物加入到盛有500mL,LB培养液的2L烧瓶中,37'C,振摇(200rpm)培养至OD600=0.5~O.6。3)、细菌在冰水浴冷却15分钟.然后转移到预冷的1升离心瓶中。于4'C,7000rpm离心20分钟.沉淀用5mL预冷的水溶解。4)、加入500mL冰冷的水,混匀,于4'C,5000rpm重复离心1次,立即将上清倒掉.用残余的液体重悬细胞。5)、a)新鲜制备的细菌:将悬浮液加入到预冷的50mL聚丙烯管中,4'C5000g离心10分钟。估计细胞沉淀的体积(约500卩L/500mL培养液),沉淀用等体积的冰冷水重悬(2x10"细胞/mL,),并按50-200pL分装于预冷的微量离心管中。b)冻存细菌,加入40mL冰冷的10X(v/v)甘油,混合,然后按照步骤5a离心.估计沉淀的体积.然后加入等体积的冰冷的10%甘油,重悬菌体。按50-20(HjL分装于预冷的微量离心管中。于干冰上冷冻并贮存于8(TC。质粒转化将电转化仪调到2.5kV、25uF.脉冲控制器调至IJ200-400D。7)、将1[jL质粒DNA(5pg0.5ug)加入到盛有新鲜制备的细菌或融化的冻存细菌的小管中,混匀。8)、将转化混合物转移到预冷的电转化池中,吸干池的外表面.然后放入样品槽中。9)、进行脉冲电转化,然后取出电转化池.马上加入1mLS0C培养液,并且用巴斯德吸管转移到无菌的培养管中,于37'C,中速振荡培养30-60分钟。10)、分小份涂布于含有抗生素的LB平板上。筛选目的转化阳性的运动发酵单胞菌,选用耐高温、耐强酸、耐高盐等多项指标,进行进一步的筛选。具体实施方法五热休克蛋白操纵子,增加运动发酵单胞菌对多种逆境的抗性,提高发酵温度。本发明利用热休克蛋白操纵子,增加运动发酵单胞菌对多种逆境的抗性,增加乙醇的;^酵温度。以Pyrococcusft;riosus的sH邻基因为例,将neo/g邻双启动子调控的pfu-sHSP引入产乙醇运动发酵单胞菌中,可以增加运动发酵单胞菌对多种逆境的抗性,增加乙醇的发酵温度。1材料与方法1.1热休克蛋白操纵子的构建(构建过程示意图,见图14)以Pyrococcusft;riosus染色体为模板,扩增热休克蛋白基因pfu-sHSP,与neo/gap双启动子串联构建质粒ngHSP,质粒转化运动发酵单胞菌;然后构建ngHSP转座载体后以转座方式整合入运动发酵单胞菌的基因组内获得重组体。以pUC18为模板,通过PCR扩增,获得其中的polylinker,并与neo/g邻启动子相连,构建ngLinker作为ngHSP的对照。1.2发酵试验细菌接种于含有葡萄糖的LB培养基中,分别对细菌生长速率、乙醇产量、耐渗透压、耐酸度以及高温高糖下的乙醇产量进行了发酵试验比较。1.3乙醇的检测乙醇含量的测定由气相色谱测试完成。2结果2.1不同条件下两细菌的发酵结果比较2丄lHsp对细菌生长速率的影响挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物),37'C、200r/m过夜培养作为种子液,按5n/。(V/V)接种到18。/c葡萄糖RM发酵培养基中,37'C、200r/m培养至对数生长期;调整转速60r/m继续培养。分别在6小时、12小时、24小时、36小时、72小时取样测量吸光度(OD6oo)及乙醇产量。结果在18%高浓度的葡萄糖发酵液中,仅含有热休克蛋白基因Hsp的细菌正常生长,而没有导入Hsp基因的细菌则收到高浓度葡萄糖的影响,无法正常生长。证明Hsp基因在细胞受到压力胁迫时,能起到保护作用。2丄2Hsp对细菌乙醇产量的影响细菌分别在含5%、18。/。葡萄糖的RM培养基中,37°C,80r/m,发酵72小时结果的比较。结果表明,在5%葡萄糖培养基中,含有Hsp基因的细菌乙醇产量,是不含有Hsp基因的细菌的1.20~5.00倍。在18%葡萄糖培养基中,含有Hsp基因的细菌乙醇产量,是不含有Hsp基因的细菌的1.305.00倍。证明Hsp基因能提高细胞发酵温度以及乙醇产量。2丄3hsp对细菌耐渗透压的影响细菌在37'CRM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物),发酵24小时,对乙醇的生产率进行比较。在0.4mol/LNaCl条件下,含有Hsp基因的细菌与不含有Hsp基因的细菌相比,乙醇生产率提高1.卜2.00倍;在0.17mol/LNaCl条件下,乙醇生产率提高1.卜2.00倍。因此证明热休克蛋白对细胞的耐渗透压有提高作用。2丄4Hsp对细菌耐酸度的影响细菌在RM培养基初始pH值4.5条件下(乙酸调节)37'C发酵,对乙醇生产率进行比较。当在初始pH4.5时含有热休克蛋白基因的细菌,其乙醇产量仍高于对照菌l.l2.00倍。在pH7.0条件下,含有热休克蛋白基因的细菌,其乙醇产量为是对照细菌的1.2~2.00倍。2丄5Hsp对细菌同时存在高温高糖条件下发酵乙醇的影响细菌分别在37'C和50'C,含18呢葡萄糖的RM培养基中发酵培养72小时。在37'C下含有H邻基因的细菌,乙醇产量是对照细菌的1.1~9.25倍;在50'C下,含有Hsp基因细菌乙醇产量为不含有Hsp基因细菌的1."H8,7倍。由此可知,含有H邻基因的细菌,即使在高温高浓度的培养条件下,乙醇产量仍明显高于不含有H邻基因的细菌。因此,发现Hsp基因能提高的细菌在耐热性。2.1.6经过200次传代,对基因重组细菌乙醇产量、耐酸度、耐热的影响挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,30'C、60rpm过夜培养作为种子液,按5义(V/V)接种到新鲜RM培养基中。如此反复200次后,按W。(V/V)接种到含有不同浓度乙酸培养基中(2g/L的KH2P04、20g/L葡萄糖、1%酵母提取物,0.1%~5%乙酸),接种到含有不同浓度NaC賠养基中(2g/L的KH2P04、20g/L葡萄糖、1%酵母提取物,1%~10%NaCI),分别在30-50'C培养,分别在6小时、12小时、24小时、36小时、72小时取样测量吸光度(OD咖)及乙醇产量。与不经过传代的对照菌相比,经过200次传代,乙醇的产量、耐酸度、耐热、耐渗透压的特点无明显变化。具体实施方法五yWz、metB操纵子,降低运动发酵单胞菌生长过程中对培养物的营养要求天然运动发酵单胞菌的正常生长需要补充赖氨酸和甲硫氨酸。运动发酵单胞菌不能自行合成赖氨酸是由于缺乏yfdz基因,不能自行合成甲硫氨酸是由于缺乏me旧基因。在此,以E.coli为例,从E.coli染色体中克隆出yfdz基因和me旧基因,构建其受neo或g邻启动子调控的双顺反子操纵子,导入运动发酵单胞菌中,用于降低运动发酵单胞菌的营养需求。1.材料与方法1.1me氾、yfdz操纵子的构建(构建过程示意图,见图15)以£.0)111<12染色体为模板,扩增获得基因me旧、yfdz,用neo/g邻双启动子串联结构基因yfdz、me旧构建ngMY质粒质粒转化运动发酵单胞菌;然后构建ngHSP转座载体后以转座方式整合入运动发酵单胞菌的基因组内获得重组体。以pUC18为模板,通过PCR扩增,获得其中的polylinker,并与neo/g邻启动子相连,构建质粒ngLinker作为ngMY的对照质粒。示意图见图151.2发酵试验将重组运动发酵单胞菌株接种于基础培养基中(2g/L的KH2P04,20g/L葡萄糖),往基础培养基中添加酵母提取物可以获得RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)。在基础培养基中添加不同浓度的酵母提取物,比较不同浓度酵母提取物对细菌生长速率、营养需求的差别。1.3乙醇的检测乙醇含量的测定由气相色谱测试完成。2结果2.1不同条件下细菌的发酵结果比较2丄1基因metB、yfdz对细菌生长速率和乙醇的产量的影响挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,30'C、60rpm过夜培养作为种子液。按1W(V/V)接种到含有不同浓度酵母提取物的培养基中(2g/L的KH2P04、20g/L葡萄糖、0.1%~1%酵母提取物),分别在6小时、12小时、24小时、36小时、72小时取样测量吸光度(OD6oo)及乙醇产量。与对照菌相比,基因metB、yfdz重组的运动发酵单胞菌在各种浓度酵母提取物,细菌生长速度明显加快,加快1.0510.0倍;乙醇的产量明显增加,增加1.15~20.0倍。2.1.2经过200次传代,对基因重组细菌的影响挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,30'C、60rpm过夜培养作为种子液,按5"54(V/V)接种到新鲜RM培养基中。如此反复200次后,按1M(V/V)接种到含有不同浓度酵母提取物的培养基中(2g/L的KH2P04、20g/L葡萄糖、0.1%-1%酵母提取物),分别在30-50'C培养,分别在6小时、12小时、24小时、36小时、72小时取样测量吸光度(OD咖)及乙醇产量。^不经过传代的对照菌相比,经过200次传代,乙醇的产量、营养需求的特点无明显变化。具体实施方法六营养需求降低、能利用五碳糖、能高温发酵的转座基因工程运动发酵单胞菌的构建(构建过程示意图,见图16)该实施例描述了构建使运动发酵单胞菌的营养需求降低、能利用五碳糖、能高温发酵的多顺反子操纵子的过程。该多顺反子操纵子通过转座方式(例如Tn5)整合到细菌染色体中,在缺乏抗生素选择的情况下,基因的稳定性仍然很高。在实施过程中,操纵子编码的结构基因序列,至少受一种可被运动发酵单胞菌识别的启动子序列调控,本实施例所涉及的启动子包括Neo、Gap。操纵子编码的结构基因序列,至少包含下列三类基因中的一类基因1)操纵子包含编码至少一种热休克蛋白的基因序列,用于增加运动发酵单胞菌对逆境的耐受性和乙醇的产量;2)操纵子包含编码至少一种微生物的赖氨酸合成代谢酶yfdz的基因序列,和包含编码至少一种甲硫氨酸合成代谢酶metB的基因序列,用于降低运动发酵单胞菌在生长过程中对培养物的营养要求;3)操纵子包含编码至'少一种戊糖利用和代谢酶的基因序列,这些基因包括分解木糖的2个基因、分解阿拉伯糖的3个基因、分解甘露糖的1个基因、戊糖磷酸化途径的2个基因。分解木糖的2个基因为xylA(xyloseisomerase,木糖异构酶,E.C.5.3.1.5)和XylB(xylulosekinase,木酮糖激酶,EC2.7.1.17);分解阿拉伯糖的3个基因为araA(L-阿拉伯糖异构酶,EC5.3.1.4)、araB(L-核酮糖激酶,EC3.1.1.15)、araD(L-核酮糖-5-磷酸斗差向异构酶,EC4.2.1.43);分解甘露糖的基因为manA(甘露糖各磷酸异构酶,EC5.3.1.8);戊糖磷酸化途径的2个基因为TAL(transaldolase,转二羟丙酮基酶,EC2.2.1.2)和TKT(transketolase,转羟乙醛酶,EC2.2.1.1)}。由4个基因xylA、XylB、TAL、TKT构成的操纵子,赋予运动发酵单胞菌利用木糖产生乙醇的能力;由5个基因araA、araB、araD、TAL、TKT构成的操纵子,赋予运动发酵单胞菌利用阿拉伯糖产生乙醇的能力;由3个基因manA、TAL、TKT构成的操纵子,赋予运动发酵单胞菌利用甘露糖产生乙醇的能力;由7个基因xylA、Xy旧、araA、araB、araD、TAL、TKT构成的操纵子,赋予运动发酵单胞菌同时利用木糖和阿拉伯糖产生乙醇的能力由8个基因xylA、Xy旧、araA、araB、araD、manA、TAL、TKT构成的操纵子,赋予运动发酵单胞菌同时利用木糖、阿拉伯糖和甘露糖产生乙醇的能力。1材料与方法1.1重组运动发酵单胞菌的构建步骤如下(示意图见图16。)①构建包含编码至少一种热休克蛋白基因序列的操纵子,用于增加运动发酵单胞菌对逆境的耐受性和乙醇的产量;如图所示,以PKracoccusfuriosus染色体为模板,扩增热休克蛋白基因pfu-sHSP,用neo/g邻双启动子串联构建ngHSP。②构建包含编码至少一种metB、yfdz操纵子的操纵子,用于降低运动发酵单胞菌生长过程中对培养物的营养要求。如图16所示,以E.coliK12染色体为模板,扩增获得基因me氾、yfdz,用gap启动子串联结构基因yfdz、me旧构建gMY。③构建包含戊糖利用和代谢多顺反子的操纵子,用于使运动发酵单胞菌能利用木糖、阿拉伯糖和甘露糖产生乙醇。如图16所示,以£.001112染色体为模板,扩增获得基因xylA、XylB、araA、araB、araD、manA、TAL、TKT。构建用gap调控结构基因xylA/XylB(xylAB,为木糖利用基因)、araA/araB/araD(araBAD,为阿拉伯糖利用基因)、manA(为甘露糖利用基因),用g邻调控结构基因TAL、TKT(戊糖磷酸化基因)的多顺反子操纵子。由8个基因和2个启动子构成的多顺反子操纵子,赋予运动发酵单胞菌同时利用木糖、阿拉伯糖和甘露糖产生乙醇的能力。④将上述①②③获得的多顺反子操纵子串联后,插入到转座载体(例如Tn5)的一对反向插入序列间。反向插入序列间还含有一个抗性基因(例如CAT基因,CAT编码氯霉素抗性蛋白),抗性基因便于我们将目的基因转座阳性的细菌能筛选出来。(构建过程示意图,见图17)⑤转座系统介导目的基因向运动发酵单胞菌染色体的随机插入在0D60O0.4H).6时收集细胞,用冰预冷的无菌水清洗细胞一次随即用10X甘油处理,并浓縮至约1000倍。将细胞等分并保存于"80'C下,从而制备电感受态运动发酵单胞菌细胞。⑥试管中将Tn5转座酶、含有目的基因的转座基因DNA混合,37'C10分钟反应后,随即进行电穿孔(BioRad基因脉冲发生器,0.1cm间隙容器,1.6kV,200ohms,25pFD),电转化运动发酵单胞菌。在氯霉素平板上筛选出的阳性菌落,进行生物表型的分析或进行染色体的DNA测序。(构建过程示意图,见图13)⑦筛选目的基因转座阳性的运动发酵单胞菌对氯霉素抗性阳性的菌种,选用耐高温、耐强酸、耐髙盐等多项指标,进行进一步的筛选。1.2发酵试验将重组运动发酵单胞菌株接种于基础培养基中(2g/L的KH2P04,20g/L葡萄糖),往基础培养基中添加酵母提取物可以获得RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)。在基础培养基中添加酵母提取物,比较不同浓度酵母提取物对细菌生长速率、乙醇产量、耐渗透压、耐酸度的差别。1.3乙醇的检测乙醇含量的测定由气相色谱测试完成。2.结果2.1不同条件下细菌的发酵结果比较2.1.1重组运动发酵单胞菌的生长速率和乙醇的产量变化挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,30'C、60rpm过夜培养作为种子液,按iy。(WV)接种到含有不同浓度(0.1%~1%)酵母提取物的培养基中,分别在6小时、12小时、24小时、36小时、72小时取样测量吸光度(OD600)及乙醇产量。与对照菌(非重组运动发酵单胞菌)相比,重组运动发酵单胞菌在各种低浓度酵母提取物培养液中,细菌生长速度明显加快,加快1.05~10.0倍;乙醇的产量明显增加,增加1.15~20.0倍。2.1.2基因重组对细菌耐渗透压的影响挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,3(TC、60rpm过夜培养作为种子液,按5y。(V/V)接种到含有含2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物和不同浓度NaCI的培养基中,对乙醇的生产率进行比较。在0.4MNaCI条件下,重组运动发酵单胞菌与对照菌相比,乙醇生产率提高1.1~20.00倍;在0.2MNaCI条件下,乙醇生产率提高1.1-15.00倍。2.1.3基因重组对细菌耐酸度的影响挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,30'C、60rpm过夜培养作为种子液,按5。/。(V/V)接种到不同PH值(用乙酸调节)的RM培养基培养基中,对乙醇的生产率进行比较。当在初始pH4.5(用乙酸调节)时,重组运动发酵单胞菌乙醇产量高于对照菌1.1~10.00倍。在pH7.0条件下,其乙醇产量为是对照细菌的1.2-10.00倍。2.1.4经过200次传代,基因重组细菌乙醇产量、耐酸度、耐热的变化挑取细菌接种于RM培养基(2g/L的KH2P04、20g/L葡萄糖、10g/L酵母提取物)中,30'C、60rpm过夜培养作为种子液,按5n/4(V/V)接种到新鲜RM培养基中。如此反复200次后,按1呢(V/V)接种到含有不同浓度酵母提取物的培养基中(2g/L的KH2P04、20g/L葡萄糖、0.1%-1%酵母提取物),接种到含有不同浓度乙酸培养基中(2g/L的KH2P04、20g/L葡萄糖、1%酵母提取物,0.1%-10%乙酸),接种到含有不同浓度NaC瞎养基中(2g/L的KH2P04、20g/L葡萄糖、1%酵母提取物,1%-15%NaCI),分别在30-50'C培养,分别在6小时、12小时、24小时、36小时、72小时取样测量吸光度(ODeoo)及乙与不经过传代的对照菌相比,经过200次传代,乙醇的产量、耐酸度、耐热、耐渗透压、利用戊糖生成乙醇的特点无明显变化。权利要求1.一种通过导入操纵子来修饰运动发酵单胞菌的基因的方法。该操纵子可以在运动发酵单胞菌中表达,使运动发酵单胞菌对逆境的耐受性增加、能在较高的温度下发酵生成乙醇、对培养物的营养要求降低、同时还能利用戊糖生成乙醇、经过200次传代仍然稳定保留上述遗传特点。2.根据权利要求1所述的操纵子,含有编码至少一种热休克蛋白结构基因序列,用于增加运动发酵单胞菌对逆境的耐受性和增加乙醇发酵温度;3.根据权利要求1所述的操纵子,含有编码至少一种赖氨酸合成代谢酶yf也结构基因的序列,使运动发酵单胞菌能够自行合成赖氨酸,用于降低运动发酵单胞菌生长过程对培养物的营养要求;含有编码至少一种甲硫氨酸合成代谢酶me旧结构基因的序列,使运动发酵单胞菌能够自行合成甲硫氨酸,用于降低运动发酵单胞菌生长过程中对培养物的营养要求。4.根据权利要求1所述的操纵子,包括编码至少一种可以在运动发酵单胞菌中表达的下列结构基因序列编码HSP的结构基因序列、编码yftfe的结构基因序列、编码me滔的结构基因序列。其中由3个结构基因HSP、yftfe、me旧构成的多顺反子操纵子,能同时使运动发酵单胞菌对逆境的耐受性增加,对培养物的营养要求降低,能在较髙的温度下发酵生成乙醇。5.根据权利要求1所述的操纵子,包含编码使运动发酵单胞菌利用至少一种戊糖产生乙醇的结构基因序列,并且包括编码至少一种可以在运动发酵单胞菌中表达的下列结构基因序列编码HSP的结构基因序列,编码yftfe的结构基因序列、编码me旧的结构基因序列。6.根据权利要求5所述运动发酵单胞菌利用戊糖(木糖、阿拉伯糖、甘露糖)生成乙醇的操纵子,有关的结构基因有8个。有关利用木糖的2个基因,含有编码至少一种(xy/ose/'somerase,木糖异构酶,E.C.5.3.1.5)和含有编码至少一种xy旧(xy/u/oseWnase,木酮糖激酶,EC2.7.1.17);有关利用阿拉伯糖的3个基因,含有编码至少一种ara/A(L-阿拉伯糖异构酶,EC5.3.1.4)、含有编码至少一禾中araS(L-核酮糖激酶,EC3.1.1.15)、含有编码至少一种ara。(L-核酮糖-5-磷酸4-差向异构酶,EC4.2.1.43);有关利用甘露糖的基因,含有编码至少一种man>A(甘露糖"6-磷酸异构酶,EC5.3.1.8);有关戊糖磷酸化的2个基因,含有编码至少一种7>W_(fransa/cto/ase,转二羟丙酮基酶,EC2.2.1.2)和含有编码至少一种7XT(的ns紐to/ase,转羟乙醛酶,EC2.2.1.1)}。7.根据权利要求5所述的利用戊糖生成乙醇的操纵子,可以在运动发酵单胞菌中表达,包括编码至少一种下列操纵子第一种操纵子是包含编码4个结构基因xyM、xy旧、"ML、7XT的操纵子,使运动发酵单胞菌能够利用木糖产生乙醇;第二种操纵子是包含编码5个结构基因araA、araS、araD、TiAL、7XT的操纵子,使运动发酵单胞菌能够利用阿拉伯糖产生乙醇。第三种操纵子是包含编码3个结构基因man/A、"ML、TK7"的操纵子,使运动发酵单胞菌能够利用甘露糖产生乙醇。第四种操纵子是包含编码7个结构基因xyA4、xy/S、a/a力、a/aS、araD、7XT的操纵子,使运动发酵单胞菌能够同时利用木糖和阿拉伯糖产生乙醇。第五种操纵子是包含编码8个结构基因xyW、xy旧、ara/Lara8、araD、man/A、7V\L、7X7"的操纵子,使运动发酵单胞菌能够同时利用木糖、阿拉伯糖和甘露糖产生乙醇。8.根据权利要求1所述,操纵子包含编码至少一种启动子的序列,序列可被运动发酵单胞菌识别、调控至少一种结构基因的表达。启动子包括tec、/ac、77、7"3、7"5、邻6、pL、pR、"eM、araS4/、frc、frp、运动发酵单胞菌的w的启动子、运动发酵单胞菌的G邻启动子。9.根据权利要求1所述的方法,操纵子通过质粒转化方式进入运动发酵单胞菌获得基因工程菌,操纵子的众多基因可以以串联的方式同时存在于一个质粒上,经转化一次性进入运动发酵单胞菌;或众多基因分布于多个质粒上,经多次转化进入运动发酵单胞菌。10.根据权利要求1所述的方法,操纵子通过转座方式整合入运动发酵单胞菌的基因组内获得基因工程整合体;操纵子的众多基因可以以串联的方式同时存在于一个转座载体上,操纵子可以一次全部转座整合入运动发酵单胞菌的基因组内;或众多基因分布于多个转座载体上,经多次转座整合入运动发酵单胞菌的基因组内。全文摘要一种构建基因重组运动发酵单胞菌,应用于乙醇发酵的方法。该微生物是通过导入可以在运动发酵单胞菌中表达的操纵子而获得的。操纵子主要由编码启动子的序列和编码结构基因的序列组成。操纵子包含编码至少一种启动子的序列,这个启动子的序列可被运动发酵单胞菌识别、调控至少一种以上结构基因的表达。操纵子包含编码至少一种热休克蛋白HSP的序列,用于增加运动发酵单胞菌对逆境的耐受性和提高乙醇发酵温度;操纵子包含编码至少一种赖氨酸合成代谢酶yfdz的序列,使运动发酵单胞菌能够自行合成赖氨酸,包含编码至少一种甲硫氨酸合成代谢酶metB的序列,使运动发酵单胞菌能够自行合成甲硫氨酸,用于降低运动发酵单胞菌生长对培养物的营养要求;操纵子同时还包含编码使运动发酵单胞菌能利用至少一种戊糖产生乙醇的结构基因序列,使运动发酵单胞菌能利用戊糖生成乙醇。操纵子通过质粒转化方式进入运动发酵单胞菌,或通过转座方式整合入运动发酵单胞菌的基因组内获得转座重组体。该种基因工程运动发酵单胞菌对逆境的耐受性增加、能在较高的温度下发酵生成乙醇、对培养物的营养要求显著降低、能够利用戊糖生成乙醇,经过200次传代仍然稳定保留上述特点。文档编号C12P7/06GK101565706SQ20081004745公开日2009年10月28日申请日期2008年4月25日优先权日2008年4月25日发明者汪浩勇申请人:武汉市星站生物技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1