用于治疗空心解剖结构的装置和方法

文档序号:1092954阅读:208来源:国知局
专利名称:用于治疗空心解剖结构的装置和方法
技术领域
本发明涉及用于人体的热消融治疗中的技术,更具体地涉及诸如曲张静脉这样的空心解剖结构的治疗。
背景技术
所提出的用于静脉曲张的多数治疗可以被分为以下类别schlerosing、机械操纵、静脉部分的切开和去除以及结扎。本领域中存在许多这些例子,每个都具有相关缺陷。
公布的欧洲专利申请EP-A-1,103,228公开了一种用于治疗静脉缺损的技术,其中连接到高频能量的探头被引入到静脉中。
热消融疗法可以被定义为这样的技术,所述技术有目的地减小身体组织温度(体温过高)或有目的地增加身体组织温度(体温过低)以达到细胞毒效应所需的温度,或其它特殊治疗所需的治疗温度。
本发明涉及高温热消融疗法。这些的例子包括RF、激光、定焦(或超高速)超声和微波治疗。
微波热消融所依赖的事实在于,由于水分子和微波辐射之间的相互作用,微波形成电磁波谱的导致加热的一部分,热量被用作细胞毒性机制。治疗包括将施放器引入到肿瘤中。微波从施放器被释放,在该施放器的尖端周围形成场。水分子的直接加热尤其在围绕施放器产生的辐射微波场中发生而不是通过从探头自身传导发生。所以加热不依赖于通过组织传导并且快速地达到细胞毒性温度水平。
WO99/56642公开了一种用于以微波频率施加电磁辐射的微波施放器,其包括用于微波信号输入的同轴输入;用于接收和传播微波信号输入的波导;介电材料,其定位在波导内并且伸出波导以形成用于放射微波能量的天线,其中同轴输入具有至带电介质的波导的直接在线转变(direct in-line transition)。该直接在线转变可以由同轴输入的中心导线实现,所述中心导线轴向居中地延伸到波导中从而在波导中激发微波。侧向导线径向地从中心导线延伸以帮助微波发射到波导中。该施放器可以包括直接连接到同轴输入的温度传感器。辐射施放器的另一设计在WO00/49957中公开。
WO9956643公开了一种将包括细长金属元件的传感器定位在微波波导上的方法,该方法包括选择管状波导;确定微波传输期间产生的磁场的大致方向;以及基本平行于所述磁场方向定位所述细长金属元件。传感器的接线在波导的纵向延伸并且连接到波导的外壁和为波导供电的同轴电缆的中心导线上。
仍然需要用于曲张静脉治疗的技术,所述技术是有效的、微创的,并且避免不必要的手术,而且所述技术是安全的并且容易由医学专业人员控制。

发明内容
本发明提供了一种治疗诸如曲张静脉这样的空心解剖结构的方法,该方法包括提供施放器,该施放器包括细长构件并且包括发射器,所述发射器联接到微波辐射源并且适于发射所述辐射;将所述细长构件引入到空心解剖结构中,所述空心解剖结构包括目标组织的一部分;以受控速度使所述细长构件横穿通过目标组织的所述部分,同时所述发射器将预定强度的微波辐射发射到所述部分内。
适宜地,所述空心解剖结构是静脉,并且目标组织的所述部分包括曲张组织的一部分。
优选地,以预定速度,例如以预定恒定速度执行所述横穿。所述预定恒定速度可以大约为2.5mm/秒。
优选地,所述施放器安装在挠性细长测量计的末端,所述细长测量计沿其长度具有一系列规则地间隔的标记;并且当发出一系列等时间间隔的可听音时执行所述横穿;并且用户以一定的速度执行所述横穿,使得所述标记的每一个与各个所述可听音合拍地显现给用户。
作为另一选择,所述标记被不规则地间隔而不是被规则地间隔。作为另一选择或作为补充,所述可听音被不等时地间隔而非被等时地间隔。
在一个实施例中,通过由用户牵拉所述细长测量计从空心解剖结构回缩所述施放器而执行所述横穿步骤,由此暴露所述标记。
在另一实施例中,所述方法可以进一步包括提供运动传感器,例如光学传感器,其被定位成感测所述测量计的运动;以及提供控制器,例如计算机,其联接到所述运动传感器上,其中通过牵拉所述细长测量计从空心解剖结构回缩所述施放器而执行所述横穿步骤,其中在所述牵拉步骤期间所述控制器向用户发出可听和/或可视指示,其中所述可听和/或可视指示表示所述施放器的回缩速度太慢,或太快,或正确。优选地,所述方法进一步包括提供机械致动器,该机械致动器联接到所述控制器上并且适于向所述细长测量计施予平移运动,其中在所述控制器和/或用户的控制下,通过驱动所述机械致动器执行所述牵拉,以施予所述平移运动和由此回缩所述细长构件。所述方法可以进一步包括提供鼓轮;其中牵拉细长测量计的所述步骤包括将所述细长测量计卷绕到所述鼓轮上。
优选地,在所述横穿步骤之前执行的步骤是沿静脉朝着第一方向运动所述细长构件直到所述发射器已超过目标组织的所述部分,并且通过用户朝着与所述第一方向相反的第二方向回缩所述细长构件而执行所述横穿步骤。
所述标记可以包括交替的亮色和暗色部分。优选地,每个所述亮色和暗色部分大约为1cm长。
在一个实施例中,所述细长构件经同轴电缆联接到辐射源上,并且所述标记设在同轴电缆的外表面上。
优选地,所述微波辐射的预定强度大约为1.1-1.4W每mm所述细长构件的周长,由此所述辐射的发射在所述横穿步骤期间实现了目标组织的所述部分的闭合(occlusion)。
优选地,温度传感器设在所述细长构件上,并且所述方法进一步包括监控由所述传感器提供的并且指示所述横穿步骤期间曲张组织的所述部分的温度的温度。优选地,所述方法进一步包括,如果所述传感器感测到的温度等于或超过预定水平,则停止所述微波辐射的发射。
在另一实施例中,所述方法进一步包括提供运动速度传感器,该运动速度传感器用于检测所述施放器的运动速度;提供控制单元,该控制单元联接到所述传感器以用于接收由此输出的运动速度信号;操作所述控制单元以计算所述施放器的运动速度,和控制提供给所述施放器的辐射量和/或依赖于所述计算出的运动速度的所述施放器的运动速度。优选地,计算施放器的运动速度的步骤包括轮询(polling)所述传感器,连续轮询之间的轮询间隔时间是一致的持续时间;确定差值,该差值是由连续运动速度信号定义的计数之间的差;使用被确定的差值和转换因数R,使用R和所述差值计算施放器的运动速度。优选地,计算运动速度v的步骤包括使用v=(ci-ci-1)R其中(ci-ci-1)是所述差值。
优选地,所述施放器安装在细长电缆的末端上,并且通过计算所述电缆的运动速度计算所述施放器的运动速度。优选地,连续轮询之间的轮询间隔时间为T,并且转换因数被确定为R=1/KT,其中K是用于电缆的预定计数转换常数。
所述方法可以进一步包括提供显示装置;以及在所述控制单元的控制下显示计算出的施放器的运动速度。优选地,所述显示装置适于在所述控制单元的控制下显示计算出的施放器的运动速度的图形表示。优选地,所述图形表示包括速度计式图形表示。
优选地,所述运动速度传感器包括外壳,在使用时电缆相对于该外壳运动;以及布置在所述外壳内的检测单元,该检测单元包括适于产生由电缆的运动导致的检测器信号的转换装置,和适于接收所述检测器信号和输出表示电缆的运动速度的运动信号的处理电路。优选地,所述外壳包括允许电缆相对于所述外壳运动的至少一个开孔。优选地,所述外壳具有一种配置,由此在使用时,电缆在所述外壳之中或附近的运动基本上是线性的。适宜地,所述至少一个开孔包括在使用时电缆通过其进入所述外壳的入孔,和在使用时电缆通过其离开所述外壳的出孔,在使用时,电缆优选地沿所述入孔和所述出孔之间的基本上是线性的路径运动。
在一个实施例中,所述转换装置包括至少一个辐射检测器,所述辐射检测器适于接收来自电缆的辐射并且根据所述接收的辐射产生检测器信号。优选地,所述辐射是光辐射,所述检测单元进一步包括用于发射所述光辐射的光发射器,并且所述辐射检测器被布置成接收从电缆反射后的光辐射。优选地,所述光发射器是LED,其中优选地所述光发射器和辐射检测器构成一体的装置。优选地,电缆具有以重复形式沿其长度布置在其表面上的多个标记或反射元件。作为另一选择,所述辐射检测器包括低放射性的检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个放射性元件。
在另一实施例中,所述转换装置包括磁性检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个磁性元件,在使用时当电缆运动经过所述磁性检测器时,所述磁性检测器适于产生所述检测器信号。
在另一实施例中,所述转换装置包括一个或多个可旋转构件,例如一个或多个轮或球,其适于在使用时接触电缆并由此被旋转;以及机电装置,其适于产生依赖于所述一个或多个可旋转构件的旋转速度的所述检测器信号。
根据本发明的另一方面,提供了一种用于向诸如曲张静脉这样的空心解剖结构施加辐射的施放器,该施放器包括包括发射器的细长构件,所述发射器联接到微波辐射源并且适于发射所述辐射;其中所述发射器包括由介电材料制成并且具有细长轴的辐射发射部分,以及在所述辐射发射部分内并且至少部分地沿其延伸的细长导线,所述辐射发射部分的形状和尺寸被确定成使得在邻近其的有限空间场中以预定强度发射所述辐射,由此有效地实现所述场内空心解剖结构的组织的闭合。
优选地,所述辐射发射部分包括大体圆锥形的变细部分,该变细部分由此形成用于插入到空心解剖结构中的尖端。
在一个实施例中,所述细长导线沿所述辐射发射部分的全长延伸,由此在使用时所述场被布置成基本围绕所述尖端。
在另一实施例中,所述细长导线沿所述辐射发射部分的部分长度延伸,由此在使用时所述场被布置成基本围绕所述辐射发射部分的中部并且与所述尖端间隔开。
优选地,温度传感器设在所述细长构件上,所述温度传感器优选地包括热电偶或纤维光学传感器。
优选地所述细长构件经同轴电缆联接到辐射源上,与所述辐射发射部分邻接的所述电缆的一部分由导电套圈环绕并且连接到那里;并且所述温度传感器布置在所述套圈上。
在一个实施例中,一系列规则间隔的标记沿其长度设在同轴电缆的外表面上。
在另一实施例中,所述标记被不规则地间隔而非被规则地间隔。
优选地,所述标记包括交替的亮色和暗色部分。优选地,每个所述亮色和暗色部分大约为1cm长。
优选地,辐射发射部分包括与所述变细部分成一整体的大致圆柱形部分。
优选地,所述细长导线包括轴向地伸出同轴电缆的外护套的所述电缆的内导线的一部分。
根据本发明的另一方面,提供了一种用于治疗空心解剖结构的系统,该系统包括根据后附权利要求39-51之一的施放器;运动速度传感器,其在使用时被布置成用于接收所述施放器的运动速度;控制单元,其联接到所述传感器上以用于接收由此输出的运动速度信号;其中所述控制单元被配置成使用所述运动速度信号计算所述施放器的运动速度和控制提供给所述施放器的辐射量和/或依赖于所述计算出的运动速度的所述施放器的运动速度。
优选地,为了计算所述施放器的运动速度,所述控制单元被配置成轮询所述传感器,连续轮询之间的轮询间隔时间是一致的持续时间;确定差值,该差值是连续运动速度信号定义的计数之间的差;使用被确定的差值和转换因数R,使用R和所述差值计算施放器的运动速度。
优选地,使用下式计算运动速度vv=(ci-ci-1)R其中(ci-ci-1)是所述差值。
优选地,所述施放器安装在细长电缆的末端上,并且通过计算所述电缆的运动速度计算所述施放器的运动速度。优选地,连续轮询之间的轮询间隔时间为T,并且转换因数被确定为R=1/KT,其中K是用于电缆的预定计数转换常数。
优选地,所述系统进一步包括显示装置,所述显示装置适于在所述控制单元的控制下显示计算出的施放器的运动速度。优选地,所述显示装置适于在所述控制单元的控制下显示计算出的施放器的运动速度的图形表示。优选地,所述图形表示包括速度计式图形表示。
优选地,所述运动速度传感器包括外壳,在使用时电缆相对于该外壳运动;布置在所述外壳内的检测单元,该检测单元包括适于产生由物品的运动导致的检测器信号的转换装置,和适于接收所述检测器信号和输出表示物品的运动速度的运动信号的处理电路。优选地,所述外壳包括允许电缆相对于所述外壳运动的至少一个开孔。优选地,所述外壳具有一种配置,由此在使用时,电缆在所述外壳之中或附近的运动基本上是线性的。
优选地,所述至少一个开孔包括在使用时电缆通过其进入所述外壳的入孔,和在使用时电缆通过其离开所述外壳的出孔,在使用时,电缆优选地沿所述入孔和所述出孔之间的基本线性的路径运动。
在一个实施例中,所述转换装置包括至少一个辐射检测器,所述辐射检测器适于接收来自电缆的辐射并且产生依赖于所述接收的辐射的检测器信号。优选地,所述辐射是光辐射,所述检测单元进一步包括用于发射所述光辐射的光发射器,并且所述辐射检测器被布置成接收从电缆反射后的光辐射。优选地,所述光发射器是LED,其中优选地所述光发射器和辐射检测器构成一体的装置。
优选地,电缆具有以重复形式沿其长度布置在其表面上的多个标记或反射元件。
在一个实施例中,所述辐射检测器包括低放射性的检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个放射性元件。
在另一实施例中,所述转换装置包括磁性检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个磁性元件,在使用时当电缆运动经过所述磁性检测器时,所述磁性检测器适于产生所述检测器信号。
在另一实施例中,所述转换装置包括一个或多个可旋转构件,例如一个或多个轮或球,其适于在使用时接触电缆并由此被旋转;以及机电装置,其适于产生依赖于所述一个或多个可旋转构件的旋转速度的所述检测器信号。
本发明的优点在于所述细长构件或探头的介电尖端(辐射发射部分)被设计成发射微波;并且当施加微波能量时探头以一定的速度被回缩,所述速度与被选择的功率输出一道提供了热穿透到外围组织中的确定的、基本可预测的深度。
进一步的优点在于,由于微波直接加热外围组织,因此不需要等待热量穿透静脉壁。
另外的优点在于,在功率、回缩速度和频率选择的组合正确的情况下可能有各种各样的治疗速度。另外,静脉缺损的治疗可以具有强度分布,由此辐射强度沿缺损的长度适宜地变化。


现在将通过例子参考附图描述本发明的实施例,其中图1(现有技术)是可以根据本发明的一个方面被使用的辐射传送系统的大体示意图;图2显示了用于可以根据本发明的一个方法使用的辐射施放器或探头的第一实施例的(a)截面图、(b)分解图和(c)产生的辐射场分布图;图3显示了探头的第二实施例的截面图;图4显示了用于探头的第三实施例的(a)截面图、(b)分解图和(c)产生的辐射场分布图;图5显示了探头的第四实施例的截面图;图6显示了用于探头的第五实施例的(a)截面图和(b)产生的辐射场分布图;图7示出了用于在本发明的一个方面的实施中使用的电缆的一个实施例的(a)全视图、(b)近视图和(c)使用时的示意图;图8(a)-8(d)根据本发明的一个方面示意性地描述了治疗曲张静脉时探头的运动;图9示出了探头的一个实施例,其指示出温度传感器的位置;图10示出了用户控制计算机上软件的运行来实施本发明的流程图;图11示出了在本发明的替代实施例中用于操纵电缆和探头的回缩的一个或多个布置;图12是图1的运动速度传感器的(a)近视透视图和(b)分解透视图;图13示意性地示出了根据本发明的一个方面的系统,该系统用于使用图11和12的传感器执行电缆和探头的受控运动;图14更具体地示意性地示出了运动速度传感器和图13中的系统的控制模块之间的通信;图15示出了由图13的系统显示给用户的用户界面视图的例子;以及图16显示了使用两个电缆的情况下运动速度传感器的替代实施例。
具体实施例方式
本领域的技术人员将会理解,根据本发明用于产生、输送和控制辐射施加到人体部分上的电子系统以及施放器构造可以如现有技术所描述的那样。尤其可以利用如共同拥有的已公开国际专利申请WO95/04385,WO99/56642和WO00/49957中所述的系统(除了在下文描述的修改),为了简洁以下省略了这些系统的细节。
参考图1,这是可以用于实施本发明的辐射输送系统的大体示意图。探头1带有优选在1-12GHz范围的微波谱中的微波频率输入,该微波频率输入来自微波频率发射器源和放大器14。放大信号经波导线15和同轴馈线12传给探头1。尽管短截线(未示出)的提供可以允许探头调谐到特定负荷,由调谐网络16提供微调这控制加载探头中功率匹配的微调。微调网络可以有利地用于本发明中以保证在整个治疗期间最少量的功率被反射。从细长构件的放射部分反射任意的水平例如小于10%的功率被认为是可接受的。
然而,在本发明的优选实施例中,探头1的电介质的尺寸和性质以及中心导线的长度的谨慎选择意味着探头1被优化以配合待治疗的组织,从而不需要调谐网络16。辐射源/放大器14的功率水平由波导线15上的功率传感器监控。提供测温单元以在探头/组织界面获取温度传感器读数。各种信号被比对、调节并且馈送到PC/用户界面19中,该PC/用户界面可以与用户的传统PC图形监控器20界面连接。这样,用户可以改变辐射源14的频率,设置所需的功率水平,和改变调谐网络16以在负荷中获得最佳匹配。同样在治疗期间,可以在监控器20上显示温度数据的实时图形。
随后将在该公开文本中具体论述治疗诸如曲张静脉这样的空心解剖结构的方法。首先,可以在这样的治疗中被利用的各种辐射施放器或探头(之后称为“探头”)的配置将被描述。
图2显示了可以根据本发明的一个方面使用的探头的第一实施例的视图。在图2(a)中显示了通常用1标识的探头,该探头包括从先前描述的辐射源提供微波辐射的同轴电缆204的末端部分202、围绕末端部分202的套圈206、介电构件208、在介电构件208内并且由同轴电缆204的内导线的突出部分形成的导线210和在该实施例中的尖端构件212。任选地,探头1可以包括例如由氟化乙丙烯(FEP)制造的外保护套214。在使用时,经电缆204提供的微波辐射由介电构件208发射到相邻组织中介电构件因而形成单极放射尖端,该单极放射尖端被设计成以选择频率进行放射。
已构造了3.4mm和4.8mm直径的探头;然而,根据空心解剖结构的尺寸,其它直径也是可能的,但是将通常小于1.2cm。介电构件208的直径和长度取决于选择的介电性质、中心导线210的长度、工作频率和探头1的所需直径。精确尺寸被选择成当探头在组织中时使反射最小化。
在探头1的尖端由介电构件放射的功率通产大约为1.3瓦特每mm周长。对于前述图中提到的尺寸,周长等于π(f+2e)。更大的施放器可能需要稍大的功率来放射相同深度的热穿透;例如,3.4mm直径的探头可以放射15.1W的总输出(1.4W/mm周长),4.8mm直径的探头可以放射20W的总输出(1.3W/mm周长)。更大的施放器放射更大的总功率但是稍小的每mm周长的功率,以获得相同热穿透深度。
采用连接到前述控制系统的热电偶形式的温度传感器(未示出)优选地设在探头上这适宜地布置在套圈206上并且例如通过塑料带与之绝缘。(作为另一选择,温度传感器可以是纤维光学装置。在该情况下,由于纤维光学器件不直接由微波场加热,因此它也可以放置在介电构件上。)在该实施例中,介电构件208包括大体圆柱形的介电部分215和大体圆锥形的介电锥部216。
尺寸可以定义如下。
a=同轴电缆204的厚度(包括护套)b=同轴电缆204的厚度(不包括护套)c=套圈206的全长d=介电构件208的未变细的、圆柱形部分215的长度e=护套214的厚度f=套圈206和介电构件208的直径(不包括护套214)g=金属尖端构件212的直径h=金属尖端构件212的长度i=介电构件208的全长j=套圈206的非锥形部分的长度k=伸出同轴电缆204的绝缘部分的中心导线210的长度。
图2(b)是探头1的分解透视图,该图显示了其主要组成部分。
同轴电缆204的外导线(未示出)可以电连接到套圈206上,该套圈由诸如铝这样的导电材料制造。电缆204可以以各种频率将微波辐射馈送到探头1,在该实施例中所述频率优选为9.2GHz。介电构件208可以由已知的介电材料制造,例如Hik 500f,其可从Emerson & Cummings获得,或者由硬陶瓷材料制造,例如氧化锆(TECHNOX),其可以具有介电常数K=25。然而,在该实施例中所述材料是介电常数K=3.4的介电材料(聚芳香基醚醚酮(PEEKTM))。尖端构件212由铜制造并且例如通过焊接或通过用导电粘合剂粘结而与导线210的末端固定地相连或与之保持良好的电接触。
在该实施例中探头1的尺寸(mm)如下。

图2(c)是使用时由图2(a)的探头产生的辐射场分布图。更亮的区域表示更大的强度可以看出在该实施例中最大强度(白色区域)位于探头1的较尖的尖端的附近。该实施例意欲实现空心解剖结构的瞬间闭合。
图3显示了探头1′的第二实施例除了以下的描述之外,该构造与第一实施例相同。
在该实施例中,介电构件208′的圆柱形部分被省略,并且后者仅仅包括锥部216′。在该实施例中,所述材料是介电常数K=25的介电材料(Hik 500f或Technox 2000)。
在该实施例中探头1′的尺寸(mm)如下。

n/a-不适用该实施例具有更窄的构造并且适合治疗更窄的解剖结构。
图4显示了探头1″的第三实施例除了以下的描述之外,该构造与第一实施例相同。
参考图4(a),在该实施例中,导线210″并不沿介电构件208″的全长延伸在这里,它延伸大约一半长度,并且稍稍超出圆柱形部分215″的轴向长度。而且,省略了尖端构件,并且探头1″的尖端因此由锥部216″的末端尖端217形成。在该实施例中,所述材料是介电常数K=25的介电材料(Hik 500f或Technox 2000)。
图4(b)是探头1″的分解透视图,该图显示了其主要组成部分。
在该实施例中探头1″的尺寸(mm)如下。

n/a-不适用图4(c)是使用时由图4(a)的探头1″产生的辐射场分布图。更亮的区域表示更大的强度可以看出在该实施例中最大强度(白色区域)离开探头1″的尖端;而是集中在介电构件208″的基部。该实施例被设计成尽可能一致地输送热量。假设已输送了足够的热量,可以在疗后的某一点实现闭合。
图5显示了探头1的第四实施例除了以下的描述之外,该构造与第三实施例相同。
在该实施例中,介电构件208具有更小、更薄的构造。在该实施例中,所述材料是介电常数K=25的介电材料(Hik 500f或Technox2000)。在这里,导线210并不沿介电构件208的全长延伸它延伸的长度大约等于圆柱形部分215的轴向长度。
在该实施例中探头1的尺寸(mm)如下。

n/a-不适用该实施例具有更窄的构造并且适合治疗更窄的解剖结构。
图6(a)显示了探头1””的第五实施例除了以下的描述之外,该构造与第三实施例相同。
在该实施例中探头1””的尺寸(mm)如下。

n/a-不适用在电介质的厚度(f)为4.1时,该实施例的横向厚度介于第三和第四实施例中间。
包括护套214的探头1””具有4.5mm的直径,从而允许通过本领域技术人员公知的商业上可获得的经皮引导器进入。与其它实施例相比,为了产生更小的灼伤(经辐射进入组织),该实施例的功率水平减小(从1.4W每mm周长减小为1.2W/mm周长),并且回缩速度增加。
图6(b)显示了产生的辐射场分布图。更亮的区域表示更大的强度可以看出在该实施例中最大强度(白色区域)是邻近电介质的圆柱形部分215延伸的较窄区域。与其它实施例相比,在该情况下的回缩速度可以在17-20cm/分钟的范围内,优选地为17.5cm/分钟(而不是在其它实施例中的15cm/分钟)。该实施例的优点在于每单位长度更少的能量被引导到组织中,从而导致灼伤减小和治疗时间更短。
当在此使用时,当合适时,提到探头1是指探头1,1′,1″,1,和/或1””。类似地,当合适时,提到介电构件208是指介电构件208,208′,208″,208,和208””等等。
在上述的所有实施例中,中心导线210的长度被选择成优化能量的传输,即当探头1在组织中时使辐射的反射最小化。中心导线的长度是四分之一波长的整数,该波长由辐射的频率和微波场内围绕中心导线的材料的介电常数确定。因此计算电介质中四分之一波长的特定整数的长度提供了大致合适的长度。然后这通过测试(或在计算机上或通过建立原型)被改变和优化以考虑波的复杂相互作用,以便实现最小反射功率。
类似地,在所有实施例中,探头1的形状和尺寸易于使用;其圆形形式使探头1能够容易地插入到静脉中,并且也允许静脉在回缩之后容易地缩回到其初始尺寸(直径)。
图7示出了在本发明的一个方面的实施中使用的同轴电缆204。更具体地,图7(a)是探头1固定到其一端上的整个电缆204的视图,电缆204具有在其上的可见标记。
参考图7(b),这是电缆204的近视图。在该实施例中,等长的、交替的亮部702和暗部704包括设在电缆204的表面上的标记。所述标记可以在电缆204的外护套自身的制造期间形成,或者它们可以通过在制造后向暗色电缆204应用光带或颜料而形成,反之亦然。例如,所述标记可以是黑色和白色的,或者黑色和黄色的。适宜地,所述标记大约为1cm宽。所述标记在使用时提供了优点,所述优点在下文进一步被描述。在其它实施例中,所述标记可以是不相等的长度,或者它们可以具有以预定形式沿电缆204的长度变化的长度。
如图7(c)中所示,电缆204的一端上的探头1(未示出)已经经由非常小的切口708被插入到身体部分(例如腿)706的空心解剖结构(例如静脉;未示出)中。在治疗期间,如下面具体所述,电缆204由用户(医学专业人员,从业者,技术员,护士等)朝箭头A的方向牵拉,由此逐渐显现电缆204上的标记702,704。
图8根据本发明的一个方面示意性地描述了治疗曲张静脉802时探头的运动。所述图没有按比例静脉802和探头1的尺寸和相对大小已经被改变,其目的仅仅是为了清楚和容易显示。静脉802已被识别和诊断为具有曲张组织的部分804。通过探头1的受控回缩实现用固定功率输出沿静脉802的长度获得均匀加热。回缩的速度与热穿透的深度有关。
优选的方法如下。
在程序之前通过超声扫描确定待治疗的静脉(例如大隐静脉-GSV)的最大尺寸。然后选择外径尽可能接近该最大尺寸的探头。优选地,选择外径至少和待治疗的静脉部分的内径一样大的探头1;这保证了在操作期间探头1将紧紧地贴靠,甚至膨胀静脉的内壁,从而最少的血量受到辐射。这具有两个进一步的效果(i)使累积在静脉壁中的微波能量最大化;和(ii)均匀地治疗静脉壁的整个周边(由于探头和静脉壁同心)。在一个替代程序中,同样为了使受辐射的血量最小化,可以采取措施以阻止血液流过静脉(例如“Pringle操作”),从而最少的血量受到辐射处理。
然后制造切口以便在待治疗的静脉802的长度末端插入探头。探头可以经皮通过导管被插入,或在静脉802从腹中取出之后直接被引入,这在本领域中是公知的。在GSV的情况下,这可能位于踝或膝,或两者。
一旦已经通过合适的切口(未示出)被引入到静脉802内,探头1例如通过用户沿如图8(a)中所示的箭头B的方向推动电缆204被向上或向下拧入到治疗开始的位置。如图8(b)中所示继续运动,从而探头1运动经过静脉802的曲张部分804。在GSV的情况下,这意味着将探头拧入到隐静脉股动脉交接处(saphenofemoraljunction)。
如图8(c)中所示,发射部分(介电构件208)暂停在曲张部分804的末端或恰好在其之上,相对位置由合适的手段确定,例如超声扫描。接着,微波输送系统(参见图1)被启动。该系统优选地由合适的编程或软件工具配置,从而发出可听音(或“嘟嘟声”)以便用户容易且清楚地听到。所述音以规则的频率发出;然而,可以使用本领域中公知的技术提供改变程序之间或患者之间的嘟嘟声的频率的机构(即,在不同的时间(时机)用于相同患者的不同治疗的不同治疗强度,或在不同时间用于不同患者的不同治疗强度)。作为另一选择,所述音可以通过与主系统分离的传统发音装置产生。
在另一实施例中,可以以不规则的频率的发出“嘟嘟声”,电缆204上的标记是带有等长标记的均匀图案,由此产生沿受治疗的静脉部分的长度变化的辐射强度分布。
在另一实施例中,可以以规则的频率的发出“嘟嘟声”,电缆204上的标记是带有不等长标记的不均匀图案,由此产生沿受治疗的静脉部分的长度变化的辐射强度分布。
在另一实施例中,可以以不规则的频率的发出“嘟嘟声”,电缆204上的标记是带有不等长标记的不均匀图案,沿静脉部分的长度的辐射强度分布因此具有不同的分布以实现期望的和设计的可变穿透。
应当注意的是,均匀辐照静脉壁并不一定与均匀加热静脉壁相同。探头尖端开始于体温。当首次施加功率时由于探头被加热而使一些热量损失到探头中。因此需要单位静脉长度的更多能量以获得相同深度的热穿透。因此在开始时回缩速度需要更慢,而当施放器变暖时需要加速。
如图8(c)中所示,经系统的用户界面接通辐射;这又经软件导致开始发出“嘟嘟声”(软件的运行在下文进一步具体地进行论述)。于是抓住电缆24的用户通过沿箭头C的方向牵拉电缆204回缩探头1。这样做时,用户确保以这样的速度进行牵拉,使得标记702,704相继变得可见(图7(c)),每一个(例如黑或白)标记与每一个连续音或“嘟嘟声”合拍。这样,探头1上的辐射发射介电构件208以一致或不一致的速度沿曲张部分804而行,同时发出受控剂量的辐射。当用户将此实现时,可以有效地保证探头在同质组织中的热穿透这将通常大约为1.5mm的深度。这通过微波引起的热消融提供了曲张部分的有效治疗,从而导致了组织的治疗性闭合。
当探头到达待治疗的长度的末端时(图8(d)),红色标志带出现在轴上以警告用户探头快要出现了。在该红色标志带结束时用户关闭电源,从而停止治疗。
在一些情况下,可以结合结扎进行治疗。
参考图9,在所有操作期间,组织的温度不断地由探头1上的热电偶902感测并且该温度被监控。尽管回缩速度由可听音确定,但是该系统仍然需要确保用户回缩,同时确保患者安全。热电偶902保持较冷,这是因为它总是与未加热的组织接触。它通常在套圈-电介质界面904之后1-2mm。在所示的实施例中(对应于图4(a)的探头设计),热电偶902在套圈-电介质界面904之后1.5mm。然而,根据探头1的实施例,该距离可以被设置为不同的值。热电偶902适宜地通过粘结、绑缚或任何其它合适的固定方法安装在套圈206的外表面906上。热电偶902例如依靠绝缘胶带与金属套圈206绝缘。来自热电偶的读数经线路908被输送到图1的控制系统(计算机)。如关于图2所提到的,当保护套214设在探头1上时,热电偶902由保护套214覆盖。
在用户未能回缩或不能足够快速地回缩的情况下,热传导将热量向前携带到热电偶。这被用作可以用来关闭微波电源的安全参数。由热电偶测量的温度通常为60℃。优选地,该系统被配置成(例如被编程为)若测量的温度达到70℃则切断微波电源。
图10示出了用户控制计算机上软件的运行来实施本发明的流程图。如图10(a)中所示,不断地进行微波输送系统的主电源的接通检查直到确定(s2)发生该情况(真),由此处理进入下一阶段。
在图10(b)中的②开始进一步处理。在这里,在s4进行检查以了解探头1的微波电源是否打开。如果未打开(即,假),则停止可听音的发声(在s6)或不启动发声。
如果在s4确定探头1的微波电源打开(真),则启动上文所述的预定间隔时间的可听音的发声(s8)。接着,热电偶所感测的当前温度被记录。在该阶段,进行比较(s12)以了解当前的热电偶温度是否超过了预设阈值温度。如果为假(未超过阈值),则处理返回到步骤s4。
如果测试为真(温度超过阈值),则在s14瞬时地切断微波电源,并且发出警报信号声(不同于所述一系列可听音)和/或显示警告消息(s16)。此后,处理继续s6,在s6,停止所述一系列可听音,并且终止程序。
参考图11,该图显示了在本发明的替代实施例中用于操纵电缆204和探头1的回缩的一个或多个布置。与声音结合的标记提供了简单的方式来控制回缩速度。然而,在图11的实施例中,计算机1102是图1的控制计算机,并且电缆204经连接到计算机1102上的回缩速度传感器1104被回缩。任选地,提供用于接收卷绕电缆204的鼓轮1106,并且这可以经过也连接到计算机1102上的机械致动器1108。
各种实施例的操作如下。
可以实施各种纯机械系统。在一个例子中,电缆204向后卷绕到鼓轮1106(例如由变速电动机(未示出)驱动)上,该鼓轮的旋转速度是预定的。在另一例子中,电缆204通过辊(未示出)被向后牵引(类似于纸张馈送装置,例如打印机和复印机中的从动辊的方式),该辊的速度是预定的。作为另一选择,电缆204通过辊被向后牵引,然后卷绕到鼓轮1106上。
在利用带有反馈引导的电缆204的手动回缩的实施例中,电缆204的手动回缩速度通过布置在电缆204的辊,或者通过电缆所经过的装置,由卷绕电缆204的鼓轮1106,或者由检测电缆204自身运动的光学传感器(未示出)感测。
在利用带有传感器反馈的机械技术的实施例中,机械回缩受到诸如光学传感器这样的回缩速度传感器1104监控,以便检测电缆204的运动和确保获得正确的回缩速度。可以使用或不使用机械致动器和鼓轮。
图12(a)显示了图11的运动传感器1104的近视透视图。可以看出,外壳1206包括两个部分-上外壳1210和下外壳1212,这两个部分由螺栓(未示出)适宜地固定在一起。而且,下夹持组件1214可以(通过螺栓,未示出)连接到下外壳1212下夹持组件1214大体为U形横截面并且包括允许条带1216通过其中的长槽(在下面描述);条带1216又允许传感器1104固定地和稳定地连接到另一对象。在所示的例子中,条带1216可以用于将传感器1104连接到人体的肢体(未示出)上。
在使用时,电缆4例如可以通过诸如电动机(未示出)这样的动力机械装置,通过手,或者通过另外的方式沿箭头A的方向被牵拉。任选地,电动机可以联接到如下文所描述的相同的控制单元(未示出,其在下面进一步被描述),该控制单元从传感器2接收表示电缆204的运动速度的信号。
在所示的例子中,电缆204包括具有透明外护套的同轴电缆,从而电缆204的编织外导线的重复图案是可见的。该实施例中图案1218的(运动)方向下面进一步具体被论述。然而,将会理解该编织图案不需要是重复的,并且护套不需要是透明的。仅仅需要在电缆204的表面上有传感器1104可见的足够的表面变化,以允许它发现可识别的特征,从而检测相对位置。该变化可以很小以至于它对于肉眼来说不可见。然而,在所有情况下,优选地利用电缆的合适校准(在下文论述)。
任选地,在该实施例中,可以提供连接到外壳1206上的适配器1220以用于沿着与箭头A所指示的方向相反的方向初始地引导(channelling)装置1和电缆204,和用于在其回程期间将其引导到外壳1206中。连接管1222可以用于抽取流体。
图12(b)是图12(a)的运动速度传感器1104的分解透视图。显示了该传感器的各种部件,包括上外壳1210,下外壳1212,和夹持组件1214,该夹持组件具有两个用于接纳条带1216的细长槽1215(参见图12(a))。
电缆204大体平行于外壳1206的细长轴通过,位于下外壳1212和底板1224之间,后者具有螺纹孔1226(在该情况下为四个),当组装时固定螺栓(未示出)通过所述螺纹孔从相应的孔1226进入下外壳1212。
PCB 1228(其将在下文进一步被描述)安装到底板1224之上,并且凸出部1230(在这里三个)为此目的而设在底板1224上。简要地参考在图12(c)中描述的部分横截面,所述凸出部具有两个直径变化部分,从而在组装之后提供了PCB 1228安置在其上的肩部1232。
参考图12(b),通过串行链路联接到微控制器1234的检测器装置1232安装在PCB 1228上。检测器装置1232合适地包括商业上可获得的光学鼠标芯片,LED和透镜组件(ADNK-2620;可从AgilentTechnologies获得);微控制器1234合适地包括Microchip 1216系列微控制器(零件编号PIC16F627)。在使用时,检测器装置1232的LED(未示出)大体向下地投射一定波长的光,并通过底板1224中的光阅读器开孔1236;所述光入射到(电缆204的重复图案1218)上并且反射离开电缆的光被透镜聚焦到检测器装置1232的传感器元件上。从电缆204上的图案1218的运动所导致的接收光信号的变化,检测器装置1232产生相应的电子信号,所述电子信号被输送到微控制器1234。接着,微控制器1234经电缆1238(例如传统的RS-232接口)将信号输送到远程控制单元,该远程控制单元在下文中更具体地被描述。
应当注意的是光学运动传感器1104的测量精度在很大程度上由电缆204和透镜之间的配合程度确定,在优选实施例中用于将电缆204引导到透镜下方的适当位置的一些形式的通道、支座或导向表面因此是重要的。电缆204在该导向中的垂直运动越大,运动速度测量值的精度将越小。
将会理解传感器1104的每个部件1210,1212,1214,1224,1228可以使用公知的模制方法由传统的材料(例如塑料)制造。并且当组装后,传感器10可以具有紧凑的尺寸并且可以具有类似于传统的计算机鼠标的形式。
在替代实施例中,使用运动速度的磁性感测。在这里,磁体被放置在电缆之中或之上。可以利用检测磁场的两种可能方式。在第一技术中,电缆通过金属丝的线圈,所述线圈被构建在外壳中。当电缆中的磁体通过线圈时它们产生被检测的电流(脉冲)。这些脉冲的产生频率或每个脉冲的幅度允许计算运动速度。在第二技术中,霍尔(Ha11)探头用于测量磁场。再次地,磁场的脉冲的检测频率与获知磁体之间的间隔一起允许计算运动速度。
在进一步的替代实施例中,用于感测运动速度的反射元件被使用。代替上述的Agilent芯片,与电缆结合使用光电二极管或光电晶体管,所述电缆或多或少地包含反射部分。交替地具有较高和较低反射率的带被使用。当每个反射带通过传感器时,光检测器所检测到的光度增加。再次地,知道所述带之间的间隔和被检测脉冲的频率允许计算运动速度。
在进一步的替代实施例中,用于感测运动速度的放射性检测被使用。在这里,放射性颗粒被规则地放置在电缆上。放射性传感器(例如在烟雾报警器中使用的传感器)用于检测产生的辐射并且当每个颗粒通过传感器时提供脉冲。再次地,知道颗粒之间的间隔和脉冲的频率允许计算速度。
在进一步的替代实施例中,用于感测运动速度的电阻测量被使用。作为另一选择,物品具有介电强度变化区域并且通过电容器板。作为另一选择,物品具有厚度变化区域并且进行邻近测量。作为另一选择,物品具有不透明和透明区域,辐射源和检测器彼此面对,并且物品通过这两者之间。(该不透明和透镜可以关于可见光,任何电磁信号,放射性,磁场或电场)。
所有这些替代实施例可以结合上面利用Agilent LED/光学传感器芯片提供的例子被使用,以提供关于电缆位置的附加信息。例如,小反射带或磁性颗粒可以靠近电缆的末端放置。如果外壳包含相关检测装置,当电缆到达该位置时,单脉冲将被发送到系统以用信号通知正在接近电缆的末端。
图13示意性地示出了根据本发明的一个方面的系统,该系统用于使用上述运动速度传感器1104执行物品的受控运动。该系统(通常由1340标识)包括PSU 1342,控制模块1344和用户界面(UI)1346。如上所述,运动速度传感器1104通过串行链路(1338)联接到控制模块1344。传统上,在控制模块1344的控制下,UI 1346可以通过公知的显示和/或语音技术给予用户图形的、可听的或图形的和可听的信息(未示出)。
如参考图11所述,在所示的实施例中,电缆204可以连接到医疗装置1(治疗施放器),该医疗装置的运动速度被监控/控制。因此,任选地,参考图13,系统1340可以包括医疗装置1(施放器),能够依赖于控制模块提供给它的运动速度数据调整提供给医疗装置1的功率的功率模块1348,和允许用户接通或断开电源的用户可操作的脚踏开关1350。
图14更具体地示意性地示出了运动速度传感器1104和图13中控制模块1344之间的通信。当传感器1104连接到系统1440以向用户提供反馈时,数据由诸如RS232这样的标准协议合适地传输。传感器1104连接到系统1440的控制单元1444,和系统1440的通信端口(未示出),所述通信端口定期地由系统软件1452轮询以提取关于传感器的位置的数据。从所述位置数据,可以导出运动速度。然而,将会理解可以使用其它协议(和电缆)代替RS232,例如RS485,RS422,12C,USB,GP1B,并行协议或其它协议。轮询传感器1104以确定运动速度的频率由传感器的分辨率水平和期望的运动速度确定(如下文所述)。
图15示出了由图13的系统1340显示给用户的UI视图的例子。可以看出,具有用图形显示的“速度计式”测量计1560。显示包括当前值1562的特定值的测量计1560也具有若干有色区域,包括一个绿色区域1564,两个橙色区域1566,1568,和一个红色区域1570。因而,用户具有可视反馈,该可视反馈关于传感器1104(参考图1)所感测的物品1的运动速度是否(i)处于最佳值(指针1572指向正上方),(ii)处于可接受的值(指针1572在绿色区域1564内),(iii)处于有点不可接受的值(指针1572在橙色区域1566,1568内),或(iv)处于非常不可接受的值(指针1572在红色区域1570内)。
作为另一选择或作为补充,UI 1546可以发出对应于前述不同区域的可听信息,即绿色→橙色→红色区域对应于逐渐增加的声音(音频),或者对应于声脉冲(“嘟嘟声”),对于不同的区域以不同的频率(绿色→橙色→红色逐渐增加)发出所述声脉冲。
另外,软件可以使UI 1346显示(在1574)物品(电缆)204运动的总距离,和/或(在1576)在物品的运动期间逝去的总时间。
图16显示了使用两个电缆的情况下运动速度传感器1104′的替代实施例。除了下述之外,该构造与图11和12的实施例相同。在这里,在它们的大部分长度上平行的两个系缆204a,204b在通过传感器1104′之前首先分离。施放器电缆204a(例如向治疗装置(未示出)供电)横向地通过传感器1104′。在其上具有可检测的标记的平行电缆通过传感器1104′,使其标记被检测器装置检测(参见图12),并且纵向地离开传感器1104′。
尽管上面已经关于简单的医疗应用描述了运动速度传感器,本领域的技术人员将会理解,可以在将要测量和/或控制物品的运动速度的任何情况下利用本发明。例子包括一切种类的电缆操作装置、装备和机器。前述(自动)电缆操作帘和车库门是典型的例子。制造环境(例如纺织工业)中的活动杆、缆线和细丝的运动也可以使用根据本发明的技术进行测量。
图17(a)示意性地示出了由控制单元1444沿串行链路1338向下发送到传感器1104(参见图7(b))的轮询信号的时间序列。可以看出,轮询(在这里被示意性地表示成持续时间为t的单脉冲)以规则的时间间隔发生,并且轮询间隔时间为T。轮询脉冲被标记为p1,p2,p3,…pN。
图17(b)显示了传感器1104和控制单元1444之间的信号传输,使得响应脉冲pi,传感器2返回计数ci。适宜地,计数ci由向串行链路1338之下发送的多位数字信号定义。在使用前,传感器1104被复位。在使用期间传感器1104不需要被复位。在一个实施例中,轮询间隔时间T为0.2秒。
图17(c)显示了作为轮询结果顺序地获得的值。第一行是轮询脉冲pi的序列,第二行是响应各个轮询脉冲返回的计数ci。为了将这些值ci转换成代表运动的值,从当前计数值减去传感器1104上一次被轮询时的计数值。这给出了轮询间隔时间T期间电缆204相对于相对于传感器1104运动的计数数量。然后该计数数量除以(或乘以)常数(每英寸的计数)以用系统(控制单元1444)要求的单位给出实际运动距离。然后它除以所述时间间隔以给出运动速度。因而,对于给定的轮询脉冲i,速度,即上一次轮询间隔时间T的平均速度在图17(c)的第三行中给出速度v=(ci-ci-1)R,其中R是转换因数。如果例如先前已使用下文所述的合适的校准方法确定了电缆的每英寸读数的数量为K,那么R=1/(KT)。控制单元44使用该关系并且使用R的存储值计算速度v(英寸/秒)。
在所述的实施例中,K大约为每英寸460个计数,并且T=0.2s。因此,例如如果电缆在0.2秒内运动10个计数,速度为(10/460)/0.2=0.1087英寸/秒。如上所述,这给出了每0.2秒的速度v的值。这不是瞬时速度,而是在前一个0.2s的平均速度值。
轮询间隔时间T对于确定精度也是重要的。它与电缆204的运动速度有关。如果T太短以致于在轮询之间累加的计数太少,那么由于测量速度将出现若干离散值中的一个,因此将会发生离散误差。可能需要选择轮询间隔时间(取决于在应用中这样的误差是否重要)以使这样的误差不可识别。更快的电缆运动将允许更高的轮询频率(以及因此更短的T)。更慢的速度将要求更低的轮询频率。另一方面,如果使得T太长,那么记录的速度将开始显著地滞后实际运动,这是因为它是在询间隔时间T上的有效平均值。在当前优选的实施例中,在回拉速度(即电缆4的运动速度)为10cm/min或以上时,轮询间隔时间T的最低有效值大约为0.2s。
在替代的实施例中,如果需要平均速度,但是没有大的T,进而没有速度更新之间的长间隔时间,那么更短的轮询间隔时间T可以与轮询平均计算值结合使用在这里,控制单元1444计算在先的n个速度结果的平均值。这具有的优点在于显示或测量的速度将随着时间更平滑地变化。轮询间隔时间T越短,响应越不波动。n越大,响应越衰减。这在向用户显示速度方面具有优点,尤其当前述的电缆速度的“速度计式”显示(参见图15)被利用时。被平均的过去速度值的数量n可以是任何合适的数量,例如数十之间的数值。典型地,n≤32。在优选的实施例中,n为16(即,提供16×0.2=3.2s时间上的平均速度)。然而,将会理解,取决于应用,n的上限可以是数十,数百或以上。该上限可以具有可应用于正在被使用的装置的参数的任何合适的值。
单位距离测量的计数的数量将随着回缩速度稍稍变化。更高的回缩速度将导致单位距离的稍小的计数的数量。为了获得合适的校准因数以在系统中用于将计数的数量转换为距离进而转换为速度,装置被设计和构建成通过传感器以已知的固定速度精确地回缩电缆。因此这意味着可以精确地获得用于任何特定回缩速度的校准因数。
图18示出了可以根据本发明的一个方面的实施例的被利用的校准装置1802的平面图。校准装置1802包括刚性底座1804,该刚性底座上固定地安装了将在下文描述的各种部件。这些部件包括本领域中公知的步进电机1806,该步进电机经电缆1808联接到计算机(未示出),并且在计算机的控制下被驱动。步进电机1806经过正齿轮类型的联动齿轮1812,1814将旋转运动传递到导螺杆1810。导螺杆1810被安装以用于在刚架1816上旋转,所述刚架包括端板1818,1820和滑座1822。
导螺杆1810带有节距恒定的并且已知的外螺纹1824;驱动螺母1826设在导螺杆1810上并且具有匹配的内螺纹(未示出)。驱动螺母1826又刚性地连接到安装在滑座1822上的滑块1830。滑块1830和滑座1822优选地具有匹配的导向元件和/或轮/轴承(未示出),从而便于滑块1830沿滑座1822低摩擦地滑动。适宜地,滑块1830在滑座1822上运动的长度大约为0.5-1.0mm。
在距框架1816的端板1820的合适距离处(例如,1-2m)提供待校准的传感器1104,并且例如通过夹紧或螺栓(未示出)相对于那里固定所述传感器。电缆204通过传感器1104并且其末端1832被滑块1830上的夹持元件1834夹紧(例如通过合适的板和螺栓)。
校准(使用传感器1104确定电缆204的每英寸计数K)包括以下步骤。传感器1104被安装以用于在连续的轮询间隔时间T之后发出累加的计数值ci。驱动螺母1826在其运动结束时邻近框架1816的端板1820地被放置。随着电缆204通过传感器1104,和随着电缆204的任何过度松弛被消除,步进电机1806被上电并且以恒定的旋转速度被控制计算机(未示出)驱动;因而,滑块1830以已知的恒定线性速度V(英寸/秒)沿着滑座被驱动螺母1826驱动。
校准操作可以包括测量滑块1830运动结束时的计数和运动开始时的计数。更优选地,校准操作包括至少测量在“校准开始”时的计数,即在滑块已经在滑座上开始其运动并且已经明显地到达恒定速度之后的预定时间的计数,和测量在“校准终点”时的计数,即在滑块已经结束其运动之前的预定时间的计数。这具有的优点在于消除了由于加速和减速期而导致的失真。
如果在滑块1830运动结束时和运动开始时的计数之差为Cc,并且轮询间隔时间T的数量为nc,那么每英寸计数K可以从V=(Cc/K)ncT或K=Cc/TV获得,这是一个校准操作。将会理解,对于一个传感器-电缆组合,该操作可以重复若干或许多次,并且获得的值K被平均。
一旦值K已知,这可以用于测量以上关于图17所述的运动速度。本领域的技术人员将会理解,一旦确定了K的值,关系式K=Cc/TV中的一个或多个其它参数可以因此被获得。
立刻显而易见的是,尽管在某些实施例中使用英寸作为单位,但是也可以使用其它单位。也就是说,代替用每英寸计数表示K,这可以是每mm计数、每cm计数、每m计数或者每个自定义单位的计数;并且代替用英寸/秒表示V,可以是mm/s、cm/s、m/s等等。
权利要求
1.一种治疗诸如曲张静脉这样的空心解剖结构所述的方法,包括提供施放器,该施放器包括细长构件并且包括发射器,所述发射器联接到微波辐射源上并且适于发射所述辐射;将所述细长构件引入到空心解剖结构中,所述空心解剖结构包括一部分目标组织;以受控速度使所述细长构件横穿通过目标组织的所述部分,同时所述发射器将预定强度的微波辐射发射到所述部分中。
2.根据权利要求1所述的方法,其特征为,所述空心解剖结构是静脉,并且目标组织的所述部分包括一部分曲张组织。
3.根据权利要求1或2所述的方法,其特征为,以例如恒定预定速度的预定速度进行所述横穿。
4.根据权利要求3所述的方法,其特征为,所述预定恒定速度大约为2.5mm/秒。
5.根据权利要求1-4之一所述的方法,其特征为,所述施放器安装在挠性细长测量计的末端,所述细长测量计沿其长度具有一系列规则地间隔的标记;并且当发出一系列等时间间隔的可听音时进行所述横穿;并且用户以这样的速度执行所述横穿,即,使得所述标记的每一个与所述可听音的相应一个合拍地显现给用户。
6.根据权利要求5所述的方法,其特征为,所述标记被不规则地间隔,而非被规则地间隔。
7.根据权利要求5或6所述的方法,其特征为,所述可听音被不等时地间隔,而非被等时地间隔。
8.根据权利要求5、6或7所述的方法,其特征为,通过由用户牵拉所述细长测量计从空心解剖结构回缩所述施放器而执行所述横穿步骤,由此暴露所述标记。
9.根据权利要求5、6或7所述的方法,进一步包括提供例如光学传感器的运动传感器,其被定位成感测所述测量计的运动,以及提供例如计算机的控制器,其联接到所述运动传感器上,其中通过牵拉所述细长测量计从空心解剖结构回缩所述施放器而执行所述横穿步骤,其中在所述牵拉步骤期间,所述控制器向用户发出可听和/或可视指示,其中所述可听和/或可视指示表示所述施放器的回缩速度太慢、或太快或正确。
10.根据权利要求9所述的方法,进一步包括提供机械致动器,该机械致动器联接到所述控制器上并且适于向所述细长测量计施予平移运动,其中在所述控制器和/或用户的控制下,通过驱动所述机械致动器提供所述牵拉,以施予所述平移运动并由此回缩所述细长构件。
11.根据权利要求9或10所述的方法,进一步包括提供鼓轮;其中牵拉细长测量计的所述步骤包括将所述细长测量计卷绕到所述鼓轮上。
12.根据前述权利要求之一所述的方法,其特征为,在所述横穿步骤之前执行的步骤是沿静脉在第一方向上运动所述细长构件直到所述发射器已经过目标组织的所述部分,并且通过用户沿与所述第一方向相反的第二方向回缩所述细长构件而执行所述横穿步骤。
13.根据权利要求5-12之一所述的方法,其特征为,所述标记包括交替的亮色和暗色部分。
14.根据权利要求13所述的方法,其特征为,每个所述亮色和暗色部分大约为1cm长。
15.根据权利要求5-14之一所述的方法,其特征为,所述细长构件通过同轴电缆联接到辐射源上,并且所述标记设在同轴电缆的外表面上。
16.根据前述权利要求之一所述的方法,其特征为,所述微波辐射的预定强度大约为1.1-1.4W每mm所述细长构件的周长,由此所述辐射的发射在所述横穿步骤期间实现了目标组织的所述部分的闭合。
17.根据前述权利要求之一所述的方法,其特征为,温度传感器设在所述细长构件上,并且所述方法进一步包括监控由所述传感器提供的并且指示所述横穿步骤期间曲张组织的所述部分的温度的温度。
18.根据权利要求17所述的方法,进一步包括,如果所述传感器感测到的温度等于或超过预定水平,则停止所述微波辐射的发射。
19.根据前述权利要求之一所述的方法,进一步包括提供运动速度传感器,该运动速度传感器用于检测所述施放器的运动速度;提供控制单元,该控制单元联接到所述传感器上,以用于接收由此输出的运动速度信号;操作所述控制单元以计算所述施放器的运动速度,以及控制提供给所述施放器的辐射量和/或依赖于所述计算出的运动速度的所述施放器的运动速度。
20.根据权利要求19所述的方法,其特征为,计算施放器的运动速度的步骤包括轮询所述传感器,连续轮询之间的轮询间隔时间是一致的持续时间;确定差值,该差值是连续运动速度信号定义的计数之间的差;使用被确定的差值和转换因数R,使用R和所述差值计算施放器的运动速度。
21.根据权利要求19或20所述的方法,其特征为,计算运动速度v的步骤包括使用v=(ci-ci-1)R其中(ci-ci-1)是所述差值。
22.根据权利要求19-21之一所述的方法,其特征为,所述施放器安装在细长电缆的末端上,并且通过计算所述电缆的运动速度计算所述施放器的运动速度。
23.根据权利要求22所述的方法,其特征为,连续轮询之间的轮询间隔时间为T,并且转换因数被确定为R=1/KT,其中K是用于电缆的预定计数转换常数。
24.根据权利要求19-23之一所述的方法,进一步包括提供显示装置;以及在所述控制单元的控制下显示计算出的施放器的运动速度。
25.根据权利要求24所述的方法,其特征为,所述显示装置适于在所述控制单元的控制下显示计算出的施放器的运动速度的图形表示。
26.根据权利要求25所述的方法,所述图形表示包括速度计式图形表示。
27.根据权利要求22-26之一所述的方法,其特征为,所述运动速度传感器包括外壳,在使用时电缆相对于该外壳运动;以及布置在所述外壳内的检测单元,该检测单元包括适于产生由电缆的运动导致的检测器信号的转换装置,和适于接收所述检测器信号和输出表示电缆的运动速度的运动信号的处理电路。
28.根据权利要求27所述的方法,其特征为,所述外壳包括允许电缆相对于所述外壳运动的至少一个开孔。
29.根据权利要求28所述的方法,其特征为,所述外壳具有一种构造,由此在使用时,电缆在所述外壳之中或附近的运动基本上是线性的。
30.根据权利要求28或29所述的方法,其特征为,所述至少一个开孔包括在使用时电缆通过其进入所述外壳的入孔,和在使用时电缆通过其离开所述外壳的出孔,在使用时,电缆沿所述入孔和所述出孔之间的基本上为线性的路径运动。
31.根据权利要求27-30之一所述的方法,其特征为,所述转换装置包括至少一个辐射检测器,所述辐射检测器适于接收来自电缆的辐射并且根据所述接收的辐射产生检测器信号。
32.根据权利要求31所述的方法,其特征为,所述辐射是光辐射,所述检测单元进一步包括用于发射所述光辐射的光发射器,并且所述辐射检测器被布置成接收从电缆反射后的光辐射。
33.根据权利要求32所述的方法,其特征为,所述光发射器是LED,其中优选地所述光发射器和辐射检测器构成一整体式装置。
34.根据权利要求31-33之一所述的方法,其特征为,电缆具有以重复形式沿其长度布置在其表面上的多个标记或反射元件。
35.根据权利要求31所述的方法,其特征为,所述辐射检测器包括低放射性的检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个放射性元件。
36.根据权利要求27-30之一所述的方法,其特征为,所述转换装置包括磁性检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个磁性元件,在使用时当电缆运动经过所述磁性检测器时,所述磁性检测器适于产生所述检测器信号。
37.根据权利要求27-30之一所述的方法,其特征为,所述转换单元包括一个或多个可旋转构件,例如一个或多个轮或球,其适于在使用时接触电缆并由此被旋转,以及机电装置,其适于根据所述一个或多个可旋转构件的旋转速度产生所述检测器信号。
38.一种治疗空心解剖结构所述的方法,其基本上如前文参考附图所述的方法。
39.一种用于向诸如曲张静脉这样的空心解剖结构施加辐射的施放器,包括细长构件,该细长构件包括发射器,所述发射器联接到微波辐射源上并且适于发射所述辐射;其中所述发射器包括由介电材料制成并且具有细长轴的辐射发射部分,以及在所述辐射发射部分内并且至少部分地沿其延伸的细长导线,所述辐射发射部分具有如下形状和尺寸,即,使得在邻近其的有限空间场中以预定强度发射所述辐射,由此有效地实现所述场内空心解剖结构的组织的闭合。
40.根据权利要求39所述的施放器,其特征为,所述辐射发射部分包括大致为圆锥形的变细部分,该变细部分由此形成用于插入到空心解剖结构中的尖端。
41.根据权利要求40所述的施放器,其特征为,所述细长导线沿所述辐射发射部分的全长延伸,由此在使用时所述场被布置成基本上围绕所述尖端。
42.根据权利要求40所述的施放器,其特征为,所述细长导线沿所述辐射发射部分的部分长度延伸,由此在使用时所述场被布置成基本上围绕所述辐射发射部分的中部并且与所述尖端间隔开。
43.根据权利要求39-42之一所述的施放器,其特征为,温度传感器设在所述细长构件上,所述温度传感器优选地包括热电偶或纤维光学传感器。
44.根据权利要求39-43之一所述的施放器,其特征为,所述细长构件经同轴电缆联接到辐射源上,与所述辐射发射部分邻接的所述电缆的一部分由导电套圈环绕并且连接到其上;并且其中所述温度传感器布置在所述套圈上。
45.根据权利要求44所述的施放器,其特征为,一系列规则间隔的标记沿同轴电缆的长度设在同轴电缆的外表面上。
46.根据权利要求44所述的施放器,其特征为,所述标记被不规则地间隔而非被规则地间隔。
47.根据权利要求45或46所述的施放器,其特征为,所述标记包括交替的亮色和暗色部分。
48.根据权利要求47所述的施放器,其特征为,每个所述亮色和暗色部分大约为1cm长。
49.根据权利要求40-48所述的施放器,其特征为,辐射发射部分包括与所述变细部分成一整体的基本上圆柱形的部分。
50.根据权利要求44-49所述的施放器,其特征为,所述细长导线包括轴向地伸出同轴电缆的外护套的所述电缆的内导线的一部分。
51.一种用于向空心解剖结构施加辐射所述的施放器,其基本如前文参考附图所述的施放器。
52.一种用于治疗空心解剖结构的系统,包括根据权利要求39-51之一所述的施放器;以及运动速度传感器,其在使用时被布置成用于检测所述施放器的运动速度;控制单元,其联接到所述传感器上以用于接收由此输出的运动速度信号;其中所述控制单元被构造成使用所述运动速度信号计算所述施放器的运动速度,以及控制提供给所述施放器的辐射量和/或依赖于所述计算出的运动速度的所述施放器的运动速度。
53.根据权利要求52所述的系统,其特征为,为了计算所述施放器的运动速度,所述控制单元被构造成轮询所述传感器,连续轮询之间的轮询间隔时间是一致的持续时间;确定差值,该差值是由连续运动速度信号定义的计数之间的差;使用被确定的差值和转换因数R,使用R和所述差值计算施放器的运动速度。
54.根据权利要求52或53所述的系统,其特征为,使用下式计算运动速度vv=(ci-ci-1)R其中(ci-ci-1)是所述差值。
55.根据权利要求52-54之一所述的系统,其特征为,所述施放器安装在细长电缆的末端上,并且通过计算所述电缆的运动速度计算所述施放器的运动速度。
56.根据权利要求55所述的系统,其特征为,连续轮询之间的轮询间隔时间为T,并且转换因数被确定为R=1/KT,其中K是用于电缆的预定计数转换常数。
57.根据权利要求52-56所述的系统,其特征为,所述系统进一步包括显示装置,所述显示装置适于在所述控制单元的控制下显示计算出的施放器的运动速度。
58.根据权利要求57所述的系统,其特征为,所述显示装置适于在所述控制单元的控制下显示计算出的施放器的运动速度的图形表示。
59.根据权利要求58所述的系统,其特征为,所述图形表示包括速度计式图形表示。
60.根据权利要求52-59之一所述的系统,其特征为,所述运动速度传感器包括外壳,在使用时电缆相对于该外壳运动;布置在所述外壳内的检测单元,该检测单元包括适于产生由物品的运动导致的检测器信号的转换装置,以及适于接收所述检测器信号和输出表示物品的运动速度的运动信号的处理电路。
61.根据权利要求60所述的系统,其特征为,所述外壳包括允许电缆相对于所述外壳运动的至少一个开孔。
62.根据权利要求61所述的系统,其特征为,所述外壳具有一种构造,由此在使用时,电缆在所述外壳之中或附近的运动基本上是线性的。
63.根据权利要求61或62所述的系统,其特征为,所述至少一个开孔包括在使用时电缆通过其进入所述外壳的入孔,和在使用时电缆通过其离开所述外壳的出孔,在使用时,电缆优选地沿所述入孔和所述出孔之间的基本上为线性的路径运动。
64.根据权利要求60-63之一所述的系统,其特征为,所述转换装置包括至少一个辐射检测器,所述辐射检测器适于接收来自电缆的辐射并且根据所述接收的辐射产生检测器信号。
65.根据权利要求64所述的系统,其特征为,所述辐射是光辐射,所述检测单元进一步包括用于发射所述光辐射的光发射器,并且所述辐射检测器被布置成接收从电缆反射后的光辐射。
66.根据权利要求65所述的系统,其特征为,所述光发射器是LED,其中优选地所述光发射器和辐射检测器构成一整体式装置。
67.根据权利要求64-66之一所述的系统,其特征为,电缆具有以重复形式沿其长度布置在其表面上的多个标记或反射元件。
68.根据权利要求64所述的系统,其特征为,所述辐射检测器包括低放射性的检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个放射性元件。
69.根据权利要求60-63之一所述的系统,其特征为,所述转换单元包括磁性检测器,并且电缆具有以重复形式沿其长度布置在其中或其上的多个磁性元件,在使用时当电缆运动经过所述磁性检测器时,所述磁性检测器适于产生所述检测器信号。
70.根据权利要求60-63之一所述的系统,其特征为,所述转换单元包括一个或多个可旋转构件,例如一个或多个轮或球,其适于在使用时接触电缆并由此被旋转,以及机电装置,其适于根据所述一个或多个可旋转构件的旋转速度产生所述检测器信号。
71.一种用于治疗空心解剖结构的系统,其基本上如前文参考附图所描述的系统。
全文摘要
一种治疗诸如曲张静脉这样的空心解剖结构的方法。该方法包括提供细长的辐射施放器,该细长施放器包括发射器,所述发射器联接到微波辐射源并且适于发射所述辐射;将所述施放器引入到空心解剖结构中,所述空心解剖结构包括目标组织的一部分;以受控速度使所述施放器横穿通过目标组织的所述部分,同时所述发射器将预定强度的微波辐射发射到所述部分内。使用多种技术(同轴电缆上的标记并结合可听音),从而用户以预定的速度进行横穿,使得辐射均匀地施加到组织,并且实现有效的闭合。也公开了执行该治疗的施放器。
文档编号A61B19/00GK1870946SQ200480031114
公开日2006年11月29日 申请日期2004年9月30日 优先权日2003年10月3日
发明者奈杰尔·克罗宁, 亚当·盖伊 申请人:麦考苏利斯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1