能够提供容器中的被灭菌手术器械是否被正确灭菌的提示的灭菌容器的制作方法

文档序号:14484321阅读:285来源:国知局
能够提供容器中的被灭菌手术器械是否被正确灭菌的提示的灭菌容器的制作方法

本发明总体上涉及用于手术器械的灭菌系统。更具体地,本发明涉及用于监控和证实在灭菌过程中合适的灭菌测量值已经得到满足的容器和电子传感器模块,以及利用电子传感器模块确定在灭菌过程循环中该容器内的手术器械是否被正确地暴露于所需要的一组过程测量值的方法。



背景技术:

在医疗和手术过程中使用的器械和设备的灭菌对于防止患者的术后感染是很重要的。医院和医疗机构利用各种清洁和灭菌技术和方法来再处理被污染的或在前使用的手术器械。医院或医疗中心通常包括进行该机构的医疗器械的清洁和灭菌的无菌处理处。

无菌处理处通常具有多个部门,包括清洁部门,灭菌部门和无菌储存部门。在医疗手术过程中使用的手术设备从手术室返回到清洁部门。在清洁部门,手术器械被清除所有可见液体或固体医疗废物并且通过手动或自动清洗过程来处理。自动清洗机利用水和清洁剂的高压蒸汽从器械表面上去除碎屑和残留。清洗机使手术器械暴露于高温水中以及有时暴露于破坏性化学物质中一段时间。一些手术器械不能经受自动清洗机处理而是需要手动清洗。

清洗之后,对手术器械进行功能性设备检查来检查手术设备中的被破坏的零件或缺陷。有缺陷的零件被修复或替换。然后,通过将手术器械放置于容器中,准备对单个手术器械进行灭菌。一些手术器械在灭菌过程期间需要具有特定的几何定向,以便在处理过程中灭菌剂可有以效地进入、接触和离开手术设备。这些器械可以按照手术而被集中在一起形成手术工具组。

为了在灭菌后的处理和存储过程中保持手术器械的无菌性,手术器械通常被放置于各种容器系统中,在这些器械周围形成无菌屏障。假定此屏障意于防止周围的微生物有机体粘附到这些灭菌的器械,这些屏障有时被称为微生物屏障或SBS(无菌屏障系统)。目前使用的一种常用的容器系统是用两种类型的材料构成的一种容器系统,一种材料是“刚性”不可透过的材料,另一种材料是微生物过滤器。微生物过滤器被构成为允许灭菌剂,通常是蒸气或气体,在灭菌过程中透过但防止微生物,比如分支杆菌、营养菌、病毒、真菌、和细菌芽孢,进入该容器。另一种容器系统通过使用穿孔的“刚性”材料、比如铝或不锈钢形成并且整个穿孔的容器被用类似微生物过滤器的材料包裹。穿孔的“刚性”材料提供运输、处理和堆叠手术器械的容器的结构,但自身不防止微生物进入环容器。无菌屏障材料保护手术器械在灭菌后的处理和存储过程中不被污染。外部无菌包裹材料可以是自旋形成的聚丙烯包裹层,并且在形成微生物屏障的同时灭菌用的流体或气体可透过。当不使用容器系统时,单个的手术器械可用挠性封装材料比如Tyvek包装,通常在一侧由半渗透性Tyvek构成以允许灭菌剂进出、在另一侧由不可渗透性Mylar构成以允许内容物可被看到。

为了从视觉上证实手术器械的容器已经被暴露于灭菌剂中,可在进行灭菌过程之前在无菌屏障系统的内部和/或外面添加化学指示器。化学指示器被专门设计用于该种类型的灭菌剂、所使用的气体或蒸气。第I类化学指示器用由FDA和JCAHO识别的化学指示器系统,在美国的医院中使用。欧洲管理结构当前认可提供参数放行的暴光证明型(proof of exposure)化学指示器以及第I类化学指示器。第I类化学指示器提供它已经暴露于灭菌剂中的视觉指示,但不指示暴光程度或暴光时间的大小。通常使用外部化学指示器,这样,医院无菌处理部的工作人员能够确定单个的设备容器处于该部工作流中什么位置,内部化学指示器用于指示医院工作人员关于无菌屏障内的设备已经被暴露于灭菌剂的手术过程设置。如果外部化学指示器没有指示灭菌剂在无菌处理部内暴光,那么该手术工具组必须进行处理以确保无菌性。如果当容器被打开时内部化学指示器没有指示灭菌剂暴光,那么该容器和设备必须返回无菌处理部进行重新处理,通常从清洁过程开始。在准备手术过程时确定手术设备的容器还没有暴露于灭菌剂对于手术室的效率来说是破坏性的,并且要求另一套手术设备被定位和正确设置,最终导致计划延误和/或其它不利的中断。不同类型的化学指示器已经被研发出来,包括带,纸条和催化激活系统。带,标签,和纸条被印有当暴露于特定灭菌剂或化学物质时改变颜色的墨。一体纸或灯芯纸被制造成在一端具有在预期的过程值下随着时间的过去而融化和沿纸通过毛细作用带走的墨或化学物质。如果过程值得到满足,彩条即到达容许区域。用于不同类型的灭菌形式的化学指示器是不同的,并且因此横跨各种灭菌方法化学指示器的视觉变化不相同。有时,指示暴露于一种形式、例如蒸汽灭菌装置的颜色变化与用于不同灭菌形式、例如过氧化氢灭菌的颜色变化相反。这在读取和解释不同的化学指示器颜色变化时会对卫生保健工人产生混淆。

一旦手术器械被完全包装并且准备灭菌,手术工具组即被进行灭菌过程以破坏微生物。各种灭菌方法和试剂已经被用于灭菌手术器械。

饱和蒸汽热是用于破坏微生物的一种灭菌剂。压力高于大气压力对于升高用于破坏微生物的蒸汽的温度来说必须的,这带来了非常大的挑战。具有所需温度和时间的饱和蒸汽必须透过并且到达待灭菌物品的每个表面。灭菌腔包含待灭菌的物品。当蒸汽在压力下初始进入灭菌器腔时,它一接触冷的物品便会冷凝。此冷凝释放热量,同时加热和弄湿该负载中的物品。整个负载必须被暴露于该湿热中持续最小时间并且处于最小定义温度,以实现灭菌。例如,一种类型的手术工具组可能要求在270华氏度下持续34分钟来破坏微生物,并且要求另外的20分钟真空来干燥无菌屏障内的器械,使得冷凝物不在无菌屏障内积累。最小温度-时间和蒸汽浓度关系被要求在无菌屏障内的所有部分以及横跨灭菌腔的负载进行保持,以完成灭菌。用于破坏微生物的时间、温度和蒸汽浓度取决于许多因素。例如无菌屏障内负载内容物的内腔的尺寸、表面积、热质量、定向和深度以及所使用的无菌屏障的蒸汽穿透特性都可能影响破坏微生物的可靠性。在蒸汽循环完成之后,水的冷凝物必然蒸发以干燥负载的内容物来保持无菌性。可在腔内抽真空来帮助任何剩下的水蒸发。通常用于确定合适的灭菌暴露时间的惯用性参考资料在表5中列出了,该表直接从ANSI/AAMI ST79:2010/A2:2011“Comprehensive Guide to Steam Sterilization and Sterility Assurance in Health Care Facilities,Amendment 2”获得。

表5-用于动态排气蒸汽灭菌循环的最小循环时间

请注意:此表格表示在灭菌器制造商的推荐说明中的在不同温度下暴露的差异。

对于特定的灭菌器来说,仅参考制造商的推荐说明。

一些手术设备比如胃镜和内视镜对蒸汽灭菌所需的蒸汽和高温敏感。过氧化氢蒸气是用于灭菌手术器械的另一种试剂。过氧化氢被从灭菌腔外面在被定义的反应腔中汽化。汽过氧化氢被引入灭菌腔内,它在该处接触无菌屏障并且穿过该屏障以接触待灭菌的容器的内容物。过氧化氢蒸气被引入包含待灭菌物品的灭菌腔内。目前的过氧化氢灭菌器通常在比蒸气灭菌器低很多的温度下操作,对于过氧化氢灭菌器来说,最高温度大约122华氏度。最低过氧化氢浓度,压力变化的“脉冲周期”,和温度随时间的关系需要保持在负载的所有部分中来完成灭菌。在过氧化氢蒸气循环完成之后,剩余的和冷凝的过氧化氢被吹出腔。RF能可被用于在此通气阶段为剩余的过氧化氢蒸气供能,制造促进此通气过程的等离子体。一些旧的等离子体系统在灭菌剂暴光阶段期间使用RF能,希望等离子体阶段在杀死微生物方面比蒸汽阶段更有效。在使用之前,残留的过氧化氢需要从手术器械和包装中去除,以防止烧伤和伤害到卫生保健人员和患者。

其它液体和气体试剂也可以用于灭菌手术器械,比如乙撑氧气体,甲醛气体和臭氧气体。这些灭菌剂如上面所述的过氧化氢灭菌器一样使用“低温”灭菌条件,允许它们作为可能破坏性的高温蒸汽灭菌的可选方式在敏感性医疗设备上使用。不幸的是,这些气体毒性稍高和/或在灭菌过程期间难以控制,所以他们在医院系统没有特别普遍使用。

医疗装置行业规定要求原始设备制造商(OEM)向医院和保健提供者提供关于可重复使用的医疗设备的正确使用和维护的指导。OEM可以是可重复使用的医疗设备的设计者,制造商或经销商。在可重复使用的医疗设备的分类中,某些设备和器械在使用期间可能被来自患者的生物学物质污染,比如体液,粘液和组织,使其在再次使用之前必须进行清洁和/或灭菌。某些可重复使用的医疗设备、比如结肠镜不能利用医院中央处理部的设备灭菌。基于风险和益处分析,灭菌可以用对这些装置的高水平消毒代替。灭菌过程的一般可接受的定义是,“将10^6的有机物减少到零”,而高水平消毒过程是,“将10^3的有机物减少到零。灭菌被定义为无菌保证水平(SAL),其利用“过度杀灭法”来显示对于正在采用的灭菌方法来说最具挑战性的有机物的12对数去除率(12log reduction)。12对数去除率是指单一的活有机物在灭菌过程中存活的可能性为百万分之一。消毒被定义为三类;高水平消毒(HLED):许多或所有致病微生物,细菌芽孢除外,中水平消毒(ILED):可以是用于分支杆菌,营养菌,多数病毒,和多数真菌的灭菌酚(cidal);但不必须杀死细菌芽孢,和低水平消毒(LLED):杀死多数营养菌,一些真菌,和一些病毒。OEM负责向卫生保健提供者提供准确的清洁和灭菌(或消毒)指导。在销售新的可重复使用医疗设备之前,不允许OEM任意选择清洁和灭菌技术,它们被要求验证清洁和灭菌过程。对于蒸汽灭菌验证来说,OEM在美国可以使用美国国家标准ANSI/AAMI ST79和在其它国际可以使用ISO 17665-1。上述这些标准都被以引用方式并入本专利申请。这些标准包括OEM使用的关于清洁和灭菌方法的灭菌(或消毒)验证测试协议,这样,卫生保健机构不必须对他们购买的每个医疗装置利用他们的灭菌设备来单独验证这些方法。即使这些标准在整个医疗装置行业被卫生保健管理部门和卫生保健提供者接受了,但仍具有人为错误、不可控变化以及灭菌系统设备问题的可能,该灭菌系统设备问题进入卫生保健递送系统、可能导致对可重复使用的医疗设备的灭菌或消毒结果不一致。例如:OEM按照通用标准验证了一组新设备。通用标准要求使用有机物X用于给定的灭菌剂来接种(inoculate)该组新设备。OEM遵从通用协议并且在仅能够盛纳一组设备的小腔蒸汽高压灭菌器(例如14”x14”x24”的腔)中使用这些名义蒸汽过程值验证该新设备至10E-6无菌保证水平(SAL)。从SAL验证得到的OEM指导说明可能如下述:用500等级包裹材料包裹,动态空气去除(pre-vac)循环,灭菌温度132°摄氏度,暴露时间4分钟,干燥时间30分钟。医院建立无菌屏障系统并且遵从所有说明,但不是单一的容器高压灭菌器,它们具有的是腔能够盛纳40个无菌屏障系统容器的大蒸汽高压灭菌器以及能够将装载的支架滚动到高压灭菌器内的带轮架设支架。不可控的变数:OEM是在25℃的环境温度下验证他们的设备(预灭菌设备在25℃开始),而医院在20℃的调控环境中存储他们的预灭菌设备。从热力学来讲,在医院较低的开始温度和大得多的总腔负载使实际的暴露蒸汽/温度持续时间减少至低于用于合适的有机物破坏的经验证水平。人为错误:医院正确地遵从了所有说明,但没有容器的重医疗器械被包括在无菌屏障系统内部。这导致无菌屏障系统内部的所有设备的温度升高降低。灭菌设备问题示例:功率峰值使灭菌器提前了1分钟从而将实际的暴露持续时间缩短了同样的量值。类似的例子对于其它灭菌过程比如过氧化氢灭菌过程和方法也可能发生。可能对医疗装置的灭菌带来问题的另一个因素是在单一过程中对混合设备负载进行灭菌的情况。在本例子中,混合负载是一起进行灭菌的各容器具有相同的灭菌持续时长但干燥时间不同的医疗设备。如果发生这种情况,设备中可能持留一些残留湿气,需要更长的干燥时间。此残留湿气可能芯吸。芯吸导致水痕形成于在穿孔的容器上使用的SBS包裹材料上,但水痕直到手术室工作人员在准备用于下一个手术过程的设备时才能发现。一旦手术室工作人员在准备期间发现水痕,他们必须将所有设备返回无菌处理部重新处理。SBS材料被设计为如果变湿的话将不能保持他们的抗微生物特性。因为不知道它们是什么时候变湿的或是如何被弄湿,所以由于水痕的存在整组设备将被怀疑并且必须重新处理。这些是一些问题示例,这些问题需要更好的系统和解决办法以便有效且安全地提供保健服务。

此外,现行实践,作为灭菌手术器械的过程的一部分,进行测试以证实器械被灭菌的灭菌器正在正确地行使功能。此测试利用生物学指示器进行。生物学指示器包括对正在实践的灭菌模式具有显著抵抗性的已知数量和类型的微生物。

生物学指示器被放置于托盘或容器中并且被进行特定的灭菌过程。生物学指示器可在处理之前被放置于无菌屏障和包裹层中,使其类似于手术工具组那样暴露于灭菌剂。目前使用的许多生物学指示器是独立的。独立的生物学指示器具有被密封到微生物屏障材料的外壳,提供灭菌剂透过并且到达生物学试剂但不允许其它微生物进入的路径。这些生物学指示器在使用过程中不需要容器或包裹材料。

因此,对于在无菌处理部中使用的每种灭菌过程形式来说通常具有不同的生物学指示器。这就需要对无菌处理部进行培训以便对于该部门内的每一种灭菌器和灭菌形式正确地执行生物学指示器测试。例如,如果医院具有高压灭菌器蒸汽和过氧化氢设备两种设备,那么无菌处理部必须购买和维护这两种类型的生物学指示器,并且进行培训以正确地处理这两种生物学指示器。此外,不同制造商的过氧化氢设备通常分别要求在此测试过程中使用特定的生物学指示器。所以如果无菌处理部具有两种过氧化氢系统,而每一个由不同的制造商制造,那么无菌处理部需要熟练操作这两种生物学指示器测试,一个系统一次。细菌芽孢已经被用作生物学指示器。生物学指示器被密封或封装在安全包装内。在暴露于灭菌过程之后,生物学指示器被放置于培养基中并且培养一段时间,之后他们被工作人员读取。例如,蒸汽高压灭菌器的生物学指示器利用106种群的嗜热脂肪地芽孢杆菌并且在培养基中培养最少24小时。对于过氧化氢灭菌剂来说,利用106种群的嗜热脂肪地芽孢杆菌并且以特定温度在培养基中培养24小时。随后的生物学试剂的培养表示灭菌过程失败,生物学试剂微生物在适当的条件下随后不生长表示灭菌过程用于该特殊循环的正确操作。因为在生物学指示器中使用的生物学试剂,与在手术器械上可能发现的常见微生物相比,对他们特定的灭菌剂更加具有抵抗性,生物学指示器已经被去除活性的论证提供了其它微生物、包括负载中可能存在的病原体也遭到破坏的保证。

对于过氧化氢灭菌器来说,典型的无菌处理部每24小时进行一次生物学指示器测试,作为对该设备的正确操作的检查。生物学指示器测试通常自行运行或利用在那一天通过灭菌器机器处理的第一批医疗设备进行。生物学指示器测试可能需要多大24小时来完成。因此,随后的手术器械和工具的负载被检疫完成生物学指示器测试所需的时间周期,以证实灭菌器在正确地行使功能。

许多灭菌过程花费不到一小时的时间。然而,由于需要证实灭菌器在正确地行使功能,所以器械可能检疫多达另外的24小时,以获得生物学指示器测试结果。这意味着在医院,在任何给定的时刻,相当大数量的医院手术器械可能处于检疫过程中。这需要医院具有大量的手术器械库存,以便在任何给定时刻相当大数量器械被灭菌并且可以使用。要求医院保持此大量器械库存可能增加医院维持费用。

如果生物学指示器测试失败,那么在该灭菌器机器中处理的所有这一批手术设备,因为该最后经过的生物学指示器测试,都可能是非无菌的。那么此设备要重新处理进行和灭菌过程。

如果第一次生物学指示器测试指示灭菌器在正确地工作,那么假定灭菌器已经灭菌了被放置于该灭菌器中的器械,直到执行下一个生物学指示器测试之前。即便在这两个相继的测试之间具有灭菌器可能开始出现故障的可能性,依然用此假定。灭菌器可能已经开始不正常工作的情况直到第二次生物学指示器测试的结果被读取时才被得知。然而,在这期间,在第一次测试和第二次测试之间被灭菌的设备可能已经从检疫过程中释放并且在手术中使用了。这意味着在患者身上使用的设备可能是没有被正确灭菌的设备。

此外,必须执行生物学指示器测试需要包括医院工作人员的时间的资源。

用于确定各种灭菌设备的灭菌过程的正确操作的当前过程以及用于随后存储使用微生物屏障具有很多问题,增加了整个灭菌过程的时间和花费。使用微生物屏障和包裹材料来封装手术器械增加了购买材料的费用和部门工作人员包裹和制造包含手术器械的无菌屏障的时间。使用微生物屏障还增加了灭菌剂进入被包裹的封装和完成灭菌的困难,特别是对于低蒸气压力灭菌剂、比如过氧化氢蒸气来说。灭菌屏障材料的变化以及它们如何施加会引起被包裹的封装内灭菌剂浓度的变化。质量的变化、构成材料、和器械负载的表面积也可能引起被包裹的封装内灭菌剂浓度的变化。

使用化学指示器增加了购买化学指示器的费用以及部门人员放置和读取化学指示的时间。使用生物学指示器增加了购买生物学指示器的费用和部门人员放置、培养和随后读取生物学指示器结果的时间。

如果化学或生物学指示器测试失败,则在该灭菌器机器中处理过的所有未使用的手术设备,因为最后一次可接受测试的进行,必须重新处理,再次经历清洁和灭菌过程,增加了时间、费用并且增大了所需的手术器械库存。如上所讨论的,存在还没有被灭菌的器械被使用到患者身上的可能。如果发生了这种情况,可能需要采取适当的措施。另外,如果灭菌器在一个生物学培养阶段具有设备或过程问题的话,该问题可能直到在随后的生物学指示器(BI)培养段结束读取时才能检测到(通过在随后的测试中读取失败的生物学指示器)。这允许从问题发生的那一时刻(在第一个培养段期间)到BI测试失败的时刻从检疫中释放医疗设备的可能性。

确定灭菌过程的验证性的当前过程的另一问题是该过程中的许多步骤取决于人为动作和判断因此易受人为误差影响。人为误差可能在手术器械被不正确地定向和放置在支架和容器上时发生。人为误差可能在放置物品使它们阻挡灭菌剂流进容器并且不利地影响在其中的那些物品的灭菌效率时发生。人为误差可能在容器内放置了太多器械而不利地影响灭菌效率时发生。人为误差可能在容器上下堆叠使灭菌剂不能自由地流到所有这些容器中时发生。人为误差可能在不正确地操作灭菌机器时发生。人为误差可能在不正确地放置和读取化学指示器时发生。人为误差可能在不正确地防止、培养、和读取生物学指示器时发生。



技术实现要素:

本发明针对一种新型且有用的系统和方法,用于确定手术器械是否已经完成灭菌过程循环以及在该灭菌过程循环期间是否已经满足了所需的一组测量值。该系统包括通过多个面板限定的容器。这些面板限定出位于该容器内的腔和进入该容器的开口。该容器将可能位于可移除的插盘内的手术器械接收到腔内。盖被接合到容器并且可在打开位置和关闭位置之间移动。传感器模块被安装到该容器。该传感器模块包括一个或多个传感器。这些传感器被配置和定位用于监控容器内环境的至少一个特征。该传感器模块包括具有关于如何解释从传感器获得的环境测量值的说明的处理器。

这些器械的容器被放置于灭菌腔内,腔门被关闭并且执行灭菌循环。传感器监控容器环境的特征的变化,作为灭菌循环的结果。处理器将被传感器获得的环境测量值与先前的经验证灭菌过程测量值相比较。这些经验证灭菌过程测量值是在前面的灭菌过程期间取得的容器环境的测量值,其中,所述前面的灭菌过程随后的测试已经显示为成功。

如果对环境测量值的评估指示容器内的环境足以实现器械的成功灭菌,则处理器指示手术器械被成功灭菌。可选地,该评估可能指示容器环境不是能够肯定容器内的器械被灭菌的环境。如果这是评估结果的话,那么处理器给出器械没有被正确灭菌的指示。

本系统的益处在于灭菌过程执行后不久,关于器械是否被暴露在它们被正确灭菌的过程的指示即被提供。

附图说明

本发明的特殊性在权利要求中指出了。本发明的上述和其它特征和优势将通过在下面结合附图给出的详细描述中得到理解,其中:

图1是用于医疗/手术器械灭菌的灭菌腔的方框图;

图2是根据一个实施例的用于本发明的医疗/手术器械灭菌的容器的俯视立体图,图中示出该容器从盖和器械支架分开;

图3是图2的容器的立体图,示意出根据一个实施例电子传感器模块被从容器分开;

图4A是根据一个实施例的电子传感器模块的后视图;

图4B是电子传感器模块的正视图;

图4C是电子传感器模块的前面切开图;

图4D是图4A的模块的仰视图;

图5是根据一个实施例的用于医疗/手术器械灭菌的自动关闭容器的俯视立体图,其中盖处于打开位置;

图6是图5的自动关闭容器的俯视立体图,其中盖处于关闭位置;

图7A是根据一个实施例的用于医疗/手术器械灭菌的另一容器的俯视分解立体图,该容器具有防错底部;

图7B是图7A的盖的放大的局部横截面图;

图7C是图7A的容器的一个侧壁实施例的放大截面图,示意出气密连接器和内部发光二极管的细节;

图7D是图7A的容器的另一个侧壁实施例的放大截面图,示意出气密连接器和外部发光二极管的细节;

图8是根据一个实施例的用于医疗/手术器械灭菌的另一个容器的俯视分解立体图,该容器具有防错侧面;

图9A是根据一个实施例的用于医疗/手术器械灭菌的又另一容器的俯视分解立体图,该容器具有安装在盖中的传感器;

图9B是图9A的盖的仰视图;

图10是根据一个实施例的用于医疗/手术器械灭菌的又一个容器的俯视分解立体图,该容器具有被安装到托盘或支架的传感器;

图11A是根据一个实施例的用于医疗/手术器械灭菌的又一个容器的俯视分解立体图,该容器具有被安装到可移除的光学传感器模块;

图11B是图11A的可移除的光学传感器模块的俯视装配立体图;

图11C是图11A的容器的俯视装配立体图;

图12A是根据一个实施例用于感测蒸汽浓度和容器内环境的其它特征的传感器印刷电路板的俯视立体图;

图12B是根据一个实施例用于感测过氧化氢浓度和其它环境特征的另一传感器印刷电路板的俯视立体图;

图12C是根据一个实施例用于感测过氧化氢浓度和其它环境特征的传感器印刷电路板的俯视立体图;

图13是根据一个实施例的电子传感器模块的电气框图;

图14是根据一个实施例的通过存储器或可机读介质存储的软件程序或指令集的方框图;

图15是根据一个实施例的与容器一起使用的停靠站的立体图;

图16是根据一个实施例的与容器一起使用的包括传感器校准的另一停靠站的立体图;

图17是图16和17的停靠站的控制器的方框图;

图18是根据一个实施例用于跟踪容器使用情况和开账单的网络化计算机系统的方框图;

图19A-1和19A-2,当并肩放置时,共同构成待灭菌设备;用于该设备的经验证灭菌过程测量值;传感器模块使用数据;灭菌器过程名义参数;和容器识别数据的列表;

图19B-19E是能够基于特定的内容物识别符和该设备的至少一些的重量进行灭菌的设备列表;

图20A是根据一个实施例的被安装到容器盖的自动关闭盖帽的立体图;

图20B是图20A的自动关闭盖帽的截面图;

图20C是图20A的自动关闭盖帽的分解立体图;

图21是根据一个实施例的用于确定在灭菌过程期间容器内的经验证灭菌过程测量值是否被获得的方法的流程图;

图22是根据一个实施例的用于验证容器环境测量值的方法的流程图;

图23是根据一个实施例的用于确定和验证灭菌过程测量值的另一方法的流程图

图24是根据一个实施例的用于确定和验证灭菌过程测量值的附加方法的流程图;

图25是根据一个实施例的用于监控容器组件的无菌性的方法的流程图;

图26是根据一个实施例的用于在灭菌之前将手术器械装载到容器组件内的方法的流程图;

图27是根据一个实施例的用于校准传感器的方法的流程图;

图28是根据一个实施例的用于监控容器使用情况以及根据单次使用费开账单的方法的流程图;

图29是根据一个实施例的用于医疗/手术器械灭菌的包括可拆除的传感器组件的容器和盖的俯视立体图;

图30是示意出可拆除的传感器组件安装到容器的图29的容器的截面图;

图31是图29的可拆除的传感器组件的分解立体图;

图32是图29的可拆除的传感器组件的分解横截面立体图;

图33是接收器外壳的放大截面图;

图34是接收器盖和固持环的放大截面图;

图35是载架组件的放大截面图;

图36是可拆除的传感器模块的放大截面图;

图37A是可拆除的传感器模块的印刷电路板的后视图;

图37B是可拆除的传感器模块的印刷电路板的正视图;

图38是容器印刷电路板的正视图;

图39是可拆除的传感器组件的装配截面图,示意出可拆除的传感器模块被从接收器分开;

图40是可拆除的传感器模块的装配截面图,示意出可拆除的传感器组件被安置于接收器中的初始位置;

图41是可拆除的传感器模块的装配截面图,示意出内部锁紧机构被致动并且打开板,以将传感器暴露于容器内部环境;

图42是可拆除的传感器模块的装配截面图,示意出在灭菌过程循环期间可拆除的传感器模块处于锁紧位置并且准备好收集数据;

图43是可拆除的传感器模块的装配截面图,示意出板关闭并且可拆除的传感器模块被从接收器拆除;

图44是根据一个实施例的包括与图29的可拆除的传感器组件一起使用的传感器校准的停靠站的立体图;

图45是根据一个实施例用于利用图29的容器和可拆除的传感器组件确定容器内的经验证灭菌过程测量值是否已经完成的方法的流程图;

图46是根据一个实施例的用于医疗/手术器械灭菌的自动关闭容器组件的俯视分解立体图;

图47是图46的自动关闭容器组件内的剪刀式升降机构的放大的俯视立体图;

图48是可移动框架和容器的放大截面图;和

图49是根据一个实施例利用图46的自动关闭容器组件确定在容器内取得的经验证灭菌过程测量值是否得到满足或已经被超过的方法的流程图。

图50是根据一个实施例用于确定在蒸汽灭菌过程期间容器内的经验证灭菌过程参数是否得到满足的方法的流程图;

图51是用于图50的方法的所测量的蒸汽过程测量值与时间的例子的图表;

图52是根据一个实施例用于确定在过氧化氢灭菌过程期间容器内的经验证灭菌过程参数是否得到满足的方法的流程图;和

图53是用于图52的方法的所测量的过氧化氢过程测量值与时间的例子的图表。

具体实施方式

I.概要

图1示意出用于灭菌医疗和手术器械的灭菌设备50。灭菌设备50包括盛纳一个或多个灭菌容器58的灭菌室52。每个容器58可盛纳希望被灭菌的一个或多个手术器械。灭菌室52包括能够在门56关闭后被密封的保护器(containment vessel)54。保护器54具有一个或多个搁板60。容器58布置于搁板60上。

灭菌室52还包括真空泵64。真空泵62可将保护器54内的压力降低到大气压力之下。灭菌药剂或灭菌剂被注射到保护器54内。不同的灭菌剂可被使用,包括气态水蒸气或蒸汽(H2O)70,过氧化氢气体(H2O2)74或气态乙撑氧(C2H4O)74。在灭菌循环期间,灭菌药剂中的至少一种被引入保护器54内。

在灭菌循环期间,利用保护器54,灭菌剂被要求以所需的浓度与所有手术器械接触所需的时间,以实现手术器械的灭菌。灭菌循环完成后,灭菌腔必须被清除所有残留或冷凝的灭菌剂。灭菌剂从该腔的去除率通过使用真空泵64而增大。在保护器54内抽真空致使所有冷凝的灭菌剂蒸发成气体状态并且被去除。

灭菌室52使用一组腔过程参数(CPP)66进行操作。CPP 66是由灭菌设备50在保护器54内产生的环境操作条件。在一个示例性实施例中,CPP 66包括温度、压力、湿度、过氧化氢蒸汽和时间。

II.第一容器实施例

转向图2,示出了本发明第一实施例的容器组件90。容器组件90包括容器100,容器100是大致矩形形状的并且通过相对间隔开的平面前面板102、平面后面板103和一对相对间隔开的平面侧面板104限定。面板102和103正交于面板104定向。平面底面板106垂直于面板102,103和104并且形成容器100的底部。内腔120通过面板102,103,104和106限定于容器100内。容器100具有外表面110,内表面112和上周围边沿113。容器100可由比如冲压或深拉铝、不锈钢、塑料的材料或其它适当的材料形成。

前面板102具有限定于其中的窗口或开口114。开口114通过由比如亚克力或玻璃的透明材料形成的面板116遮盖。透明面板116允许使用者从视觉上看到容器100的内容物。面板116被密封到相邻的面板102。面板116被置于前面板102上,但可以置于背面板103或侧面板104上。

每一个侧面板104具有被限定于外表面110上的凹进部分122,所述凹进部分122从底面板106正(just)上方延伸到边沿113正下方。一系列孔124被限定为穿过凹进部分122并且延伸到腔120内。枢转手柄126被附接到每个侧面板104并且延伸跨过凹进部分122的宽度。手柄126在其中手柄126邻近凹进部分122的存储位置(如图2中所示)和其中手柄126垂直于侧面板104延伸的运送位置之间枢转。手柄126允许使用者抓住和提升容器100。

枢转锁栓128在边沿113下方通过铰链130附接到每个侧面板104。锁栓128具有与盖150的一部分配合的U形卡轨(bail)部分132。锁栓128允许使用者将盖150可松开地锁定到容器100。一对间隔开的L形侧导轨136在凹进部分122的相反两侧安装到内表面112并且远离内表面112朝向腔120垂直延伸。L形底导轨137安装在导轨136位于凹进部分122底部的两端之间。条形码或RFID标签135(图3)安装到侧面板104的外表面110。条形码或RFID标签135可包含与容器组件90有关的信息,比如容器类型或容器100的内容物。

过滤器组件140被安装在腔120内,与侧面板104的内表面112相邻。每个过滤器组件140通过L形导轨136和137支撑和固持。过滤器组件140遮住孔124。过滤器组件140是大致方形形状的并且具有方形框架142和安装在框架142内的过滤器材料144。过滤器材料144是灭菌剂可透过的微生物屏障(barrier)材料。这里“灭菌剂”应了解为具有除去包括无害微生物的生物学污染物的气体,蒸汽或气雾剂。过滤器材料144允许灭菌剂从容器100、通过孔124、通过滤器材料144并且进入内腔120,在这里,灭菌剂能够接触手术器械180。过滤器材料144还形成在容器100已经进行了灭菌过程之后防止微生物进入容器100的微生物屏障。

过滤器组件140通过如下放置:使用者插入框架142并且沿着侧导轨136滑动框架142直到框架142抵接底部导轨137为止。导轨136和137被设计尺寸为当过滤器组件140被插入导轨136和137内时迫使过滤器组件140被压在侧面板104的内表面112上。导轨136,137和框架142被设计尺寸为使得当过滤器组件142被安装在容器100中时在框架142的外周围和内表面112之间形成密封。过滤器组件140被密封地安装到容器90的内表面112以与相邻的面板内表面112形成连续的微生物屏障。

盖150被用于遮盖和封闭容器100。盖150包括包围透明的窗口面板154的大致矩形形状的框架152。盖150具有顶表面155和底表面156。框架152可由比如冲压铝的材料或其它适当的材料形成。透明的面板154由比如亚克力或玻璃的透明材料形成。透明的面板154允许使用者从视觉上看到容器100的内容物。一对块体157被安装到框架152的相反两侧。每个块体157在其中限定出延伸经过块体157的长度的直线沟槽158。锁栓128的卡轨部分132与沟槽158相配合,以将盖150固持到容器100。卡轨部分132被置于沟槽158内,并且锁栓128被向下枢转到其中盖150是可拆除的锁紧位置,并且被密封地锁定到容器100。弹性密封件(未示出)被安装到盖框架152。当盖150被安装到容器100上时,弹性密封件通过密封盖与容器100的上周围边沿113之间的缝隙而防止微生物进入盖和容器100的内部,从而完成用于防止微生物进入放置手术器械180的所述内部的封装。

在无菌处理过程中,支架或插盘160被用于将医疗/手术器械180保持在容器100内。支架160包括大致矩形形状的基部162,四个壁164从基部162垂直向上延伸。一对间隔开的手柄165安装到相对的壁164,允许使用者提升支架160。孔隙166被限定于基部162中。多个支撑构件168从基部162向上延伸。

医疗/手术器械180放在支撑构件168上并且通过支撑构件168支撑。支撑构件168被设计尺寸和形状为使得医疗/手术器械180被固持在进行无菌处理的优选定向中。在一个实施例中,医疗/手术器械180可以是手动器械,比如手术刀、镊子和骨凿。在另一实施例中,医疗/手术器械180可以是电动器械,比如回转式机头、钻、或内窥镜。可重复使用的医疗/手术器械在再次使用之前需要清洁和灭菌,以消灭可能存在的微生物。带有死端内腔的医疗/手术器械180在自动清洗和无菌处理过程中需要被定向为使该内腔水平或指向下,使得液体不会在内腔中积聚并且灭菌剂能够进入内腔和从内腔离开。

电子传感器组件或模块200被安装到前面板102、窗口114下方。电子传感器模块200包含测量容器100中的环境条件的电子部件和传感器。这些部件还确定所需的条件是否已经得到满足,以确保容器100内容物的无菌性。电子传感器组件200可安装到其它容器面板,比如背面板103、侧面板104或盖150。

参考图3,示出了容器100和电子传感器模块200的其它细节。容器100还包括从窗口114的基部向上延伸的升高部分190。斜坡部分192在窗口114的基部和升高部分190之间延伸。一对间隔开的孔194被限定于面板116上。开口196被限定于透明的面板116上、升高部分190上方、以及孔194之间。

电子传感器模块200包括大致梯形形状的壳体202,壳体202具有前侧204,后侧206,顶侧208,底侧210和带角度侧212。壳体202可由任何适当的材料比如注射成型塑料、铝或不锈钢形成。一对带螺纹柱220背离后侧206垂直延伸。

通过将壳体202放置于升高部分190上方并且使柱220穿过孔194,电子传感器模块200被安装到容器100。垫圈224被置于柱220上,紧固件224、比如螺母被螺纹连接到柱220,从而将电子模块200紧固到容器100。垫圈、密封件或可固化密封材料214被用于传感器模块200和容器100之间,以防止微生物通过安装孔194或开口196而进入容器内部。在此位置,电子模块200的后侧206抵接透明面板116并且在开口196上方延伸。通过将现有的容器修改为包括孔194和开口196,电子模块200可被改型至各种现有类型的容器。

绿色发光二极管(LED)230,红色LED 232和黄色LED 233被安装在壳体202内并且通过前侧204上的开口可见。在另一实施例中,LED用另一视觉类型的指示板或显示器代替。这些可选实施例在灭菌或灭菌过程中为使用这些系统的操作者提供设备负载的视觉状态、传感器模块的视觉状态或作为有用的视觉指示器的其它物品的视觉状态。显示器234、比如液晶显示器安装在壳体202内、LED 230-233上方并且通过前侧204上的开口可见。LED 230-233和LCD 234为使用容器100的工作人员提供视觉信息。

条形码、UPC编码或RFID标签135安装到前侧124。条形码或RFID标签135可包含与电子模块200有关的信息,比如电子模块的类型和/或容器100的内容物。条形码或RFID标签135可可选地设置于容器100的其它外面板上或设置于传感器模块200上。

参考图4A,4B和4C,示意了电子传感器模块200的其它细节。电池容腔215被置于后侧206上。电池容腔215容纳着安装在端子217和218之间的电池216。盖219被卡扣配合到壳体202,遮盖电池容腔215。电池216为电子模块200供电。连接器端子243和244被用于连接到电子模块200外部的装置。例如,连接器端子244与电池216连接并且可连接到电源以为电池216充电。连接器端子243可用于在电子模块200和外部装置之间发送和接收数据。

开口226被置于壳体202的背侧206上。多个传感器240耦合到安装在壳体202内的印刷电路板242。传感器240是可见的或通过开口226露出。传感器240测量环境特征,比如温度,压力,湿度和化学物质浓度水平。当壳体202被安装到容器100时,传感器240被定位于开口196上方使得传感器240被暴露于内腔120内的环境条件。在一个实施例中,传感器240可穿过开口196延伸到内腔120内。

其它电子部件被如图4C中所示安装到印刷电路板242,以允许电子模块监控容器100中的环境的特征。处理器250和存储器252安装到印刷电路板242。无线模块254和无源部件256安装到印刷电路板242。无线模块254允许电子模块200与其它外部装置通信。这些装置包括收发器源头(head)和计算机系统。在一个实施例中,无线模块254可从其它外部计算机系统和网络发送和接收数据和指令。

绿色发光二极管(LED)230,红色LED 232和黄色LED 233安装到印刷电路板242。可选地,这三种LED可用彩色LED组件代替,以产生一种或多种完全不同的颜色。这些完全不同的颜色向使用者提供比如容器状态等的信息。例如,红色LED 232可表示设备容器是非无菌的。黄色LED 233可表示设备容器准备好灭菌了。绿色LED 230已经正确地灭菌。显示器234、比如液晶显示器可安装到印刷电路板242。LED 230,232,233和LCD 234为使用容器100的工作人员提供视觉信息。

III.第二容器实施例

图5示意出本发明第二实施例的容器组件300。在图5中,与图2中类似的器件给予了类似的参考标记。容器组件300包括大致矩形形状的容器302。容器302类似于容器100;然而,容器100的一些特征被省略并且添加了其它特征。例如,容器302不包括任何孔124或过滤器组件140。

电子模块200安装到前面板102。电子传感器模块200包含测量容器302内的环境特征并且确定所需的条件是否已经得到满足以确保容器302内容物的无菌性的电子部件和传感器。

容器302还包括四个导圆的肩部304。每个肩部304被置于容器302的内拐角306处并且在底面板106和边沿113之间沿着拐角306的长度延伸。内孔308被限定于每个肩部304中并且延伸到内部隔室310内。线性致动器312被安装在隔室310中的每一个内。每个线性致动器312通过电缆314与电子模块200通信。

盖350被用于遮盖和封闭容器302。盖350包括环绕着透明的窗口面板354的大致矩形形状的框架352。盖350具有顶表面355和底表面356。弹性垫圈357被安装到底表面356,并且当盖350处于关闭位置时在与边沿113配合时建立密封。控制按钮358和359被安装到框架352的前顶表面并且通过无线通信装置(未示出)与电子模块200通信。控制按钮358使盖350关闭而控制按钮359使盖350打开。

四个杆360被接合在盖350和线性致动器312之间。杆360具有近侧端362和远侧端364。近侧端362被置于隔室310内并且被连接到线性致动器312。杆360延伸穿过内孔308,终止于远侧端364处。远侧端364被可拆除地耦合到框架352。电子模块200触发线性致动器312以在线性方向上朝向和远离容器302移动杆360和盖350。

盖350可附接到杆360以及从杆360拆除以便于容器302的装载和卸载。四个快速释放销372被穿过设置于在框架352的每一个内拐角处的孔隙374。快速释放销372与杆360的远侧端364上的内孔(未示出)相配合以将框架352固持到远侧端364。每个快速释放销372具有被内部弹簧向外偏压的一个或多个球形支撑(未示出)。当所有四个快速释放销372被移出时,盖350可从杆360拆除以允许触及内腔120。医疗人员可将托盘160和待灭菌的手术器械手动放置到腔120内。

在打开位置,如图5中所示,盖350被杆360支撑并且被从边沿113间隔开。缝隙或开口370被形成在框架352和边沿113之间。在无菌处理过程中,在该打开位置,灭菌剂可通过开口370进入内腔120和从内腔120离开。

转向图6,盖350被示出为处于密封容器302和容器302的内容物(也就是支架160和手术器械180)的关闭位置。在无菌处理过程中,在电子模块200确定容器302内的操作条件足以满足或超过所需的一组操作条件之后,电子模块200引导线性致动器312关闭盖350并且打开绿色LED 230。盖350的关闭和密封以及“亮着的”绿色LED 230表示容器的内容物被正确灭菌并且容器被正确地密封了。持续“亮着的”的绿色LED230可选地可以是闪烁的“亮着的”绿色LED 230,以使电池的放电率可放慢从而延长电池寿命。

在该关闭位置,垫圈357被保持抵靠在边沿113上,在框架352和容器302之间形成密封。被密封的容器允许容器内的无菌器械从灭菌器50移除,同时在处理后保持容器302内的无菌环境。当封闭容器302内的手术器械180需要用于手术过程时,使用者按下打开按钮359,致使电子传感器模块200引导致动器312将盖350移动到打开位置。然后使用者手动移除快速释放销372和盖350,以允许触及内腔120来移走被灭菌了的手术器械180。

在盖350打开后,容器组件300内的环境可不再是无菌的。当电子传感器模块200打开盖350时,电子传感器模块还关掉绿色LED 230并且打开红色LED 232。红色LED 232的点亮指示使用者容器密封已经破坏。由此推断,这是提示容器的内容物不再是无菌的。如果盖350被打开然后关闭,红色LED 232仍保持点亮,则告诉使用者容器的内容物不再是无菌的。

除防篡改传感器380(图5)之外,容器组件300进一步可选地包括一个或多个防篡改密封件376(图6)。防篡改密封件376和防篡改传感器380用于提示容器组件300在储存过程中是否已经被打开而导致容器组件300内容物的无菌性得到损坏。防篡改密封件376是安装在容器302和盖350之间的胶带或密封件。盖350的拆除或打开导致防篡改密封件376破坏,提示使用者容器组件300内容物的无菌性已经被损坏。

返回图5,防篡改传感器380可包括霍尔效应传感器382和磁铁384。霍尔效应传感器382安装到肩部304的顶部、与内孔308相邻。磁铁384安装到框架352的底侧。霍尔效应传感器通过安装在容器302内的缆线386与电子模块200通信。当盖350处于关闭位置时,磁铁384被与霍尔效应传感器382并置。霍尔效应传感器382感测磁铁384产生的磁场并且向电子传感器模块200发送表示磁铁384存在的电信号。电子模块200可使绿色LED 230保持点亮,指示使用者容器组件300的内容物是无菌的。当盖350被移离容器302时,破坏了由容器组件300建立的无菌屏障,霍尔效应传感器382将表示磁铁384产生的磁场减弱的电信号发送给电子模块200。电子模块因此关掉绿色LED 230并且打开红色LED 232。红色LED 232的点亮提示使用者容器组件300的内容物不再是无菌的。为了延长电池216的电池电荷,LED可以如上所述地进行闪烁为使用者提供提示。

IV.第三容器实施例

参考图7A-7D,示出本发明第三实施例的容器组件400。特别参考图7A,容器组件400包括容器402,容器402是大致矩形形状的并且通过平面前面板403,相对的平面后面板404以及一对相对间隔开的平面侧面板405和406限定。面板403和404正交于面板405和406定向。平面底面板407垂直于面板403-406安装并且形成容器402的底部。内腔420被限定于容器402内。容器402具有外表面410和内表面412。上周围边沿413由面板403-406的上边缘限定。容器402可由比如冲压铝的材料或其它适当的材料形成。

侧面板406具有用对可见光透明但对红外(IR)和/或紫外(UV)光频率不透明的面板416遮盖的开口414。面板416防止外部或内部UV和/或IR光穿过面板416。透明的面板416允许使用者从视觉上看到容器402内的内容物。弹性垫圈415将面板416密封到侧面板406。垫圈415和面板416被使用粘接剂附接到侧面板406。

另一开口418被限定于侧面板406上,从底面板406正上方延伸到开口414下方。开口418小于开口414。开口418被设计尺寸为接收窗口件421。窗口件421可以是透明的或不透明的并且可由塑料材料形成。垫圈或气密性密封件422将窗口件421密封到侧面板406。垫圈422和面板421被使用粘接剂附接到侧面板406。

枢转手柄424被附接到侧面板405和406中的每一个。手柄424具有通过圆形形状的边条426固持到侧面板405和406的端部425。两个边条426被刚性附接并且密封到侧面板405。两个边条426被刚性附接并且密封到侧面板406。端部425被边条426接收和在边条426内可转动。手柄424在其中手柄424邻近侧面板405,406的存储位置和其中手柄424垂直于侧面板405,406延伸的运送位置之间枢转。侧面板405,406还包括被安装到容器402相反两端的一对相对的L形台阶496。更具体地,台阶496背离凸缘453的相对部分大致垂直延伸并且稍稍向下成角度。台阶496与被安装到盖450的锁紧用盖栓446结合使用,以将盖450紧固到容器402。锁紧用盖栓446被使用者向下转动到台阶496上至锁紧位置,在此位置,盖450被固持到并且锁定到容器402同时将盖垫圈456压缩在盖450和容器402之间。此压缩禁止了微生物进入容器。

另外参考图7B,盖450被用于遮盖和封闭容器402。盖450包括大致矩形形状的面板452。盖450可由比如冲压铝的材料或其它适当的材料形成。两个由孔459构成的阵列被限定于面板452上并且延伸穿过面板452。孔459被朝向面板452的每一端定位。在灭菌过程中,孔459允许灭菌剂进入和离开容器402。外周围凸缘453从面板452的外边缘向下延伸。矩形的内壁454从面板452向下延伸并且从凸缘453沿着凸缘453的整个长度向内间隔开。凸缘453和壁454在它们之间限定出U形沟槽455。弹性垫圈456安装在沟槽455内。盖450安装在面板403,404,405和406上使得边沿413坐落在凸缘453和壁454之间并且与垫圈456接触。垫圈456在盖450和容器402之间形成密封。壁454还在面板452下方限定出内部凹槽457。一对间隔开的、相对的L形导轨458背离面板452的底表面垂直延伸到凹槽457内。L形导轨458的终端唇缘451彼此面对。

两个过滤器440安装在凹槽457中。每个过滤器440由过滤器支撑构件442支撑。过滤器支撑构件442具有从过滤器支撑构件442的每一端伸出的向外延伸的肩部443。肩部443通过导轨458的终端唇缘451固持。过滤器支撑构件442还包括孔隙445的阵列。过滤器440遮盖孔459。过滤器440和过滤器夹具442是大致矩形形状的。

过滤器440和过滤器支撑构件442可由挠性材料形成,使得过滤器440和过滤器支撑构件442能够弯曲以允许肩部443在终端唇缘451下面滑动。可选地,过滤器440可由使用者放置在过滤器支撑442上并且将该组合体沿着导轨458插入。导轨458被设计尺寸为使得当过滤器440和夹具442插入导轨458内时过滤器440被压缩或挤压在盖450的内表面上。

过滤器440由灭菌剂可透过的微生物屏障材料形成。过滤器440允许灭菌剂从盖450外面、通过孔459、通过过滤器440、通过孔隙445进入内腔420,在内腔420内灭菌剂接触手术器械。过滤器440还形成用于在容器组件400已经经过了灭菌过程之后防止微生物进入容器组件400的微生物屏障。

锁紧用盖栓446被附接到盖450的每一端。锁紧用盖栓446的一端被可转动地附接到每一个盖端部。锁紧用盖栓446可被上下转动。当锁紧用盖栓446被向下转动并且与L形台阶496接合时,盖450被可移除地锁定到容器402。磁铁448被安装到锁紧用盖栓446的面向内的表面并且如在下面描述地与霍尔效应传感器480一起工作。

电子传感器组件或模块460被安装在容器402内。电子传感器模块460包含在灭菌过程期间测量容器402内环境的特征并且确定所需的条件是否已经得到满足以确保容器402内容物的无菌性的电子部件和传感器。

参考图7A,电子传感器模块460具有矩形形状的印刷电路板(PCB)462。PCB 462包含使电子模块460的各部件电连接的印刷电路线(未示出)。PCB 462通过两个或更多个绝缘间隔件或支座463安装在底面板407上方与底面板407间隔开。紧固件464比如螺钉将PCB 462和支座463固持到底面板407。

传感器被安装到PCB 462以监控容器402内环境的一个或多个特征。这些传感器包括监控水蒸气浓度的传感器472。这有时被称为湿度或蒸汽传感器。传感器473监控容器内的流体(气体)压力。传感器474监控容器内的温度。还具有处理器479和存储器471。而且,安装到PCB 462顶侧的是光学传感器465,其感测在容器402内被传输经过的光学路径长度466的红外(IR)或紫外(UV)光的量。在一个实施例中,光学传感器465检测过氧化氢气体(H2O2)的浓度。在另一实施例中,光学传感器465检测乙撑氧气体(C2H4O)的浓度。在另一实施例中,光学传感器465检测水或水蒸气(H2O)的浓度。在另一实施例中,光学传感器465检测过氧化氢蒸汽(H2O2)和水蒸气(H2O)两者。

光学传感器465包括安装到PCB 462顶侧的IR或UV源或发射器467和IR或UV接收器或检测器468。滤光器(未示出)可围绕着IR检测器468和/或光源467安装,以去除任何不希望的波长。因为过氧化氢气体吸收波长2.93微米的红外光,被传输通过包含过氧化氢气体的已知路径长度466的该频率光的量与过氧化氢气体的浓度成正比。过氧化氢气体还吸收波长在240毫微米附近的紫外光。光通过气体的吸收通过比尔-朗伯定律说明。

半圆形聚光器469被安装到PCB 462。一个聚光器469被围绕着发射器467定位而另一聚光器围绕着检测器468定位。聚光器469反射与检测器468不同轴的光线。细长的光屏蔽件470安装在光学路径长度466和发射器467,检测器468和两个聚光器469上方。光屏蔽件470附接到PCB462。光屏蔽件470防止杂散光线离开光学传感器465和进入内腔420。聚光器469和屏蔽件470由光反射材料比如抛光的不锈钢形成。聚光器469和光屏蔽件470可一起工作,以反射来自发射器467的射线并且使那些射线集中以增大由检测器468检测的能量。

电池497被安装到PCB 462并且为电子模块460的各部件供电。根据电子传感器模块460的电压或功率需求,电池497可由一个或多个电池单元形成以形成电池组。在一个实施例中,电池497是可再充电的电池。在另一实施例中,电池497在放电后用新电池替换。发光二极管(LED)487,比如绿色、红色和黄色LED,被安装到PCB 462。LED 487为使用容器组件400的使用者提供视觉信息。

图7C示意出包含在窗口件421中的其它部件。图7C中的窗口件421由透明材料比如塑料形成。气密性密封的连接器485安装在窗口件421中,并且包含延伸通过连接器485并且电连接至PCB 462的多个端子486。气密连接器485与外部连接器475和缆线476(图7)相连接以发送数据和从容器组件400接收数据。使用者通过窗口件421看到PCB 462上的LED 487。光屏蔽件477阻挡LED 487产生的光,使其不会到达光学传感器465。

图7D示意出包含在窗口件421内的部件的另一实施例。图7D中的窗口件421由不透明材料比如塑料形成。气密性密封的连接器485安装在窗口件421内,并且包含延伸通过连接器865并且被电连接至PCB 462的多个端子486。气密连接器485与外部连接器475和缆线476(图7)相连接,以发送数据和从容器组件400接收数据。在图7D的实施例中,LED487不安装在PCB 462上。LED 487安装在窗口件421的外面并且通过穿过窗口件421延伸的线或端子478连接到PCB 462。窗户412被用密封件、垫圈或可固化密封材料422密封地安装到容器壁406。

返回图7A,霍尔效应传感器480安装到侧壁406的内表面412、边沿413下方,另一霍尔效应传感器480安装到侧壁405的内表面412、边沿413下方。霍尔效应传感器480被通过线481连接到PCB 462。当盖450被置于容器402上方时,磁铁448被与霍尔效应传感器480并置。霍尔效应传感器480感测由磁铁448产生的磁场并且输出表示检测到磁场存在的电信号。当锁栓446被打开以从容器402拆除盖450时,霍尔效应传感器480感测到没有磁场并且输出表示没有检测到磁场的电信号。电子传感器模块460可以使用来自霍尔效应传感器480的信号,来监控在灭菌后锁栓446是否已经得到正确保持或已经被篡改。可选地,用于防止锁紧用盖栓446从L形台阶496脱离接合的、类似单向锁紧用拉链带(未示出)的机械构件可以用作在视觉上表示锁紧用盖栓446已经保持在正确位置上的方式。这些机械式单向锁紧用拉链带一般被断开和拆除,以使锁紧用盖栓446能够从L形台阶496解栓。

假底板490安装在电子模块460和底面板407上方。假底板490是矩形形状的并且具有延伸穿过板490的一系列孔491。假底板490通过支座492支撑在电子模块460上方。支座492搁靠在底面板407上。紧固件494将板490固持到底面板407。紧固件494比如螺钉延伸穿过假底板490、支座493被螺纹连接到底面板407内。孔491允许灭菌剂流到假底板490下面并且流到电子传感器模块460内。这允许模块中的传感器测量容器400内部环境的特征。

使用过程中,包含处于预期定向中的待灭菌的医疗/手术器械180(图2)的支架或托盘160(图2)可被置于容器402内。支架160被放置在和搁靠在板490上。电子模块和传感器460隐藏在板490下面。在将托盘160置于容器402内之后,将盖450置于容器402上方并且将锁紧用盖栓496移动至锁紧位置,将盖450锁紧和密封到容器402。连接器475和缆线476被附接到连接器485,并且存储器471被编程写入经验证灭菌过程测量值(VSPM)。编程之后,容器组件400可以进行灭菌过程循环了。

V.第四容器实施例

图8绘示了本发明第四实施例的容器组件500。容器组件500包括容器502,容器502是大致矩形形状的并且通过平面前面板503,相对的平面后面板504以及一对相对间隔开的平面侧面板505和506限定。面板503和504正交于面板505和506定向。平面底面板507垂直于面板503,504,505和506安装并且形成容器502的底部。内腔520被限定于容器502内。容器502具有外表面510和内表面512。上周围边沿513通过面板503-506的上边缘限定。容器502可由比如压印铝的材料或其它适当的材料形成。

侧面板506具有通过对可见光透明但对IR和/或UV光频率不透明的面板516遮盖的矩形形状的开口514。面板516防止容器502内部或外部的IR和/或UV光通过面板516。透明面板516允许使用者从视觉上看到容器502内的内容物。弹性垫圈515将面板516密封至侧面板506。垫圈515和面板516使用粘接剂或适当的机械紧固件(未示出)附接到侧面板506。另一矩形形状的开口518被限定于侧面板506上、开口514上方和边沿513下面。开口518被设计尺寸为接收气密性密封的开关521。多个安装块519被附接到面板506的内表面512并且延伸到腔520内。两个安装块519被定位于边沿513下方,两个安装块519被定位于面板506底部。

枢转手柄524被附接到侧面板505和506中的每一个。手柄524具有通过圆形形状的边条526固持到侧面板505和506上的端部525。两个边条526被焊接到侧面板505,两个边条526被焊接到侧面板506。端部525被边条526接收并且可以在边条526内转动。手柄524在其中手柄524邻近侧面板505,506的存储位置和其中手柄524垂直于侧面板505,506延伸的运送位置之间枢转。

盖550被用于遮盖和封闭容器502。盖550包括大致矩形形状的面板552。盖550可由比如压印铝的材料或其它适当的材料形成。孔559的阵列被限定于面板552上并且穿过面板552。在灭菌过程中,孔559允许灭菌剂进入和离开容器502。外周围凸缘553从面板552的外边缘向下延伸。内壁554从面板552向下延伸并且从凸缘553向内间隔开。凸缘553和凸缘554在它们之间限定出U形沟槽555。弹性垫圈556安装在沟槽555中。盖550安装在面板503-506上,使得边沿513被安置于凸缘553和壁554之间并且与垫圈556接触。垫圈556在盖550和容器502之间形成密封。四个大致C形的固定夹具558从面板552的底表面向下延伸。夹具558被朝向面板552的中心定位于最外面的孔559周围。

一次性使用或多次使用过滤器540安装在孔559上。过滤器540通过过滤器支撑构件542支撑。过滤器支撑构件542通过固定夹具558被固持到面板552。过滤器支撑构件542由挠性材料形成,使得支撑构件542的两端能够弯曲到固定夹具558下面,以将过滤器540和支撑构件542固持到固定夹具558。过滤器540遮盖孔559。支撑构件542和固定夹具558将过滤器540压在面板552的底侧上、孔559上。过滤器540由灭菌剂可透过的微生物障碍材料形成。过滤器540允许灭菌剂从容器502外面、通过孔559、通过过滤器540并且进入内腔520,在内腔520中灭菌剂接触手术器械。过滤器540还形成用于在容器组件500已经经过了灭菌过程之后防止微生物进入容器组件500的微生物障碍。

容器组件500还包括套芯铰链545。套芯铰链545具有远离侧面板505的边沿513延伸的C形凸缘546和远离盖550的一端延伸的另一C形凸缘547。凸缘546和547彼此配合形成铰链545。凸缘546和547被设计尺寸为当盖550以凸缘546和547彼此接合的方式朝向关闭位置转动时,盖550的一端被固持到容器502。

枢转栓锁548被安装到盖550的另一端。栓锁548被使用者向下转动到开关521上、至其中盖550被固持和锁定到容器502的锁紧位置。栓锁548抵靠着开关521的运动将开关521从断开电路切换到闭合电路。通过使用者远离开关521移动栓锁548并且围绕着铰链545转动盖550,容器组件500被解锁和打开。栓锁548远离开关521的运动将开关521从闭合电路切换到断开电路。

电子传感器组件或模块560安装在容器502内。电子模块560包含在灭菌过程中测量容器502内部环境的特征并且确定所需条件是否得到满足以确保容器502内容物的无菌性的电子部件和传感器。

电子传感器模块560具有矩形形状的印刷电路板(PCB)562。PCB562包含使电子传感器模块560的各部件电连接的印刷电路线(未示出)。各种电子部件和传感器被安装到PCB 562以允许电子模块560监控容器502内部的环境。处理器570,存储器571,水蒸气或蒸汽传感器572和隔离温度传感器574安装到PCB 562的顶侧。膜片式压力传感器573和/或电容压力计安装在内腔520内并且经由缆线575连接到PCB 562。

此外,安装到PCB 562的是感测在容器502内被传输经过光学路径长度566的IR或UV光的量的光学传感器565。在一个实施例中,光学传感器565检测过氧化氢气体(H2O2)的浓度。在另一实施例中,光学传感器565检测水(H2O)的浓度。

光学传感器565包括安装到PCB 562的光源或发射器567和光接收器或检测器568。滤光器(未示出)可安装在检测器568周围,以去除任何不希望的波长。半圆形聚光器569被安装到PCB 562。这些聚光器可具有抛物线形,椭圆形,或使光集中到面对着发射器567的光电检测器上的其它形状。一个聚光器569被围绕着发射器567定位,另一IR聚光器围绕着检测器568定位。

可替换的和/或可再充电的电池580被接收在电池容腔582的开口581中。电池容腔582安装到PCB 562的背侧。电池580通过PCB 562内的印刷电路线(未示出)为电子模块560的各部件供电。电池580可以是单独的电池单元或是一起包装成电池组结构。

发光二极管(LED)584,比如绿色、红色和黄色LED安装到PCB562的顶侧。透明的盖585被安装到PCB 562、LED 584上方。LED 584被使用者通过盖585和窗口516看到。LED 584为使用容器组件500的工作人员提供视觉信息。连接器594被安装到PCB 562并且穿过电池容腔582的底部。连接器594被用于连接外部连接器和缆线,以使电子传感器模块560发送数据或指令组以及从外部系统和装置接收数据或指令组。

电池容腔582以及PCB 562的一部分被包含在绝缘外壳586内。外壳586由绝缘材料比如塑料形成。外壳586是包括内腔587和盖588的大致矩形形状。安装凸缘589远离外壳586并且平行于侧面板506垂直延伸。电池容腔582以及PCB 562的一部分安装在腔587内。盖588被转动至位于电池容腔582上方的关闭位置。开关521也通过线588与PCB 562通信。

外壳586安装到面板506的内表面512。外壳586通过绝缘的间隔件或支座590与底面板507间隔开。紧固件591比如螺钉延伸通过安装凸缘589并且被螺纹连接到安装块519内。

使用过程中,包含处于预期定向中的待灭菌的医疗/手术器械180(图2)的支架或托盘160(图2)放置于容器502内。支架160被放置在并且搁靠在底面板507上。

外部缆线(未示出)被附接到连接器594,以将经验证灭菌过程测量值(VSPM)存储在存储器571中。在器械被放置于容器502内之后,盖550被置于容器502上方,与铰链545接合,然后栓锁548被移动至与开关521接合,到达锁紧位置,将盖550锁紧到容器502。容器组件500现在准备好进行灭菌过程循环了。

VI.第五容器实施例

参考图9A,示出了本发明第五实施例的容器组件600。容器组件600包括容器402的形式。图9A的容器402的形式与在前面描述的图7的容器402相同,除了不存在开口418之外。此外,磁铁624被安装在侧面板405和406的向内朝向的竖直侧表面,稍稍低于边沿413。

另外参考图9B,盖650被用于遮盖和封闭容器402。盖650包括大致矩形形状的面板652。盖650可由比如压印铝的材料或其它适当的材料形成。盖650具有内表面651,外表面654和相反的端部653。孔655的阵列被限定于面板652上并且穿过面板652。在灭菌过程中,孔655允许灭菌剂进入和离开容器402。周围外壁656从面板652的外边缘向下延伸。另一矩形壁657从面板652向下延伸并且沿着壁656的整个长度从壁656向内间隔开。壁656和657在它们之间限定出U形沟槽658。弹性垫圈659安装在沟槽658中。

盖650安装在面板403,404,405和406上方,使得边沿413坐落在壁656和657之间并且与弹性垫圈659接触。垫圈659在盖650和容器402之间形成密封。

盖650还包括被限定于一端653的开口648。开口648被设计尺寸为接收窗口件621。窗口461是透明的并且由塑料材料形成。气密性密封件622将窗口件621密封到端部653。窗口件621和气密性密封件622使用粘接剂附接到端部653。

侧面板405,406还包括安装到容器402相反两端的一对相对的L形台阶496。更具体地,台阶496远离侧面板405,406大致垂直延伸并且以向上的弧形形状稍稍向下成角度。台阶496与被安装到盖650的锁紧用盖栓646结合使用,以将盖650紧固到容器402。锁紧用盖栓646被使用者向下转动到台阶496上,到达锁紧位置,其中,盖650被固持到和锁定到容器402同时将盖垫圈659压在盖650和容器402之间,形成密封。锁紧用盖栓646被附接到盖650的每一端。锁紧用盖栓646的一端可转动地附接到每一个盖端部。锁紧用盖栓646可向上向下转动。当锁紧用盖栓646被向下转动并与L形台阶496接合时,盖650被锁定到容器402。磁铁686安装到锁紧用盖栓646的向内朝向的表面并且如下面所描述地与霍尔效应传感器680一起工作。

单次使用或多次使用的过滤器640安装到盖650的底表面651、孔655上。过滤器640通过延伸过滤器640长度的过滤器支撑构件642支撑。过滤器支撑构件642包括孔隙643的阵列和远离过滤器支撑构件642的两端延伸的一对相反的肩部644。一对间隔开的C形夹具645(图9B)远离底表面651延伸。当过滤器640和过滤器支撑构件642被安装到盖650的底侧651时,夹具645的一部分延伸到过滤器支撑构件642的肩部644上从而将过滤器640固持到盖650。过滤器640遮盖孔655。过滤器支撑构件将过滤器640保持到盖,以使通过孔655的所有材料必须通过过滤器。

过滤器640和过滤器支撑构件642由挠性材料形成,使得过滤器640和过滤器支撑构件642能够弯曲,以允许肩部644滑动到夹具644下面。过滤器640由灭菌剂可透过的微生物障碍材料形成。过滤器640允许灭菌剂从盖650外面、通过孔655、通过过滤器640、孔隙643进入内腔420,在内腔420中灭菌剂接触手术器械。过滤器640还形成用于在容器组件600已经经过了灭菌过程之后防止微生物进入容器组件600的微生物障碍。

盖650还包括外壳630。外壳630具有带U形横截面的大致矩形形状。外壳630可由比如压印铝的材料或其它适当的材料形成。外壳630包括底壁631和侧壁632。侧壁632通过底壁631间隔开并且垂直于底壁631定向。凸缘633远离每个侧壁632的远侧端垂直延伸。安装孔635在外壳630的相反两端延伸穿过凸缘633。底壁631和侧壁632在外壳630内限定出腔或封闭腔638。孔634的阵列被限定在底壁631和侧壁632上。孔634允许灭菌剂进入和离开腔638。外壳630被使用紧固件636比如螺钉安装到面板652的内表面651、与端部653相邻并且从壁657稍稍间隔开。紧固件636延伸穿过安装孔635并且被螺纹连接到内表面651内。

电子传感器组件或模块660安装在被固持到盖650的外壳630内。电子传感器模块660以及在下面描述的模块760和850都包含执行与模块560相同的一般功能的部件。

参考图9A,电子传感器模块660具有矩形形状的印刷电路板(PCB)662。PCB 662包含使电子模块660的各部件电连接的印刷电路线(未示出)。PCB 662被安装和包含在外壳腔638内。绝缘的间隔件618安装在PCB 662上方并且置于盖内表面651和PCB 662之间。

各种电子部件和传感器被安装到PCB 662,以允许电子传感器模块660监控容器402内的操作条件。处理器670,存储器671,湿度或蒸汽传感器672,压力传感器673和隔离温度传感器674被安装到PCB 662的顶侧。安装到PCB 662底侧的是感测在腔638内被传输经过光学路径长度666的IR和/或UV光的量的光学传感器665。在一个实施例中,光学传感器665检测过氧化氢气体(H2O2)的浓度。

光学传感器665包括安装到PCB 662底侧的光源或发射器667和光接收器或检测器668。光发射器667产生IR或UV光。滤光器(未示出)可围绕着发射器667或检测器668安装,以去除任何不希望的波长。

可再充电的电池697被安装到PCB 662的底侧并且通过PCB 662内的印刷电路线(未示出)供电至电子模块660的各部件。发光二极管(LED)687,比如绿色、红色和黄色LED,安装到PCB 662的一端。LED 687为使用容器组件600的工作人员提供视觉信息。盖650内的LED687被使用者通过窗口件621看到。

气密连接器685安装在窗口件621内并且在盖650外面和盖650内部之间延伸。气密连接器685包含被电连接到PCB 662的多个端子。气密连接器685可与外部连接器610和缆线612连接,以发送数据和从容器组件600接收数据。当容器组件600处于密封状态时,气密连接器685允许与电子传感器模块660通信。

另外参考图9B,霍尔效应传感器680被安装到壁657在每一端653处的内部部分。霍尔效应传感器680通过线681连接到PCB 662。当盖650被置于容器402上方时,磁铁624与霍尔效应传感器680并置。霍尔效应传感器680感测磁铁624产生的磁场并且输出表示检测到磁场存在的电信号至处理器670。当盖650从容器402拆除时,霍尔效应传感器680感测到没有磁场并且输出表示没有检测到磁场的电信号到处理器670。

使用过程中,包含处于预期定向中的待灭菌的医疗/手术器械180(图2)的支架或托盘160(图2)放置于容器402内。支架160被放置在和搁靠在底面板407上。在托盘160被放置于容器402内之后,将盖650放置在容器402上方,并且将锁紧用盖栓646移动到台阶496上至锁紧位置,将盖650锁紧到容器402。外部连接器610和缆线612被附接到气密连接器685,存储器671被装载经验证灭菌过程测量值(VSPM)。编程之后,容器组件600准备好进行灭菌过程循环了。

VII.第六容器实施例

参考图10,示出了本发明第六实施例的容器组件700。容器组件700包括容器402。图10的容器402,过滤器440和盖450与在前面描述的图7A的容器402,过滤器440和盖450相同,除了从容器402上省略了开口418之外。

容器组件700包括包含电子传感器组件或模块760的支架或托盘720。托盘720可由适当的材料比如不锈钢或铝形成。托盘720包括大致平面的、矩形形状的基部722,孔726的阵列穿过基部722。基部722具有上表面723和底表面724。周围凸缘728从基部722的边缘垂直向下延伸并且环绕基部722。凸缘728和基部722在基部722下方限定出腔730。孔726允许灭菌剂进入和离开腔730。

托盘720被用于在无菌处理过程中将医疗/手术器械180保持在容器402内。托盘720包括被安装到基部722的相反两端的一对间隔开的手柄732。手柄732允许使用者抓住和提升托盘720。手柄732包括被附接到基部722的一对竖直杆734和在杆734之间延伸的水平抓握杆件736。

多个支撑构件738被安装到基部722从基部722向上延伸。医疗/手术器械180隔靠在支撑构件738上并且通过支撑构件738支撑。支撑构件738被设计尺寸和形状为使得医疗/手术器械180被保持和固持在预定定向中以进行无菌处理。对于一些医疗/手术器械180来说在无菌处理过程中被定向到特定的几何定向是很重要的,这样灭菌剂能够很容易地进入和离开手术器械。

底板714被安装到基部722的底表面724,以封闭腔730。板714具有顶表面716和底表面718。四个间隔开或支座706被置于板714的各拐角处。间隔件706将板714定位于距基部722一固定距离处。紧固件708比如螺钉延伸穿过板714的拐角、间隔件706并被螺纹连接到基部722内,从而将板714固持到基部722。

电子传感器模块760被安装在腔730内。更具体地,模块760安装到板714的顶侧716。

电子传感器模块760具有矩形形状的印刷电路板(PCB)762。PCB762包含使电子模块760的各部件电连接的印刷电路线(未示出)。PCB762安装到板714的一侧716。

各种电子部件和传感器被安装到PCB 762,以允许电子模块760监控容器402内的操作条件。处理器770,存储器771,湿度或蒸汽传感器772,压力传感器773和隔离温度传感器774被安装到PCB762的顶侧。

此外,被安装到PCB 762顶侧的是感测在腔730内被传输经过光学路径长度766的IR和/或UV光的量的光学传感器765。在一个实施例中,光学传感器765检测过氧化氢气体(H2O2)的浓度。

光学传感器765包括安装到PCB 762顶侧的光源或发射器767和光接收器或检测器768。光源767产生IR或UV光。滤光器(未示出)可围绕检测器768安装,以去除任何不希望的波长。

可替换的或可再充电的电池797被安装到PCB 762的顶侧并且通过PCB 762内的印刷电路线(未示出)供电给电子模块760的各部件。发光二极管(LED)787,比如绿色、红色和黄色LED,安装到PCB 762的一端。LED 787为使用容器组件700的工作人员提供视觉信息。当托盘720被置于容器402内时,LED 787能够被使用者通过透明面板416看见。

连接器785安装到PCB 762的另一端。连接器785可附接到外部连接器710和缆线712,以发送数据和从电子模块760接收数据。连接器785被用于为存储器771装载经验证灭菌过程测量值(VSPM)。

托盘720被编程写入VSPM。外部连接器710附接到连接器785。VSPM被从外部源下载到存储器771。因为每个托盘720被设计为适应特定的医疗/手术器械180,所以托盘720只需被编程VSPM一次。VSPM被存储在存储器771中以在随后的灭菌过程循环中使用。

包含处于预期定向中的待灭菌的医疗/手术器械180的托盘720被置于容器402内。托盘720被放置在和搁靠在底面板407上。在将托盘720置于容器402内之后,将盖450置于容器402上方,并且将锁紧用盖栓446移到台阶496上至锁紧位置,将盖450锁紧和密封到容器402。

锁定标签或可破坏的密封件792被附接在锁紧用盖栓496和台阶446之间。标签792的两端穿过锁紧用盖栓446上的开口444并且穿过锁栓49延伸并且进行配合,以形成连续环。标签792指示使用者在容器组件700内是否发生了任何篡改或在无菌处理之后容器组件700内的无菌障碍是否已经破坏。标签792只能使用一次并且被切开以触及容器组件700的内容物。在附接了锁定标签792之后,容器组件700准备好进行灭菌过程循环了。

VIII.第七容器实施例

参考图11A,示出了本发明第七实施例的容器组件800。容器组件800包括容器802,容器802是大致矩形形状的并且通过平面前面板803,相对的平面后面板804和一对相对间隔开的平面侧面板805和806限定。面板803和804正交于面板805和806定向。平面底面板807垂直于面板803,804,805和806安装并且形成容器802的底部。内腔820被限定于容器802内。容器802具有外表面810和内表面812。上周围边沿813由面板803-806的上边缘限定。容器802可由比如压印铝的材料或其它适当的材料形成。

侧面板806具有被对可见光透明但对IR和UV光频率不透明的面板816遮盖的开口814。面板816防止IR和UV光进入内腔820。透明的面板816允许使用者从视觉上看到容器802内的内容物。弹性垫圈815将面板816密封到侧面板806的外表面。垫圈815和面板816被使用粘接剂附接到侧面板806。

容器802还包括的大致U形切口830,切口830设置于侧面板806的底部、开口814下方。切口830通过从侧面板806垂直延伸到腔820内的水平搁板832和从搁板832垂直向下延伸并且终止于底面板807处的U形壁834限定。U形壁834具有中心部分835和在直径方向上对置设置的两个外部部分836。

在直径方向上对置设置的窗口837被限定于外部部分836中的每一个上。窗口837通过内腔820的一部分彼此间隔开。窗口837由透明材料比如塑料形成并且通过粘接剂附接到外部部分836。

气密连接器838被朝向中心部分835的中心安装。气密连接器838包含穿过侧面板838延伸到内腔820内的多个端子。气密连接器838允许与容器802内的电子部件通信。栓锁接收器839被朝向侧面板806的中心安装在边沿813下方。

盖550与在前面描述的图8中的大致相同,除了磁铁840被添加到枢转栓锁548的内表面之外。在灭菌过程中,孔559允许灭菌剂进入和离开容器802。垫圈556在盖550和容器802之间形成密封。一次性过滤器540被安装到孔559上方。过滤器540由过滤器支撑构件542支撑。过滤器支撑构件通过固定夹具558固持到面板552。过滤器540盖住孔559。

支撑构件542和固定夹具558将过滤器540压在面板552的底侧上、孔559上。过滤器540由灭菌剂可透过的微生物障碍材料形成。过滤器540允许灭菌剂从盖550外面、通过孔559、通过过滤器540进入内腔820,在内腔820中灭菌剂能够接触手术器械。过滤器540还形成用于在容器组件800已经经过了灭菌过程之后防止微生物进入容器组件800的微生物障碍。

容器组件800还包括套芯铰链545。套芯铰链545具有从侧面板805的边沿813延伸的C形凸缘846和从盖550的一端延伸的另一C形凸缘547。凸缘846和547彼此配合而形成铰链545。凸缘846和547被设计尺寸为当盖550被以凸缘846和547彼此接合的方式朝向关闭位置转动时,盖550的一端被固持到容器802。

枢转栓锁548安装到盖550的另一端。栓锁548可通过使用者向下转动到其中栓锁548与栓锁接收器839相配合的锁定位置,如图11C中所示。当栓锁548与栓锁接收器839完全接合时,盖550被密封锁定到容器802。通过将栓锁548从栓锁接收器839解锁,盖550被从容器802拆除。

固定的传感器模块850安装在容器502内。固定的传感器模块850的电子部件使用相对低的功率量。

固定的传感器模块850具有矩形形状的印刷电路板(PCB)852。PCB852包含使电子传感器模块850的各部件电连接的印刷电路线(未示出)。霍尔效应传感器854,处理器870,存储器871,湿度或蒸汽传感器872,压力传感器873和隔离温度传感器874安装到PCB 852的前侧。

可替换的和/或可再充电的电池855被安装到PCB 852的后侧。在一个实施例中,因为安装到PCB 852的部件消耗相对低的功率量,所以电池855是手表电池。电池855为电子传感器模块850的各部件供电。

发光二极管(LED)856,比如绿色、红色和黄色LED,被安装到PCB 852的前侧。透明盖857被安装到PCB 852、LED 856上。容器802内的LED 856被使用者通过盖857和透明面板816看到。LED 856为使用容器组件800的工作人员提供视觉信息。

PCB 852被安装在和包含在封壳860内。封壳860由电绝缘材料比如塑料形成。封壳860具有两个大致矩形形状的部分,上部分862和下部分863。上部分862限定出插口864,下部分863限定出插口865。PCB 852被以使PCB 852的两端被包含在插口864和865内的方式安装到封壳860。

带有PCB 852的封壳860安装在内腔820内。封壳860搁靠在搁板832上并且被附接到面板806的内表面812。紧固件866比如螺钉将封壳860附接到内表面512。经由从PCB 852伸出并且与真空连接器838连接的端子879,PCB 852被进一步附接到真空连接器838并且与真空连接器838通信。

可拆除的光学传感器组件或模块900可连接到容器502并且可从容器502拆除。可拆除的光学传感器模块900包含的电子部件与固定的传感器模块850的电子部件相比消耗相对更大的功率量。在可拆除的光学传感器模块900中使用的电子部件成本也高于在固定的传感器模块850中使用的电子部件。在灭菌过程中,可拆除的光学传感器模块900测量容器802内的环境的一个或多个特征。

参考图11A,11B和11C,可拆除的光学传感器模块900包括大致U形的外壳902和至少一个光学传感器950。外壳902由电绝缘材料比如塑料形成。外壳902包括大致U形的外壁904和U形内壁910。中空腔920被限定于外壁904和内壁910之间。外壁904具有中心部分905和远离中心部分905的相反两端垂直延伸的端部部分906。矩形形状的开口908被朝向中心部分905的顶部限定。

内壁910具有中心部分912和远离中心部分912的相反两端垂直延伸的端部部分913。台阶914远离每个端部部分913的远侧端垂直延伸。台阶914平行于中心部分912。矩形形状的透明窗口916设置于每一个外部部分913上。窗口916在直径方向上彼此对置设置。连接器通道918被限定于中心部分912上。连接器通道918允许被附接到传感器950的连接器穿过通道918。紧固件919比如螺钉被用于将内壁910固持到外壁904。

光学传感器模块900被安装在容器802的切口830内并且被其接收,如图11C中所示。固定夹具924安装在开口908中。当光学传感器模块900被在水平方向上放置和滑动到切口830内时,固定夹具924与容器802上的保持凸片925接合并配合。保持凸片925从搁板832的底部朝向切口830向下延伸。固定夹具924和凸片925将光学传感器模块900固持到容器802。通过使用者将固定夹具924拉离侧面板806从而将固定夹具924从与保持凸片925的接合中释放,光学传感器模块900被从容器802拆除。然后可以在水平方向上远离侧面板806滑动光学传感器模块900。

在腔920内,光学传感器950被安装到外壳902。光学传感器950安装在外壁904和内壁910之间。光学传感器950感测在容器802内被传输经过光学路径长度966(图11B)的IR或UV光的量。光学传感器950检测气体、比如过氧化氢气体(H2O2)或乙撑氧气体(C2H4O)的浓度。

光学传感器950具有印刷电路板(PCB)952。IR和/或UV光源或发射器967和光接收器或检测器968被安装到PCB 952的一侧。滤光器(未示出)可围绕着光源968安装,以去除任何不希望的波长。

连接器958被安装到PCB 952的一侧。连接器958延伸穿过连接器通道918(图11B)。当外壳902插入切口830内并且附接到容器802时,连接器958与容器802的连接器838相配合。连接器958和838在相附接时允许在光学传感器950和固定的传感器模块850之间进行通信。在可选实施例中,光学传感器950包括无线收发器,其与固定的传感器模块850内的另一无线收发器通信。

电池954安装到PCB 952的第二侧以供电给光学传感器950。电池954是通过连接器958可再充电的。信号调节和通信装置956也安装到PCB 952的第二侧。信号调节和通信装置956包括逻辑电路、放大器、滤光器和输入/输出接口,以在发射器967,接收器968和固定的传感器模块850之间调节和输出电信号。

当光学传感器模块900附接到容器902时,发射器967产生的光被传输通过第一窗口916,第二窗口837,沿着内腔920内的光学路径长度966,通过第三窗口837,第四窗口916并且被检测器967接收。窗口是对被传输通过这些窗口的光子能量的波长/波长可透射的。

检测器967产生与所接收的IR或UV光的量成正比的电信号,该量与容器802内灭菌剂的浓度成正比。该电信号通过信号调节和通信装置956调节并且通过连接器958和838传输到处理器870,以在确定容器组件800内容物的无菌性时使用。

在使用过程中,包含处于预期定向中的待灭菌的医疗/手术器械180(图2)的支架或托盘160(图2)被置于容器802中。支架160被放置在和搁靠在底面板807上。

外部缆线和连接器(未示出)被附接到连接器838,以为存储器871装载经验证灭菌过程测量值(VSPM)。在将托盘160置于容器802内之后,将盖550放在容器802上方,接合铰链545,将栓锁548移动至与栓锁接收器839相接合,至锁紧位置,将盖550锁紧到容器802。容器组件800准备好进行灭菌循环了。

可移除的光学传感器模块900可附接到容器802并且从容器802可拆除,并且具有多个优势。因为可移除的光学传感器模块900包含可能耗费更大功率量的更高成本的电子传感器部件,所以希望与相对大数量容器802一起重复装载和重复使用相对少数量的可移除光学传感器模块900,包含固定的传感器模块850以降低灭菌系统的总成本。将灭菌传感器电子器件分成两个单独的组件850和950允许使用较少数量的可移除光学传感器模块。

IX.电子传感器印刷电路板

图12A,12B和12C,示意出传感器模块200,460,560,660和760的设计的其它细节。特别参考图12A,示出了蒸汽感测模块1000。蒸汽感测模块专门用于监控和记录蒸汽灭菌过程测量值。蒸汽感测模块1000包括具有顶侧1012和底侧1014的大致矩形形状的多层印刷电路板(PCB)1010。印刷电路线1016被图案化到PCB 1010的每一侧和层上,以使蒸汽感测模块1000的各部件电连接。

处理器1020和存储器1022被安装到顶侧1012。湿度或水蒸气传感器1024安装到顶侧1012。湿度或水蒸气传感器1024可以是湿度计类型的湿度传感器或电容型湿度传感器。湿度传感器1024输出与蒸汽感测模块1000周围的水蒸气的浓度成正比的电信号(电压)。在另一实施例中,水蒸气传感器是带有发射器和检测器的光学传感器,所述发射器和检测器以特定波长工作,监控和读取光学传感器周围的水蒸气浓度。水蒸气光学传感器的操作不在这里详细描述,但以与在下面描述的用于过氧化氢蒸汽的光学传感器1052不同的波长操作。

压力传感器1026安装到顶侧1012。压力传感器1026可以是半导体压阻应变计,其利用被结合或排列的应变仪的压致电阻效应来检测由于所施加的压力而引起的应变。压力传感器1026利用被连接的应变仪来形成使电输出最大并且将灵敏度降低到误差的威特斯通桥电路。压力传感器1026测量绝对压力,以大气压(atm)或巴表示。压力传感器1026输出与蒸汽感测模块1000周围的绝对压力成正比的电信号(电压)。

温度传感器1028被安装到顶侧1012。温度传感器1028的结构不是本发明的构成部分。温度传感器1028输出与蒸汽传感器模块1000周围的温度成正比的电信号(通常是电压)。温度传感器1028被以隔离的方式安装和定位,以使得该安装方法的热学特征使传感器测量环境温度的能力最大化同时来自安装结构和安装位置的干扰最小。

发光二极管(LED)1030,比如绿色、红色和黄色LED,被安装到顶侧1012。连接器1032被安装到顶侧1012。连接器1032用于连接到外部连接器和缆线,以使处理器1020发送数据和从外部系统和装置接收数据。可替换的和/或可再充电的电池或电池组1034被安装到底侧1014。电池1034为蒸汽感测模块1000的各部件供电。处理器1020和存储器1022彼此通信。处理器1020还与传感器1024,1026,1028,LED 1030,连接器1032和电池1034中的每一个通信。

转向图12B,示出了过氧化氢感测模块1050。在使用过氧化氢灭菌器械时使用过氧化氢感测模块1050。过氧化氢感测模块1050包含与在前面描述的用于蒸汽感测模块1000的相同的传感器和部件。另外,过氧化氢感测模块1050还包括感测被传输经过光学路径长度1054的IR和/或UV光的量的一个或多个光学传感器1052。

所述一个或多个光学传感器1052包括IR或UV光源或发射器1056。发射器1056可以是灯泡或LED。传感器1052还包括能够输出与发射器1055发出的光的波长强度成正比的信号的检测器1058。传感器1052被安装到顶侧1012。滤光器1060被朝向检测器1058安装以去除任何不希望的波长。半圆形聚光器1062被安装到顶侧1012。一个聚光器1062围绕着发射器1054定位而另一聚光器1062围绕着检测器1058定位。聚光器1062反射与检测器1058不共轴的光线。聚光器1062由朝向检测器1058有效地反射发射器1054能量的材料比如抛光不锈钢形成。处理器1020还与发射器1056和检测器1058通信。

光学传感器1052被配置用于检测过氧化氢(H2O2)蒸气。因为过氧化氢蒸气吸收波长2.93微米的红外光和波长240毫微米的UV光,所以被传输经过过氧化氢蒸气的已知路径长度1054的光的量与过氧化氢蒸气的浓度成正比。较高浓度的过氧化氢气体导致较少的光到达检测器1058。较低浓度的过氧化氢气体导致更多的光到达检测器1058。在一个实施例中,光学传感器能够测量专门用于灭菌的从0.05mg/l直到25mg/L浓度的过氧化氢。

光通过气体的透射率用比尔-朗伯定律说明。比尔-朗伯定律指出光通过物质的透射率T与该物质的吸收系数α和光通过该材料经过的距离(也就是,路径长度)l的乘积之间的对数依赖性。该吸收系数可以写作该吸收体的摩尔吸收(消光系数)ε和该材料中的吸收物种的摩尔浓度或吸收截面σ与吸收体的(数量)密度N的乘积。对于过氧化氢气体来说,

其中,I0和I分别是没有吸光气体时被传输的光的强度和被传输的光的强度;σ是过氧化氢摩尔吸收系数,N是过氧化氢浓度。光检测器1058输出与过氧化氢感测模块1050周围的过氧化氢气体的浓度成正比的电信号(电压)。

图12C示意过氧化氢感测模块1080的另一实施例。过氧化氢感测模块1080包含与在上面描述的用于过氧化氢感测模块1050相同的传感器和部件,除了聚光器1062已经用不同类型的聚光器代替之外。椭圆形形状的聚光器组件1082被安装到PCB 1010的顶侧1012。

聚光器组件1082包括一对弧形的或U形的聚光器1084和一对细长的、平行的光屏蔽件1086。一个聚光器1084环绕着发射器1056,另一聚光器1084环绕着检测器1058。光屏蔽件1086在聚光器1084之间延伸并且平行于光路径1054与光路径1054间隔开。孔1088的阵列被限定于光屏蔽件1086上。孔1088允许过氧化氢气体沿着光路径1054流通。聚光器1084和光屏蔽件1086由反射发射器能量的材料比如抛光不锈钢形成。在一个实施例中,一个传感器模块使来自蒸汽传感器模块1000和过氧化氢传感器模块1050两者的传感器和电子部件相组合在一起,从而一个传感器模块可在蒸汽和过氧化氢灭菌过程两者中进行监控和记录。当蒸汽传感器模块和过氧化氢传感器模块组合成一个传感器模块时,来自传感器模块1000和1050两者的所有部件和传感器可被引入如上所述的一个传感器模块系统中,或者多余的部件可被去除以节省成本以及减小组合传感器模块的尺寸。

X.电气原理图

转向图13,示出了示例性电子传感器模块的框图1100。图13的示意图意于示意电子传感器模块200,460,560,660,760,1000,1050和1080的特征。图13总体上将参考电子传感器模块1050进行描述。

电子传感器模块1050包括控制器1120。控制器1120包括处理器1020,存储器1022,功率监控器1122和输入/输出接口1124。处理器1020经由一个或多个通信总线1126与存储器1022、功率监控器1122和输入/输出接口1124通信。

处理器1020是适当的微处理器,现场可编程门阵列或专用集成电路。一个或多个指令集或软件被存储在具体化在这里描述的方法或功能中的任何一个或多个的计算机可读介质或存储器1022上。存储器1022是随机存取存储器(RM)或非易失存储器、比如NND闪存或任何其它适当的存储器。处理器1020也可包含存储器,该存储器在处理器运行过程中将程序至少部分地存储在处理器1020内。存储器1022存储至少部分地控制容器组件90,300,400,500,600,700和800的操作的软件或程序。

术语“存储器或计算机可读介质”还应理解为包括能够存储、编码和实现指令集以由处理器执行并且使处理器执行在本发明的不同实施例中示出的方法中的任何一个或多个的任何介质。因此,计算机可读介质或存储器应理解为包括包括,但不限制于,固态存储器,光学和磁性介质,和载波信号。

功率监控器1122调节和控制来自电源1034的功率。输入/输出接口1124提供所需的定时,信号水平和协议以允许处理器1020与控制器1120外部的部件通信。

电子传感器模块1050还包括定时器1132,LED/显示器1030,电源1034,无线收发器1138和一个或多个传感器。定时器1132提供时钟信号和实时时钟给处理器1020。定时器1132可还包括给处理器1020的附加时间信息,比如日期和日期中的时间信息。LED/显示器1030为使用者提供视觉信息。电源1034供电给电子传感器模块1050。电源1034是电池或其它适当的电源。

I/O接口1124与连接器1032和无线收发器1138通信。无线收发器1138包括能够在电子传感器模块1050和其它部件和装置之间发送和接收包含数据和指令的无线信号1140的无线发射器和接收器。在一个实施例中,电子传感器模块1050与灭菌室52无线通信(图1)。在另一实施例中,电子传感器模块1050与开359和关358按钮(图5)无线通信。在另一实施例中,电子传感器模块1050与停靠站无线通信,如在下面描述的。

处理器1020还通过I/O接口1124与电子传感器模块1050的传感器通信。在一个实施例中,传感器与电子传感器模块1050安装在公用封壳内。在另一实施例中,传感器定位于距电子传感器模块1050很远的位置并且通过信号缆线或通过无线通信装置与电子传感器模块1050通信。

湿度或水蒸气传感器1024,压力传感器1026,温度传感器1028和过氧化氢气体传感器1052都经由一个或多个通信总线1142与I/O接口1124通信。致动器312(图5),霍尔效应传感器382(图5)和开关521(图8)也经由一个或多个外部缆线314(图5),588(图8)与I/O接口1124通信。处理器1020经由I/O接口1124从传感器接收表示正在经历灭菌过程的容器内的环境特征的数据。

图13和14以及有关的讨论意于提供适于实施所描述的实施例的示例性控制器或处理器的概要描述。虽然实施例被以存在于存储在控制器内的存储器中的指令的大致环境进行描述,但本领域内的技术人员应认识到实施例可在于操作系统中运行的程序模块的组合中实施。一般来说,程序模块包括例行程序,程序,部件,和数据结构,它们执行特殊的任务或实现特殊的抽象数据类型。

参考图14,示出了存储器1022内容的细节。存储器1022能够存储各种数据,指令集,软件,固件,程序或应用程序以由处理器1020执行并且致使处理器1020执行在这里描述的方法中的任何一个或多个。存储器1022包括经验证灭菌过程测量值(VSPM)1150,灭菌证实软件1152,传感器校准软件1154,数据记录软件1155,数据1156和无菌监控软件1158。

经验证灭菌过程测量值(VSPM)1150是测量值、最小值或极限值,这些值在灭菌过程期间当在容器内得到满足时确保设备负载的灭菌。灭菌证实软件1152利用VSPM 1150来确定容器内的环境是否满足VSPM测量值、最小值或VSPM极限值。

在传感器校准过程中使用传感器校准软件1154来校准传感器。传感器校准软件1154被用于,在利用传感器监控容器内的灭菌过程测量值之前,校准或验证这些传感器的准确度。传感器校准可与图16中的停靠站1300协同进行,或传感器校准软件可被用于独立于停靠站1300来校准传感器。

作为例子,传感器校准软件1154通过测量特定波长的光被吸收的程度来校准测量环境特征的传感器。一个这种传感器是汽化过氧化氢传感器。特别地,此校准在腔接近完美真空、例如约0.2托时进行。这时,实际上腔内没有气体(蒸汽)。当腔和容器环境处于此状态时,不扩展地说,实质上没有发射光的吸收。数据记录软件1155记录测量值,在容器处于此状态时来自传感器检测器的信号作为表示容器没有气体的信号水平。随后代表被测量气体的信号被与此基础信号相比较。基于此比较和在比尔-朗伯定律基础上得到的常数,被测量气体的浓度被计算出来。

XI.停靠站

图15示意出与容器组件90,300,400,500,600,700和800协同使用的停靠站1200的一个实施例。停靠站1200在手术器械装载到容器内的过程中使用并且用于再充电在这里描述的容器实施例的电池。参考图15,停靠站1200包括框架1202和显示器1230。框架1202包括底座1204,底座1204具有彼此间隔开90度的四个支腿1206和支撑构件1208。支腿1206从支撑构件1208的底部向外伸出。轮子1210被安装到支腿1206的远侧端,以允许停靠站1200在医疗机构内移动。

搁板或容器保持架1212被安装到支撑构件1208的上端。容器、例如图2的容器100搁靠在搁板1212上并且通过搁板1212支撑。显示器1230通过具有一个或多个枢转接头1234的铰接臂1232安装到底座1202。通过使用者移动和转动枢转接头1234,臂1232可被移至多个不同的角度和位置。臂1232允许显示器1230被定位于对于医务人员来说最佳的视角内。

停靠站1200还包括手持读取器1240和连接器插头1250。手持读取器1240经由缆线1242与连接器插头1250通信。手持读取器1240可以是条形码扫描仪或RFID读取器。在一个实施例中,手持读取器1240是能够扫描设置于容器组件90-800上的条形码135,235(图3)的条形码扫描仪。条形码读取器还被用于读取可放置于容器中的器械托盘或支架160和720上的条形码。在另一实施例中,手持读取器1240是能够读取设置于容器组件90-800上的RFID标签135,235(图3)的RFID读取器。手持读取器1240将扫描的数据传输至停靠站1200。手持读取器1240被用于获得与容器和/或它们的内容物有关的数据和信息。此被读取的数据可由停靠站进行处理以将信息提供回使用者。例如,停靠站可生成将被装载到容器内的设备组和设备支架的图像。停靠站可提供有关要装载什么、以什么定向装载和如何完成容器的无菌屏障等指令。

如上面所讨论的,每个器械托盘或支架被设计为保持一组特定器械。用于该特殊支架/托盘和相关联的器械的一组经验证灭菌过程测量值是已知的。手持读取器从该托盘或支架获取识别该托盘或支架的数据。基于识别该托盘或支架的数据,停靠站从停靠站存储器获取VSPM数据。这些数据被装载到用于待灭菌的该组器械的传感器模块存储器内。被读取的数据还可以与医院内的其它资产跟踪系统和工作流跟踪系统一起使用,来跟踪容器组件的位置和内容物。

连接器插头1250被安装到搁板1212的近侧部分。连接器插头1250被用于利用缆线和连接器将装置连接到停靠站1200。带有电子传感器模块200的容器100被通过缆线1246连接到停靠站1200。缆线1246的一端被连接到连接器244,缆线1246的另一端被连接到连接器插头1250中的一个插头。缆线1246被用于使电子传感器模块200的电池再充电以及在电子模块200和停靠站1200之间发送和接收数据。例如,经验证灭菌过程测量值可经由缆线1246从停靠站1200发出并且存储在电子传感器模块200中。在另一实施例中,停靠站1200可通过无线装置与电子传感器模块200通信。

显示器1230与位于停靠站1230内部的控制器1402(图17)通信。显示器1230是允许使用者向停靠站提供输入的触摸屏显示器,比如液晶、LED或等离子体显示器。其它输入装置、比如键盘可被连接到停靠站1200。控制器1402可在显示器1230上显示各种图片或屏幕(screen)1260。例如,在图15中,屏幕1260为使用者显示将要放置于容器100的托盘160内的手术器械180。屏幕1260为使用者示意将被放置于托盘160上的器械180的类型、名字或数量以及每个器械180在托盘160上的正确位置和定向。在图15中,被示出的手术器械180是电动手术钻或机头。

在一个实施例中,手持读取器1240读取待灭菌的手术器械180上的条形码。手持读取器经由缆线1242将条形码信息发送至控制器1402。控制器1402可搜索托盘配置的数据库并且为使用者显示出屏幕1260,识别出将与被识别的手术器械180一起使用的正确托盘160以及将被放置于托盘160中的被识别手术器械180的数量、位置和定向。手术器械、器械支架160和经验证的其它物品的组合组成无菌屏障内部的设备负载。此设备负载在图19中被描述为内容物ID 1610。使用者可以在观看屏幕1260的同时在托盘16上以正确的位置组装正确的手术器械180以进行灭菌。屏幕1260帮助防止将不正确的手术器械180和不正确的托盘160放在一起。屏幕1260还帮助防止使用者将手术器械180不正确地定向于托盘160中。

参考图16,示出了停靠站1300的另一实施例。停靠站1300与容器组件90,300,400,500,600,700和800协同使用。停靠站1300在手术器械装载到容器内的过程中使用,用来校准传感器和再充电电池。停靠站1300包括框架1302和显示器1230。框架1302包括大致矩形的底座1304,四个轮子1306被安装到底座1304的拐角处。

面板1308遮盖框架1302的各侧面和后面。一对门1310被安装到框架1302的前面,以允许触及框架1302的内腔1312。矩形形状的校准腔1320被安装到框架1302的上半部、门1310的上方。校准腔1320具有在门1310上方延伸的近侧端和抵接后面板1308的远侧端。校准腔1320具有内侧面板或壁,顶面板或壁,底面板或壁和后面板或壁1322。面板1322限定出内腔1324。在校准过程中,校准腔1320容纳着容器组件、比如容器组件400,以校准包含在容器组件400内的传感器。

门1326通过铰链1328安装到校准腔1320的前面。门1326被移动以打开和关闭校准腔1320。门锁1330与锁插口1332配合以将门1326保持于关闭位置。弹性垫圈1334围绕着门1326的外周围边缘安装并且当门1326关闭时形成密封。

连接器1336安装到内壁1322。当容器组件400被放置在内腔1324中时连接器1336与连接器配合部分1338和缆线1340相配合。缆线1340的另一端可连接到安装至容器402的连接器485。在校准过程期间,连接器485,1336,1338和缆线485允许停靠站1300与容器402内的电子传感器模块460(图7A)通信。虽然,连接器1336在图16中被示出为连接到容器组件400,但容器组件90,400,500,600,700和800中的任一个都可连接到连接器1336并且使用校准腔1320校准。

平面的搁板1342安装在校准腔1320顶部上方并且具有带角度部分1344。使用者可以将容器放在搁板1342上。手持读取器1240在不使用时被存储在带角度部分1344中的保持架1345中。

多个充电插口1346被安装到带角度部分1344。充电插口1346被成形为用于接收被从它们相应的容器拆除的电子传感器模块200(图1),以为电子传感器模块200内的电池再充电。充电插口1346还能够接收可拆除的电池组、比如电池1034(图12B)进行再充电。充电插口1346包含被连接到停靠站1300内部的电池充电器的端子(未示出)。

显示器1230通过具有一个或多个枢转接头1234的铰接臂1232安装到框架1302。通过使用者移动和转动枢转接头1234,臂1232被移动至多个不同的角度和位置。臂1232允许显示器1230被定位到医学工作人员的最佳观看位置。显示器1230可显示如前面关于图15描述的屏幕1260。

现在转而参考图17,绘示了停靠站1200和/或1300的电气框图1400。停靠站控制器1402控制停靠站1200和1300的操作。停靠站控制器1402包括处理器1410,存储器1412和输入/输出接口1414。处理器1410通过一个或多个通信总线1416与存储器1412和输入/输出(I/O)接口1414通信。控制器1402的部件被安装到印刷电路板(未示出)。

处理器1410是适当的微处理器,现场可编程门阵列或专用集成电路。一个或多个指令集或软件被存储在具体化在这里描述的方法或功能中的任何一个或多个的计算机可读介质或存储器1412上。存储器1412是随机存取存储器(RM)或非易失存储器、比如NND闪存或任何其它适当的存储器。处理器1410也可包含存储器,该存储器在处理器运行过程中将程序至少部分地存储在处理器1410内。存储器1412存储控制停靠站1200和1300的操作的软件或程序。

电源1418供电至控制器1402的各部件和停靠站1200和1300的其它部件。电源1418被连接到公共电源。I/O接口1414提供所需的定时、信号水平和协议以与控制器1402内部和外部的部件通信。

I/O接口1414与电池充电器1420和无线收发器1422通信。电池充电器1420用于使包含在被连接到停靠站的电子传感器模块内的电池再充电。无线收发器1422包括能够经由无线信号1424发送和接收数据和指令的无线发射器和接收器。在一个实施例中,停靠站1200和/或1300使用无线信号1424与容器组件90-800通信。

I/O接口1414还与其它外部部件比如键盘1426,显示器1230和手持读取器1240通信。键盘1426用于向停靠站1200和1300输入信息。处理器1410发送将在显示器1230上显示的视频显示数据,比如屏幕1260。手持读取器1240发送数据至处理器1410。

I/O接口1414还与在利用停靠站1300进行校准的过程中使用的多个部件通信。I/O接口经由通信总线1416与蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438通信。所有这些校准部件被安装在校准腔1320(图16)下方的内腔1312(图16)内。

蒸汽发生器1430通过管道连接的方式连接到校准腔1320。在校准过程中,蒸汽发生器1430用于在校准腔1320内产生已知浓度的蒸汽。过氧化氢发生器1432通过管道连接的方式连接到校准腔1320。在校准过程中,过氧化氢发生器1432用于在校准腔1320内产生已知浓度的过氧化氢。压力泵1434通过管道连接的方式连接到校准腔1320。在校准过程中,压力泵1434用于在校准腔1320内产生已知的压力水平。

真空泵1436通过管道连接的方式连接到校准腔1320。在校准过程中,真空泵1436用于在校准腔1320内产生已知的真空水平。加热器1438被安装到校准腔1320的内壁1322的外表面(图16)。在校准过程中,加热器1438用于在校准腔1320内产生已知的温度。在校准过程中,处理器1410控制蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438的操作。

处理器1410经由网络通信结构1452与网络1450通信。在一个实施例中,网络1450经由网络通信结构1458与医疗机构或医院数据处理系统或计算机系统1454通信。停靠站1200和1300可发送和从计算机系统1454接收信息。例如,医院计算机系统1454可维护在医疗机构内使用的手术器械和工具的数据库1456。停靠站1200和1300可将与包含在容器中的无菌或非无菌手术器械的数量和类型有关的信息发送至医院计算机系统1454以更新数据库1456。出于安全目的,在不同计算机系统和数据源之间发送和接收的数据可进行加密以防止未授权的访问或篡改。

存储器1412能够存储各种数据,指令集,软件,程序或应用程序以由处理器1410执行并且致使处理器1410执行在这里描述的方法中的任何一个或多个。出于安全目的。存储在存储器1412中的项目可在存储前进行加密。

存储器1412包括名义腔过程参数(CPP)66,传感器校准软件1460,容器编程软件1461,容器装载软件1464,容器配置数据1465,设备负载数据,经验证灭菌过程测量值(VSPM)1150,过程测量极限值确定软件1466,应用数据1470和应用软件1472。

CPP 66是由卫生保健工人使用用来将CPP 66编程写入到灭菌室52的名义灭菌过程以控制灭菌过程循环的名义工艺设置。在与相应容器相关联的传感器的校准过程中,传感器校准软件1460由停靠站1300使用。在校准过程中,传感器校准软件1460至少部分地控制蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438的操作。

容器编程软件1461用于为容器存储器1022装载VSPM 1150。容器装载软件1464与容器/托盘配置数据1465一起使用来验证正确的手术器械被装载到合适的托盘和容器。

VSPM 1150是与设备负载相关的灭菌过程测量的值,当对于该设备负载来说在容器内得到满足时确保容器内容物的灭菌。容器和托盘配置1464是容器类型,可能需要的托盘和支架类型以及手术器械的数据库,其详述了将与特定手术器械一起使用的托盘以及手术器械在托盘内的放置和定向。使用在这里描述的方法,VSPM 1150被与手术设备负载相互关联。当卫生保健工人在装载和准备容器进行灭菌时,容器装载软件提取手术设备负载配置来帮助这些工人。容器装载软件还能够便于数据输入以记录谁在准备容器,他们什么时候准备的该容器,什么被装载到该容器上以及其它相关信息,所述其它相关信息是根据规定所需要的或对于记录、跟踪或提高容器装载过程的质量来说良好的商业惯例。容器和托盘配置数据可被写成器械支架、器械配置和/或器械定向的文字,图像或文字和图像两者的组合。

过程测量极限值确定软件1466用于确定和生成VSPM 1150数据的值。典型地,过程测量极限值确定软件1466将由器械组的OEM使用,用来建立该设备组合的VSPM数据以及使该设备组合的VSPM数据与灭菌验证(sterilization validation)相互关联。医院或VSPM数据的使用者一般不使用过程测量极限值确定软件1466。如果医院要验证和关联与OEM提供的手术设备负载不同的手术设备负载,那么他们可能使用过程测量极限值确定软件1466。应用数据1470包含跟踪相应容器中的每一个容器经历的灭菌过程循环的数量的数据,或跟踪相应容器中的每一个容器正在使用的小时数。应用软件1472是软件程序,该软件程序监控相应容器中的每一个容器经历的灭菌过程循环的数量,或跟踪相应容器中的每一个容器正在使用的小时数,以及生成应用数据1470。应用数据可用于开账单(billing),无菌处理或工作流状态,校准状态或用于电子传感器模块或容器的定期维修。

在本发明的一些形式中,手持式读取器用于识别哪些特定器械被放置在容器中。灭菌循环过后,由用于容器的传感器模块记录的灭菌过程测量值被与识别该容器中的器械的数据相匹配。对每个器械作,关于器械被暴露于其中的灭菌过程的数量以及在该过程中取得的环境测量值,的日志维护。这些数据还可用于库存和开账单控制。

XII.跟踪容器使用情况的计算机化方法和根据单次使用费开账单

参考图18,示出了用于跟踪容器使用情况和开账单的网络化计算机系统1500的方框图。网络化计算机系统1500包括停靠站1200,1300之一,制造商计算机系统1510和医院计算机系统1454,所有这些通过通信网络1450互连并且相互通信。通信网络1450可包含各种网络,比如因特网、局域网、广域网络或无线通信网络。

制造商计算机系统1510和医院计算机系统1454包括能够接收、存储和运行软件产品的任何类型的计算装置或机器,不但包括计算机系统和服务器,而且包括诸如路由器和开关的装置、大型计算机和终端。下面,将关于存在于服务器计算机内的硬件上的指令的大致环境描述制造商计算机系统1510和医院计算机系统1454的操作。本领域内的那些技术人员将认识到实施例可以在于操作系统中运行的程序模块的组合中实施。程序模块包括软件,例行程序,程序,部件,和数据结构,它们执行特殊的任务或实现特殊的抽象数据类型。本发明还可以在分布式计算环境中实施,其中任务被由通过通信网络链接的远程处理装置执行。在分布式计算环境中,软件程序模块可定位于当地和远程存储器存储装置两者中。

制造商计算机系统1510经由通信结构(communication fabric)1552与网络1450通信。制造商计算机系统1510包括处理器1520和存储器1522。存储器1522能够存储各种数据,指令集,软件,程序或应用程序,以由处理器1520执行。存储器1522包括账单软件1530,账单1532和应用数据1472。应用数据1472可包括医院账户信息,比如医院名字、账户编号、开账单间隔、合同价格和其它相关信息,以正确地跟踪设备使用情况和开账单。

停靠站1200,1300将应用数据1472发送至制造商计算机系统1510。账单软件1530在由处理器1520执行时根据从停靠站1200,1300接收的应用数据1472生成账单1532。处理器1520将账单存储在存储器1532中并且将账单1532发送至医院计算机系统1454。

医院计算机系统1510经由通信结构1458与网络1450通信。医院计算机系统1454包括处理器1570和存储器1572。存储器1572能够存储各种数据,指令集,软件,程序或应用程序以由处理器1570执行。存储器1572包括从制造商计算机系统1510接收的账单1532和数据库1456。

网络化计算机系统1500与其中停靠站1200,1300和容器90-800被租赁或出租给医疗机构或医院的企业模式协同使用。医疗机构或医院根据单次使用费支付使用停靠站和容器的费用。在一个实施例中,停靠站1200,1300跟踪在灭菌处理过程中容器90-800的使用频率并且生成应用数据1472,应用数据1472被发送给制造商计算机系统1510。制造商计算机系统1510基于容器90-800的使用量生成账单1532并且将账单发送给医院计算机系统1454,然后账单被进行处理赔付。

XIII.经验证灭菌过程测量值(VSPM)

图19A-1和19A-2当并排放置时形成经验证灭菌过程测量值(VSPM)1150的表格。VSPM 1150被存储在存储器1412,存储器1522或存储器1572中(图17)。在一些实施例中,VSPM 1150存储在传感器模块存储器1022中。在其它实施例中,VSPM 1150数据以可靠的方式存储在存储器1412,或存储器1522或存储器1572中,使得被相互关联或相关联的VSPM数据在经过如这里描述的验证(validation)和相互关联过程(correlation)之后不被修改。VSPM 1150数据在将下面详细描述的验证和相互关联过程期间进行确定。通常,此验证和相互关联过程被用于将在灭菌验证过程中由容器内的传感器测量的灭菌过程测量值相互关联或相关联到用于给定一组手术设备或设备负载的预期微生物杀死结果。然后,在验证过程中由电子传感器系统测量和记录的数据被用于建立VSPM测量值、临界值或VSPM极限值数据集。在VSPM数据集被验证和相互关联之后,这些VSPM数据集被用于比较在卫生保健机构处的灭菌过程测量值,如通过容器组件内的传感器所监控的,以确定用于本设备负载的过程测量值是满足、超过还是处于VSPM数据集内。此比较方法被认为是证实(verification)方法,在每次卫生保健人员利用在这里描述的方法和系统对手术设备负载或组进行灭菌时,此证实方法可与适当的传感器系统和容器组件一起使用。在一个实施例中,VSPM数据是基于时间的灭菌过程测量值或极限值,根据该验证和相互关联方法,这些值,当对于相关联的一组手术设备来说在灭菌过程中实现时,即确认那些灭菌过程测量值被证实过以确保在验证过程期间实现相同的结果,也就是该设备负载的相同灭菌或消毒水平。VSPM 1150包括与内容物识别符(ID)1610相关联的一个或多个数据集(VSPM 1150-Steam1,VSPM-1150-HPV)。内容物识别符1610识别出无菌屏障或容器内部的手术设备负载。内容物ID 1610说明了手术器械,手术工具180(图2),以及与经验证灭菌过程测量值(VSPM)数据集相关或相关联的、容器或无菌屏障内的器械支架160,720,通常被称为手术设备负载。例如内容物CID 1160-3能够识别包括用于回转式手术机头180的可再充电电池在内的Stryker电池手术设备负载。CID 1160-3可以是手写的、电子的或这两种类型的文字、图像或照片,它们说明了与VSPM数据相关联的设备负载的组成。例如,内容物识别符可包括手术设备类型,零件编号,序列号,数量以及在灭菌验证和相互关联过程中一起验证的其它唯一的设备负载识别符。在一个实施例中,内容物识别符1610可以是使用图22-24中的方法在灭菌验证过程中取得的设备负载的电子照片。在另一实施例中,内容物识别符1610可包括用于在灭菌验证过程中使用的器械支架(160,720)的托盘或支架识别符型号的列表以及包含于其中的所有设备的列表。例如,设备内容物识别符CID-1610-1包括在图19(a)中列出的器械和器皿180-1和被识别为Stryker 7102-450-010的器械支架(160,720)。对于托盘或支架720来说,识别是很重要的,因为它将插管以大致向下的定向定向于回转式手术机头内,便于空气去除和水排出,从而便于灭菌。

当进行一个或多个灭菌过程验证并且所述一个或多个灭菌过程验证被与内容物识别符1610或设备负载相关联时,VSPM 1150还包括经验证灭菌过程测量值的一个或多个数据集。例如用于有效蒸汽灭菌过程的一个数据集(VSPM-1150-S-1)可包含水蒸气测量值,温度测量值和时间极限值和绝对压力测量值以及用于内容物识别符CID 1610-1的时间极限值。在另一实施例中,用于过氧化氢灭菌过程的另一数据集(VSPM-1150-H-1)可包含温度极限值,压力极限值,水蒸气浓度以及与同一内容物识别符CID_1160-1相关联的基于时间的过氧化氢蒸汽浓度曲线下面积。对于蒸汽灭菌来说,该温度是在灭菌过程期间容器组件90-4600内的内部环境和器械负载需要经历的最小时间段上保持的临界值或最小温度,以确保VSPM数据测量值得到满足。例如,用于容器No 7102-450-040的经验证灭菌过程测量值,当支架No.7102-450-010被包含在图19A-1和19A-2的表格的第一行中时。更具体地,这些数据是用于当支架和设置于支架上的器械(统称为负载)经历蒸汽灭菌过程时的VSPM数据。如表格单元格所指明的,如果容器的内部受到最小温度270°F的饱和蒸汽并且该温度被维持至少3分钟55秒,则支架上的器械被认为被灭菌。

饱和蒸汽的温度可由压力测量值计算得到并且与温度测量值相比较,来验证蒸汽是饱和的。所测量的蒸汽温度与所计算的饱和温度的比较还可以用于证实不存在足以不利地影响灭菌效率的量值的空气。

经验证灭菌过程测量值数据1150可具有单次测量作为时间的函数或跨过相同的时间间隔必须同时位于其范围内的临界值或极限值。例如刚刚提供的,蒸汽的温度、绝对压力和饱和水平可具有为3分55秒的时间段建立的极限值。可选地,这些测量得到的过程测量值可具有作为时间的函数变化的特定极限值。例如,第一个2分钟的蒸汽灭菌循环,该温度可具有131℃及以上的最小临界值,而对于下一个2分钟,该温度可具有133℃及以上的不同的临界值。当器械组被设计和验证多于一种类型的灭菌循环时,VSPM可包括多于一种类型的VSPM数据集。如果OEM用蒸汽和过氧化氢灭菌过程两种方式来设计和验证其待灭菌的设备,则VSPM表格包含用于这两种灭菌过程的VSPM数据。在图19A-1和19A-2的表格中,用于不同灭菌过程的VSPM数据在不同的列中示出了。在此表格中,用于蒸汽灭菌过程的VSPM测量值在第一行示出。第二行包含在对器械进行汽化过氧化氢灭菌过程的情况下用于相同负载的VSPM数据。该表格具有两个VSPM数据集,一个数据集用于蒸汽灭菌(VSPM-1150--1),一个数据集用于过氧化氢灭菌(VSPM-1150-H-2),内容物CID 1610-1相同。更具体地,内容物CID 1610-1可与用于蒸汽灭菌的温度、绝对压力和蒸汽饱和度VSPM 1150-S-1数据集以及用于过氧化氢灭菌的温度、绝对压力、过氧化氢浓度和水浓度VSPM 1150-H-1数据集相关联。这提供了,在用于给定设备负载或内容物ID的VSPM数据集已经经过了在这里所描述地验证和相互关联之后,添加这些VSPM数据集以便包括用于特定灭菌形式的附加VSPM数据的能力。传感器模块可被设计为在单一灭菌形式中使用,对于蒸汽来说用SM0000XS表示或对于过氧化氢来说用SM0000XH表示,其中,0000X说明了传感器模块的类型。在另一实施例中,传感器模块还可被设计为在多于一种灭菌形式中使用。例如由SM0000XSH表示的传感器模块可在蒸汽灭菌和过氧化氢灭菌两种形式中使用,其中0000X是指定给传感器模块的序列号。图19在每行中布置有唯一的传感器模块。传感器模块可与任何可兼容的内容物ID 1610一起使用。例如,Stryker传感器模块SM00001S可与内容物识别CID 1610-1,CID 1610-2或CID 1610-5一起使用。

对于一些灭菌过程来说,经验证灭菌过程测量值是随时间生成的测量值。在最简单的形式中,这些测量值是表示容器内环境在所定义的最小时间段上具有最小浓度的特定灭菌剂的测量值。一个简单的例子是表示在至少5分钟的时间段上容器环境包含饱和蒸汽的一组测量值。

更复杂的一组测量值被用于生成曲线下面积。此曲线的X-轴绘示时间;Y-轴是灭菌剂的浓度。典型地,时间用秒表示浓度用mg/l表示。这样,对于容器中的一组器械来说,此经验证灭菌过程可以是其中此曲线下面积为5000(mg/l)(秒)的汽化过氧化氢浓度的过程。这意味着,对于第一个灭菌循环来说,如果在至少200秒的时间段上测量到浓度为25mg/l的汽化过氧化氢,则经验证灭菌过程测量值是令人满意的。对于第二个灭菌循环来说,如果在至少100秒的时间段上测量到浓度为20mg/l的汽化过氧化氢,则经验证灭菌过程测量值是令人满意的。当然应进一步认识到,此曲线下面积通常用于最小浓度的灭菌剂。因此,在上面的实施例中,其中容器环境具有的汽化过氧化氢浓度低于18mg/l的时间段没有归结(integrate)到目标测量值内。

基于时间的过氧化氢浓度曲线下面积是为了确保容器的内容物被灭菌而将容器之一的内部暴露于其中的过氧化氢的临界值或最小值(mg/l)(秒)。例如,当如图19的线2中阐述的那样提供的是内容物ID CID1610-1的设备时,在灭菌过程循环期间,容器Stryker 7102-450-040的内部需要暴露在最小2500mg-s/l的过氧化氢中。如果,在该暴露条件下在任何时刻,水蒸气含量与其在100%饱和度情况下相比较低,那么在其被添加到基于时间的浓度曲线下面积时在该时刻的有效浓度可被降低。例如,当水蒸气的浓度低于饱和浓度的80%时有效浓度可被减半。水蒸气的饱和浓度取决于蒸气温度和存在的过氧化氢蒸气浓度两者。

在图19A中描述的其它实施例中的附加信息可可选地与CID 1610或VSPM 1150数据集或两者相关联。例如,容器ID 1605识别和说明的是在前面进行了灭菌验证过程的特定类型容器90-4600。当灭菌过程结果被已知或被怀疑受到了容器类型或用于设备负载的无菌屏障的类型的影响时,容器ID可被与内容物ID或VSPM数据集或两者相关联。如果容器的类型或在灭菌过程中使用的无菌屏障被已知没有影响灭菌结果,那么容器ID可不与内容物ID或VSPM数据集相关联。前面所述的后一实施例允许在卫生保健机构处用来灭菌的无菌屏障或容器类型换成设备负载,而不改变灭菌结果,只要这些过程测量值被使用在这里描述的传感器模块和方法正确地证实了符合VSPM 1150。例如,被识别的容器识别了由OEM提供的或在医疗机构内的特定容器序列号。该容器ID可识别和翻译成容器类型,所使用的无菌屏障,电子传感器模块200,460,560,660,760,1000,1050,1080类型或传感器模块配置。当使用本发明的不同实施例时,与在图19中列出的内容物ID 1610或VSPM 1150数据或两者相关联的其它数据可能是有用的,但不是必须的。例如,名义过程参数可由停靠站输出,以使灭菌器操作者可以设定用于编程灭菌器的名义过程参数。在本例子中,这些名义过程参数将大于或等于在VSPM 1150数据验证和相互关联到内容物ID 1610的过程中使用的名义过程参数。在其它实施例中,数据表格可还包括传感器模块使用情况。灭菌循环的总数可从传感器模块应用数据获得并且可用于商业目的,比如自动开账单,定期维修以及容器和传感器部件的定期替换。日期、内容物识别符、用于被灭菌负载的容器识别符由中央处理部门使用,用于库存跟踪,开账单和控制目的。

在利用停靠站装载和编程容器的过程中,VSPM 1150的至少一部分被从停靠站发送至电子传感器模块并且存储在模块存储器1022(图14)中。例如,如果容器被装载和编程写入内容物ID 1610-1和托盘ID Stryker7102-450-010,那么只有与内容物ID 1610-1和相关灭菌过程相关联的VSPM 1150--1被从存储器1412发送至存储器1022。

XIV.自动关闭容器通气塞

图20A-20C示意出容器组件1700具有被安装到容器盖1710的自动关闭唇帽组件1720。容器组件1700可将现有的灭菌容器改型为在从电子传感器模块接收关闭信号之后自动关闭的容器。自动关闭容器通气塞当在灭菌过程期间被定位于打开状态时允许灭菌剂不受阻挡地通过进入容器,提供对容器的内容物的更容易触及以实现灭菌。

当由于过滤器存在于容器的贯通开口上而导致灭菌过程的效率降低或被致使无效时,采用容器组件1700。过滤器可能对灭菌过程具有这种影响的一个原因是因为,由于过滤器的构成和灭菌剂的组成,过滤器的存在阻挡了灭菌剂流经过滤器。过滤器的存在可能还不利地影响灭菌是因为,灭菌剂当被暴露于形成过滤器的材料中时会发生降低灭菌剂效率的化学反应。

因此,为了避免过滤器的存在引起这些不好的影响,容器组件1700典型地不包括过滤器。至少在对容器和其中的内容物进行灭菌循环的时间段内,通气塞是敞开的并且流经该通气塞是不受阻挡的。

容器盖1710大致类似于图7A的盖450;然而,盖1710不具有任何孔459或过滤器组件440。盖1710具有平面顶面板1712。顶面板1712具有上表面1714和底表面1716。圆形的中心开口1718被限定于顶面板1712上。盖1710被置于容器402上方以封闭容器402。

容器盖1710和容器通气塞组件1720可被改型至任何在前面描述的容器100,402,502和802,以为所述容器提供在结束灭菌过程循环之后自动关闭的盖。虽然容器通气塞组件1720被示出为安装到盖1710,但容器通气塞组件1720可选地可安装到容器402的任一侧面板。通过将容器通气塞重新定位至不同的面板,它可允许灭菌剂更高效地进入和离开,以实现对容器内容物的灭菌。此外,可在单一容器上使用被定位于一个或多个面板的一个以上容器通气塞1720。

自动关闭容器通气塞组件1720被安装到顶面板1712。更具体地,容器通气塞组件1720被开口1718接收。容器通气塞组件1720包括圆形的载架1722,帽1760,电路板1770和线性螺旋管1780。载架1722包括通过横向构件1724连接到中央鼓形部1734的外环1728。外环1728垂直于横向构件1724。周围边沿1726远离环1728垂直延伸并且环绕着环1728。凹槽1730被限定于环1728和横向构件1724之间。载架1722和容器通气塞1760由注射成型塑料形成。

载架1722安装在开口1718内。边沿1726靠在顶表面1714上,支撑着载架1722。环1728的外表面抵接到面板1712的、由开口1718限定的环形部分。在一个实施例中,载架1722被压配合到开口1718内。在另一实施例中,载架1722被使用粘接剂或被密封的机械紧固件密封地附连到面板1712。

中央鼓形部1734是圆柱形的形状并且具有基部1736。外壁1738和内毂1740远离基部1736垂直延伸。基部1736,外壁1738和内毂1740在其中限定沟槽1742。中央内孔1744整个穿过基部1736和内毂1740。另一内孔1746在沿着内毂1740的长度的近似半途处垂直穿过内毂1740。内孔1746在沟槽1742和内孔1744之间延伸。多个安装凸部1748被附连到基部1736与壁1738相邻。安装凸部1748远离基部1736垂直延伸到沟槽1742内。安装凸部1748被用于将电路板1770附接到载架1722。

帽1760包括被附接到柱形轴杆1765的圆形盘状部1761。盘状部1761具有环形外侧面1762。环形沟槽1763被限定于侧面1762上。沟槽1763被设计尺寸为接收圆形的弹性O环1764。柱形轴杆1765远离盘状部1761的底侧垂直延伸。轴杆1765具有平行于轴杆1765的轴线部分地延伸到轴杆1765内的中央内孔1766。轴杆1765还具有垂直于轴杆1765的轴线部分地延伸到轴杆1765的两个内孔1767和1768。内孔1767和1768具有的长度是轴杆1765直径的大约一半。内孔1767被与盘状部1761的底侧间隔开,并且内孔1768被与中央内孔1766的末端端部间隔开。

印刷电路板1770通过紧固件1771附连到沟槽1742内。沟槽1742被设计尺寸为接收印刷电路板1770。紧固件1771延伸穿过电路板1770并且螺纹连接到安装凸部1748内。多个电部件被安装到电路板1770。电池1772,无线收发器1773,螺旋管外壳1774和螺旋管驱动器1775被安装到电路板1770。线性螺旋管1780被安装在螺旋管外壳1774内并且通过螺旋管外壳1774保持。电池1772是可再充电的或可替换的电池或对电路板1770的部件供电。印刷电路板1770与电子传感器模块200,460,560,660,760和850之一通信。在一个实施例中,无线收发器1773接收来自电子传感器模块200-850之一的无线通信。在另一实施例中,电缆1779连接在电路板1770和电子传感器模块200-850之一之间。螺旋管驱动器1775与线性螺旋管1780通信并且致使线性螺旋管1780移动所附接的杆1782。杆1782可在伸出位置和缩回位置之间线性移动。

盘簧1790围绕着轴杆1765。弹簧固持器1792安装在盘簧1790上方并且包括延伸到内孔1766内的凸部1793。弹簧固持器1792将盘簧1790固持到轴杆1765。弹簧固持器1792具有在弹簧1790的远侧端上延伸并且抵接弹簧1790的远侧端的环形唇缘1794。弹簧1790的近侧端抵接内毂1740的末端端部。弹簧固持器1792被压配合到内孔1766内或使用粘接剂附连在内孔1766中。盘簧1790偏压容器通气塞1760使其朝向载架1722移动。在打开位置,如图20B中所示,通道1996被形成在载架1722和盘状部1761的底部之间。

通过螺旋管杆1782穿过内毂内孔1746并且延伸到容器通气塞内孔1768内,容器通气塞1760被固持于打开位置。在此位置,盘簧1790被压缩。容器通气塞1760被以两步骤过程从关闭位置打开。首先,使用者利用输入装置触发,通过螺旋管1780将螺旋管杆1782缩离内孔1767。在一个实施例中,输入装置是停靠站1200的触摸屏1230(图15)。然后,使用者手动抓住容器通气塞1760并且将容器通气塞1760向上拉,使容器通气塞1760移离载架1722。螺旋管杆1782被弹簧(未示出)向外偏压,使得当容器通气塞内孔1768移动至与内毂内孔1746轴向对准时,杆1782自动伸出到容器通气塞内孔1768内,从而将容器通气塞1760保持于打开位置。

使用过程中,唇帽组件1720和容器盖1710是在灭菌腔中经受灭菌过程循环的容器组件的一部分。在电子传感器模块200-850确定无菌处理过程期间的容器402内环境足以满足或超过所需的一组环境特征(VSPM1150)以确保正在被灭菌的手术器械的无菌性时,传感器模块200-850将电信号经由无线收发器1773或电缆1779发送至螺旋管驱动器1775,命令螺旋管驱动器1775关闭容器通气塞1760。

螺旋管驱动器1775使螺旋管1780将螺旋管杆1782缩回。当杆1782从与内孔1768的接合中移出时,弹簧1790偏压容器通气塞1760使其移动进入凹槽1730从而关闭通道1796。容器通气塞1760的移动通过盘状部1761的底部抵接到横向构件1724上而被限制。同时,O环1764被压缩在盘状部外侧1762和环1728的内表面之间形成密封。

在一个实施例中,当容器通气塞内孔1767移动至与内毂内孔1746轴向对准时,杆1782自动伸出到容器通气塞内孔1767内,从而将容器通气塞1760保持在关闭位置。在另一实施例中,在容器通气塞1760被关闭后,传感器模块200-850将电信号经由无线收发器1773或电缆1779发送至螺旋管驱动器1775,命令螺旋管驱动器1775使螺旋管1780将螺旋管杆1782伸出。在该伸出位置,杆1782的远侧端被内孔1767接收并且与内孔1767接合,从而将容器通气塞1760锁紧到载架1722。

使用自动关闭容器组件1700和自动关闭唇帽组件1720允许现有的容器被改型有自动关闭装置,消除了对过滤器或过滤器组件的需要。当通道1796打开时,灭菌剂能够很容易进入和透过容器402,而不会发生干涉。

在容器及其内容物经历了灭菌循环中的灭菌剂被引入容器内的这一阶段之后,通道1796保持打开另一时间段。这是允许容器中可能存在的残留灭菌剂蒸发并且从容器排出。这种允许灭菌剂排出的优势是,如果灭菌剂可能危及害到组织,那么残留的灭菌剂接触患者或医院工作人员的可能性得到实质上的消除。

在本发明的一些形式中,当传感器测量值指示在所选时间段上容器环境已经处于所选温度或压力时,与传感器模块一体的处理器关闭通道1796上方的帽1760。在本发明的其它形式中,当传感器测量值表示容器已经循环经过设定数量的压力设定点时,处理器关闭帽。

XV.用于在灭菌过程期间确定容器中的经验证灭菌过程测量值是否已经得到证实的操作方法

参考图21,示出了用于在灭菌或消毒过程期间证实容器内的经验证灭菌过程测量值(VSPM)是否已经实现的方法2100的流程图。方法2100示意了在前面附图中呈现的容器组件90,300,400,500,600,700800,2900和4600(90-4600)和电子传感器模块200,460,560,660,760,850,950,1000,1050,1080和3500(200-3500)用来执行能够实施本公开的一个或多个实施例的过程的不同方面的示例性方法。方法2100被特别描述为利用容器组件400(图7)和传感器模块1050(图12B)来执行。然而,方法2100可使用容器组件90-800和电子传感器模块200-3500中任一来执行。对本方法的说明大致参考在前面附图中示出的特定部件。在图21的讨论中,还参考了图1-20中的部件。

方法2100开始于步骤2102,在该步骤中,由操作者来准备设备负载的手术器械180用于进行灭菌过程。步骤2102包括将容器402定位到停靠站1200或1300上,以及,如果容器具有连接器的话,将对应的连接器485,1032连接到停靠站。在可选实施例中,将传感器模块连接到停靠站可通过无线通信系统进行。在步骤2102,手持读取器1240被用于扫描待灭菌的设备负载。在可选实施例中,设备负载或内容物ID可被输入停靠站或从包含具有相关联的VSPM数据的所有设备负载或内容物ID的列表或菜单中选择。步骤2102还包括将设备负载放置到容器402内和用盖450封闭容器。在装载手术器械180的过程中,操作者参考由停靠站1200或1300显示的显示屏幕1260,观察正确的设备负载项目和器械装载定向。此显示器可帮助操作者设定与将VSPM数据验证和相关联至该设备负载时相同的设备负载和定向。在可选步骤2104中,在使用之前校准电子传感器模块460,1050的传感器。电子传感器模块460,1050利用停靠站1300进行校准。在另一可选步骤2106中,手术器械180和/或托盘160和/或容器402在灭菌处理之前被无菌屏障材料包裹。

在步骤2108,传感器模块存储器471,1022被编程写入与该设备负载或内容物ID 1610相关联的经验证灭菌过程测量值(VSPM)数据1150。在停靠站处理器1410(图17)上运行的容器编程软件1461(图17)利用在步骤2102中获得的数据识别出与容器设备负载相关联的特定VSPM1150,并且经由连接器485发送VSPM 1150以存储在传感器模块存储器471,1022上。如先前讨论的,所发送的VSPM 1150是专用于该待灭菌的设备负载(内容物ID)的。在另一实施例中,VSPM 1150被经由无线装置从停靠站发送到容器存储器进行存储。在另一实施例中,步骤2108确认当前存在于传感器存储器中的VSPM数据适合于该容器设备负载并且不执行新VSPM 1150从停靠站到传感器存储器的传输。此可选实施例可用于用于相同设备负载的被重复使用的传感器模块,例如,被安装到定制的器械支架720或专用的容器组件的传感器模块760。

在方框2110处的另外可选的步骤中,在处理器1020上运行的灭菌证实软件1152打开LED 1030中的黄色发光二极管(LED)(在图3中也示出为黄色LED 233),提示使用者容器组件还没有经历灭菌过程循环。

在步骤2112,容器402被放置在灭菌腔52(图1)内。对容器及其内容物进行灭菌过程,此为步骤2114。在灭菌过程中,该腔被加热、加压,并且灭菌剂、比如蒸汽或过氧化氢蒸气被引入灭菌腔内。甚至于,容器内的环境被加热、加压和/或被充满灭菌剂。灭菌过程可包括冷却阶段,干燥阶段或在腔上抽真空阶段以去除任何残留冷凝的灭菌剂。灭菌腔被设定为利用一组名义腔过程参数(CPP)66(图1)操作。

在步骤2114的灭菌过程中,在处理器1020上运行的灭菌证实软件1152监控和收集来自在此灭菌过程循环期间与其通信的相应电子传感器的测量值。这些传感器测量容器中的环境的特征。在处理器1020上运行的软件1152接收代表这些环境特征的信号。这些测量值被作为数据1156存储在存储器1022中。

在灭菌过程完成后,在步骤2116,软件1152使在此灭菌过程期间收集的测量值数据1156与VSPM数据1150相比较。在决定步骤2118,在处理器1020上运行的灭菌证实软件1152确定所进行的灭菌过程期间的测量值数据1156是否满足或超过了为了确保容器内容物的无菌性所设定的VSPM数据内的VSPM数据1150值。例如,如果VSPM 1150具有用于20分钟的250华氏度的最小温度和时间值,则灭菌证实软件1152使这些值与数据1156中所记录的时间和温度测量值相比较。

所测量的容器特征可能满足或超过了VSPM数据1150。如果此条件测试为真,那么,对于包括可关闭通道或通气塞的容器来说,本发明的过程继续执行步骤2120。步骤2120是关闭通气塞或通道。应理解,在步骤2118的评估确定容器环境满足了用于经验证灭菌过程的要求之后,步骤2120不立即执行。相反,步骤2120在所编程的时间段之后或检测到所设定的触发器事件之后进行。这确保了在灭菌循环的实际灭菌阶段完成和通气塞关闭之间有充足的时间使残留的灭菌剂从容器排出。对于不包含可关闭通道的容器来说,当然不执行步骤2120。方法2100继续进行步骤2122。

在步骤2118的测试评估为真之后,本过程继续进行步骤2122。在步骤2122,通过打开绿色LED比如LED 230(图3)或LED 1030中的绿色LED(图12B),处理器1020指示容器的内容物被成功灭菌。

步骤2118的评估测试为假被解释为表示容器的内容物还没有灭菌至所希望的水平。响应于得出本决定,处理器继续进行步骤2126。在步骤2126,通过打开或闪烁红色LED比如LED 232(图3)或LED 1030中的红色LED(图12B),处理器1020给出容器的内容物没有成功灭菌的指示。在本发明的带有被选择性关闭和打开的帽的形式中,图中没有示出通气塞或端口的打开。

步骤2122或步骤2126的完成是单一灭菌循环的结束。

XVI.确定用于单个容器负载的经验证灭菌过程测量值

图22是确定用于单一的、被定义容器负载的经验证灭菌过程测量值(VSPM)1150的方法2200的流程图。此方法还可被应用于确定经验证消毒过程测量值,其中灭菌和消毒之间的主要差别是生物学挑战性有机物去除率的量值,对于灭菌来说有机物去除率是106,而对于消毒来说有机物去除率是103。方法2200被具体讨论为使用容器组件400(图7)和传感器模块1050(图12B)来执行。然而,前述容器组件90-800和电子传感器模块200-3500中任一可被用于执行本方法2200。对该方法的描述大致参考在前面附图中示出的特定部件。在图22的讨论中,还参考图1-20的部件。

方法2200开始于步骤2202,在步骤2202由操作者准备手术器械180设备负载以进行灭菌验证。在步骤2202,手术设备负载被选择和准备以进行所选灭菌形式的验证。该手术设备负载包括预期进行灭菌验证的无菌屏障内部的所有物品。设备负载可包括手术器械180以及预期存在的器械托盘或支架160。步骤2202可还包括将手术设备负载放置于容器402内。在步骤2202,为构成设备负载的容器的所有内容物准备文档资料。文档资料可包括材料的手写账单、材料的电子账单、内容物的说明和零件号、拍摄的内容物照片或这些类型的文档资料的组合。被制成文档资料的设备负载可被指定为内容物ID 1610,如图19中描述的。在另一实施例中,步骤2202还包括按照无菌保证水平验证或消毒验证的标准实践放置带有生物学挑战微生物的生物学挑战或接种设备。为该设备接种用于蒸汽灭菌的微生物的一个标准实践可以在ANSI/AAMI/ISO TIR17665-2:2009,Sterilization of health care products-Moist heat第2部分:Guidance on the application of ANSI/AAMI/ISO 17665-1,中找到。步骤2202包括完成用于容器的无菌屏障,其可以将容器包裹在无菌屏障材料中,安装新过滤器,适当地设置容器通气塞或完成用于容器的无菌屏障、无菌屏障类型和灭菌形式的其它适当方法。对于容器组件400来说,安装新过滤器440和栓锁盖组件450以与容器402密封在一起即完成无菌屏障。

此外,在步骤2202,存储在存储器471,1022上的数据记录软件1155被触发以在处理器1020上运行。数据记录软件1155在测试灭菌过程循环期间监控和记录如由传感器模块所测量的评估过程测量值,以存储在传感器模块存储器471,1022上。

容器402被放置于灭菌腔52(图1)内并且在灭菌腔52内开始测试灭菌过程循环(步骤2204)。灭菌腔通常被设定为利用一组名义腔测试过程参数操作。在测试灭菌过程循环期间,灭菌腔被加热、加压并且灭菌剂,比如蒸汽或过氧化氢蒸气,被引入灭菌腔内。灭菌过程循环通常包括冷却阶段或抽空阶段以去除任何残留和/或冷凝的灭菌剂。

此外,在步骤2204,在处理器1020上运行的数据记录软件1155在测试灭菌过程期间监控和收集与其通信的相应电子传感器的测量值数据。传感器记录无菌屏障内的评估过程测量值和条件。所收集的测量值数据被存储在存储器1022中作为数据1156。例如,在处理器1020上运行的数据记录软件1155收集来自水蒸气传感器1024的水蒸气数据,来自压力传感器1026的压力数据,来自温度传感器1028的温度数据和来自过氧化氢气体传感器1052的过氧化氢浓度数据。在一些实施例中,这些数据被作为时间的函数同时跟踪和记录,以获取在无菌屏障内经历的基于时间的评估过程测量值。

在步骤2206,容器402被从灭菌腔52移除并且对设备负载评估所实现的灭菌水平。在一个实施例中,操作者培养和读取生物学挑战物(接种的微生物)并且确定微生物的存活率是否低于预定的预期水平。在另一实施例中,0%的微生物存活率表示评估过程测量值足以确保在灭菌过程中所有病原体被破坏。

如果灭菌水平不是可接受的,则操作者可以修改设备负载、名义灭菌过程参数或无菌屏障。操作者可以修改这些项目中的一个或多个,或可能影响测试灭菌过程结果的任何其它可控项目。例如,修改腔(52)过程参数可包括增加一个或多个灭菌腔52过程参数。在一个实施例中,在步骤2208,增大温度水平和测试灭菌过程时间的致死部分。在另一实施例中,步骤2208包括修改容器402的内容物。例如,更少的手术器械180被放置于无菌屏障内部。然后方法2200返回步骤2202,其中容器402和设备负载被在灭菌腔52中进行重新处理,重复上述步骤,直到在步骤2206中获得预期的灭菌水平。

响应于设备负载的灭菌水平是可接受的,所记录的传感器测量值被从传感器模块存储器1022收集起来并且这些测量值作为与该设备负载相关联的经验证灭菌过程测量值(VSPM)。VSPM 1150是基于所接收的评估测量值数据1156,这些数据被在功能上确认在设备负载内的污染物上发挥了作用,其中这些评估测量值成为经验证测量值。在一个实施例中,在步骤2210,在停靠站处理器1410上运行的过程测量值验证软件1466从传感器模块存储器1022读取被记录的评估测量值数据1156,并且将此数据存储在停靠站存储器1412上。此外,在此实施例中,在步骤2210,操作者利用由传感器模块记录的评估测量值数据1156来确定和生成用于经验证灭菌过程测量值(VSPM)1150的值。在确定了VSPM 1150之后,操作者将VSPM 1150输入至停靠站1200,1300和并且引导VSPM 1150被存储到存储器1412。

在另一实施例中,在停靠站处理器1410上运行的过程测量值验证软件1466自动由评估测量值数据1156生成VSPM 1150并且将该数据存储在停靠站存储器1412上,在步骤2210。在所有实施例中,设备负载到VSPM的相互关联使用于预期灭菌水平的过程步骤2210结束。

在可选步骤2212中,操作者建立用于VSPM 1150的测量极限值。测量极限值可包括用于被包括在VSPM 1150数据集中的一个或多个传感器读数的上和下极限值。这些读数极限值可仅包上极限值或仅包括下极限值。例如,在一个实施例中,操作者能够确定在测试灭菌过程期间经历的最小时间或时间下极限值是20分钟而最大时间或时间上极限值是40分钟。在另一实施例中,操作者能够确定在测试灭菌过程期间经历的温度下极限值是270°华氏度。在测量极限值在此可选步骤中被确定之后,操作者设置用于VSPM的测量极限值并且引导测量极限值被存储到存储器1412。当用于VSPM 1150的测量极限值被关联到用于预期灭菌水平的设备负载时可选步骤2212结束。方法2200终止。

应理解,确定器械的负载是否在步骤2206中被成功灭菌的定义与这些器械的可接受灭菌程度有关。一些器械如果只进行了消毒则被认为进行了充分灭菌。应理解消毒具有比灭菌低的无菌保证水平。因此,本发明的方法2200以及灭菌过程和设备可被用于提供是无菌的、但不像被应用于皮肤下方的组织的器械通常所需要的那样无菌的器械。

一旦用于容器负载的一组经验证灭菌过程测量值被生成,这些测量值即被用于确定负载是否被灭菌,即使该负载被放置于与生成用于该负载的VSPM的容器不同的容器中。这是因为改变围绕该负载的无菌屏障(容器)的形式只会改变围绕着该负载的环境在灭菌过程期间变化的速率。

例如,当两个容器之间的差别仅在于它们的气孔率时,这些容器中的环境特征的关键差别是这些特征改变的速率。因此,当灭菌剂被引入这两个容器中时,孔较多的容器中灭菌剂的浓度比孔较少的容器中的浓度上升的速度快。因此当相同的负载在这两个不同的容器中进行灭菌过程时,主要区别是与形成该负载的器械相邻的灭菌剂浓度到达预期的、经验证水平所需的时间。只要灭菌剂的浓度处于经验证浓度水平持续经验证时间周期,则形成该负载的器械就会达到预期的无菌性水平。

本发明的此特征使医院在对特定负载的器械进行灭菌时不再必须每次都将那些器械放置于特定容器中进行。如果被设计用于一组器械的容器不能用了,这些器械还可以被放置于可选的容器中。只需要与该本容器一体的感测单元能够(1)测量容器内部的特征和(2)比较所测量的环境特征与用于该负载的VSPM。当这些条件得到满足时,该可选的容器可用于在灭菌期间容纳这些器械,并且其感测单元将提供关于这些器械是否被成功灭菌的指示。

XVII.验证和关联经验证灭菌过程测量值的操作方法

参考图23,示出了确定、关联和验证灭菌过程测量值(VSPM)1150的另一方法2300的流程图。方法2300被讨论为使用容器组件400(图7)和传感器模块1050(图12B)执行。然而,前述容器组件90-800和电子传感器模块200-1080中任一可被用于执行方法2300。对该方法的描述总体参考在前面附图中示意的特定部件。在图23的讨论中,还参考图1-20的部件。

方法2300描述了操作者通过灭菌保证水平验证设备负载的步骤。在步骤2302,选择和准备手术设备负载以进行所选灭菌形式,例如蒸汽、化学物质或过氧化氢,的验证。手术设备负载包括无菌屏障内的、预期进行灭菌验证的所有物品。步骤2302包括将容器402定位于停靠站1200或1300上,并且如果容器具有连接器的话,将对应的连接器485,1032连接到停靠站。在步骤2302,构成该设备负载的容器的所有内容物被准备文档资料。文档资料可包括材料的手写账单、材料的电子账单、内容物的说明和零件号、拍摄的内容物照片或这些类型的文档资料的组合。在步骤2302,手持读取器1240可被用于扫描容器402,托盘160和手术器械180,以帮助该设备负载的文档资料准备。

在步骤2304,生物学挑战装置、生物学指示器或微生物接种过程被用于进行灭菌保证水平验证的生物学挑战。这些生物学装置或过程包括在使用过程中对灭菌模式具有阻抗性的已知的数量的微生物。这些生物学负载被用于确定利用测试灭菌过程是否已经对给定的设备负载实现了正确的灭菌水平。

在步骤2306,该设备负载被放置于容器402中,容器402包含电子传感器模块460并且用包括适当的无菌屏障过滤器440的盖450组件封闭。在步骤2308,存储在存储器471,1022上的数据记录软件1155被触发而在处理器1020运行。在停靠站处理器1410(图17)上运行的过程测量值验证软件1466(图17)发出指令,使数据记录软件1155在测试灭菌过程循环期间监控和记录过程测量值,以存储在传感器模块存储器471,1022上。在处理器1020上运行的数据记录软件1155在测试灭菌过程循环期间监控和记录这些过程测量值。在可选步骤2310,适合于该种类型的容器和灭菌过程的无菌屏障在将容器放置在灭菌器腔52内之前完成。

容器402被放置于灭菌腔52(图1)内,然后在灭菌腔52内开始测试灭菌过程循环(步骤2312)。在灭菌过程循环期间,灭菌腔被加热、加压,并且灭菌剂、比如蒸汽或过氧化氢蒸气被引入灭菌腔内。灭菌过程循环通常包括冷却阶段和在腔内抽真空以去除任何残留和/或冷凝的灭菌剂。灭菌腔被设定为利用一组名义测试过程参数操作。

此外,在步骤2312,软件1155在灭菌过程循环期间监控和收集来自与其通信的相应电子传感器的基于时间的数据。传感器测量无菌屏障内的环境特征。所收集的测量值被存储为数据1156。例如,在处理器1020上运行的数据记录软件1155收集来自湿度传感器1024的水蒸气或湿度数据,来自压力传感器1026的压力数据,来自温度传感器1028的温度数据和来自过氧化氢蒸气传感器1052的过氧化氢浓度数据。这些测量值数据可被存储在存储器1022中直到在步骤2320中被发送至停靠站存储器。

测试灭菌过程完成之后,在步骤2314,进行适当的测试来确定形成该负载的器械是否无菌至可接受水平。执行这些的手段不是本发明的一部分。

在决定步骤2316,操作者确定步骤2314的测试结果指示形成该负载的器械是否被可接受地灭菌。如果步骤2316的评估测试为假,则这些器械被进行随后的测试灭菌过程,重新选择步骤2306-2312。执行该随后的灭菌过程之前,在步骤2318,该随后的灭菌过程被修改以使得在刚刚执行的测试灭菌过程和该随后的测试灭菌过程之间具有至少一个不同。对灭菌过程的此修改可包括增加一个或多个灭菌腔52过程参数。在一个实施例中,在步骤2318增加温度水平或过程循环时间。在另一实施例中,步骤2318包括修改容器402的内容物。例如,较少的手术器械180被用于该设备负载,或者可使用不同类型的无菌屏障设计。

在执行该随后的灭菌过程之后,对该器械负载进行在前面描述的灭菌测试步骤2314。重新执行步骤2316,确定该测试的结果是否指示构成该容器负载的器械被成功灭菌。

灭菌过程之后,步骤2316的评估的结果可能测试为真。当发生这种情况的时候,操作者指定由传感器记录的数据1156以确定作为用于该负载的经验证灭菌过程测量值(VSPM)1150的值。在步骤2302,VSPM1150数据被与该负载相关联。在确定VSPM 1150之后,操作者使用键盘1426或电子数据传输方法将VSPM 1150和相关联的设备负载输入到停靠站1200,1300,并且引导VSPM 1150存储到与设备负载相关联的存储器1412。

在另一实施例中,在步骤2322,在停靠站处理器1410上运行的过程测量值验证软件1466自动由实时测量值数据生成VSPM 1150并且将该数据存储在停靠站存储器1412上。在所有实施例中,该设备负载到VSPM的相互关联使用于预期灭菌水平的过程步骤2322结束。

在可选步骤2324中,操作者建立用于VSPM 1150的测量极限值。这些测量极限值包括用于被包括在VSPM 1150中的一个或多个过程测量值的上极限值和/或下极限值。例如,在一个实施例中,操作者能够确定对于预期的灭菌水平来说第一个2分钟的最小温度或温度下极限值是270°F,而下一个3分钟的另一最小温度极限值是272°F。这些过程极限值的确定利用从分别具有不同的灭菌过程测量值和条件的一个或多个灭菌过程验证循环中收集的数据执行。过程测量极限值被确定之后,操作者设置用于VSPM 1150的过程测量极限值,并且利用键盘1426或电子数据传递将它们关联至该设备负载,并且引导这些过程测量极限值存储到存储器1412。另外,VSPM数据集至该设备负载的关联被存储到存储器1412。然后方法2300结束。

XVIII.利用过度杀死方法确定和关联经验证灭菌过程测量值的操作方法

参考图24,示出了用于确定和相互关联经验证灭菌过程测量值(VSPM)1150的附加方法的流程图。方法2400被讨论为利用容器组件400(图7A)和传感器模块1050(图12B)执行。然而,前述容器组件90-800和电子传感器模块200-1080中任一可被用于执行方法2400。对本方法的描述被提供为大致参考前面附图中示意的特定部件。在图24的讨论中,还特别参考图1-20中的部件。

方法2400开始于步骤2402,其中,选择该设备负载的手术器械180用于灭菌。该设备负载被定义为无菌屏障内部的所有物品,可能不但包括手术器械180而且包括可能存在的器械支架160。通过吃力地定位器械到用于灭菌剂穿透和执行灭菌的最佳定向中,位置器械支架可帮助实现灭菌。在步骤2404,生物学测试装置或生物学挑战微生物被放置于设备负载内通常难以进行灭菌的位置。例如,如果该设备负载具有直径小并且带有长封闭端内腔的器械,那么生物学挑战微生物可被放置于封闭端最难以到达的位置。生物学挑战微生物被与手术器械一起经历测试灭菌过程循环。

生物学挑战携带着生物学试剂。在成功的灭菌过程循环期间,生物学试剂通常被杀死。生物学挑战包括在使用过程中对于该灭菌形式具有抵抗性的已知数量的微生物。对于消毒过程的验证来说,需要存活微生物的数量最小3对数去除率。对于以10^6有机物开始的生物学挑战,3对数去除率将导致至少10^3有机物被杀死。对于一设备负载的灭菌过程的验证来说,需要存活微生物的数量最小6对数去除率。

在可选步骤2405中,操作者对所使用的生物学挑战的类型和生物学挑战在设备负载内的位置制作文档资料。操作者可使用键盘1426或电子数据传递(也就是输入扫描件或文件)将此信息输入停靠站。在另一实施例中,步骤2405包括使用照相机对容器402中的设备负载上的生物学挑战位置拍照并且将捕捉的图像存储到停靠站存储器1412。

在步骤2406中,该设备负载被制作文档资料然后放置于包含电子传感器模块460和用盖450封闭的容器402中,完成无菌屏障。为了对设备负载制作文档资料,操作者输入手术器械的类型和数量,托盘类型和无菌屏障内的其它物品。容器402被放置于停靠站1200或1300上并且被利用连接器485连接到停靠站。

在另一可选步骤2407,操作者为待灭菌手术器械的设备负载和传感器在容器402内的位置制作带有照片的文档资料。照片可捕捉该设备负载,负载内的这些器械和设备的定向以及容器内传感器的类型和位置。步骤2407包括使用照相机对容器402内的内容物和传感器照相并且将所拍摄的照片存储到停靠站存储器1412。

在步骤2408,存储在存储器471,1022上的数据记录软件1155被触发而在处理器1020上运行。在停靠站处理器1410上运行的过程测量值验证软件1466(图17)(图17)发送指令,使数据记录软件1155在测试灭菌过程循环期间监控和记录过程测量值,以存储在传感器模块存储器471,1022上。在处理器1020上运行的数据记录软件1155在测试灭菌过程循环期间监控和记录这些过程测量值。

容器402被操作者放置于灭菌腔52内(图1)并且在灭菌腔52内开始测试灭菌过程循环(步骤2412)。在步骤2412,该测试灭菌过程循环利用一半测试灭菌过程在灭菌腔52内执行。例如,对于270°F的标准4分钟高压灭菌器蒸汽循环来说,一半测试灭菌过程是270°F的2分钟高压灭菌器蒸汽循环。在另一例子中,对于过氧化氢4脉冲循环来说,一半测试灭菌循环是2脉冲循环。在灭菌过程循环期间,按照半致死腔过程参数值,灭菌腔52被加热、加压,并且灭菌剂、比如蒸汽或过氧化氢蒸气被引入灭菌腔内。

此外,在步骤2412,在处理器1020上运行的数据记录软件1155在灭菌过程期间监控和收集与其通信的相应电子传感器的基于时间的数据。传感器监控安装它们的相应容器内的操作过程测量值和条件。被收集的基于时间的测量值数据被作为数据1156存储在存储器1022中。例如,在处理器1020上运行的数据记录软件1155收集来自湿度传感器1024的湿度数据从,来自压力传感器1026的压力数据,来自温度传感器1028的温度数据和来自过氧化氢气体传感器1052的过氧化氢浓度数据。这些测量值通常作为时间的函数被同时获得。

在一半测试灭菌过程完成之后,生物学挑战被提取、放置于培养基中并且被培养一段时间然后进行微生物生长分析。微生物存活的水平在步骤2414中被确定。在一个实施例中,步骤2414包括确定存活微生物的数量是否大于6对数去除率。

在步骤2416,操作者确定百分之100或预期数量的生物学挑战微生物是否已经被杀死。响应于在步骤2414中不是所有的微生物被杀死,(也就是,某一数量是存活的,并且灭菌水平是不可接受的),在步骤2418可由操作者修改该组测试腔过程参数。修改该测试腔过程测量值可包括增加一个或多个灭菌腔52过程参数。在一个实施例中,在步骤2418中温度水平或过程循环时间被增加。在另一实施例中,步骤2418包括修改容器402的内容物。例如,较少的手术器械180被放置于托盘160中或可使用不同类型的无菌屏障材料。

新的生物学挑战被放置于负载中,并且如图24所示方法2400返回步骤2404,其中容器402被在灭菌腔52中利用该新的一半测试灭菌腔过程重新处理。

响应于所有的微生物在步骤2414中被杀死,(也就是百分之零存活),容器402被放置于停靠站1200,1300上并且将停靠站连接到容器连接器485。在步骤2420,在停靠站处理器1410上运行的过程测量值验证软件1466从容器存储器1022读取被记录的测量值数据并且将数据1156存储在停靠站存储器1412上。

在步骤2422,操作者利用由传感器记录的数据1156并且将其关联到该设备负载和灭菌水平。此关联是基于所接收的测量值数据,这些数据被在功能上确认在生物学挑战上发挥了作用,获得了预期的灭菌水平。

在另一实施例中,在处理器1410上运行的过程测量值验证软件1466由基于时间的测量值数据自动生成一半测试灭菌值。

在步骤2424,该测试灭菌过程循环的致死部分被加倍,以生成VSPM1150。如前面的例子中示出的,对于270°F的高压灭菌器蒸汽循环来说,在该测试灭菌过程循环的高于270°F的部分上,测试循环时间被加倍。在另一例子中,用于过氧化氢的该一半测试灭菌循环的致死部分,也就是过氧化氢脉冲的数量,将从2个脉冲翻倍到4个脉冲。VSPM 1150可通过过程测量值验证软件1466生成。在处理器1410上运行的过程测量值验证软件1466将该测试过程操作时间的致死部分被乘以因子二。在示例性实施例中,如果所有的生物学有机物在20分钟的致死过程循环时间之后全部被杀死,那么该过程循环时间通过过程测量值验证软件1466增加到40分钟。新的VSPM 1150与增加的循环时间被存储到存储器1412。确定了该VSPM 1150之后,操作者利用键盘1426或电子数据传输方法将VSPM 1150和相关的设备负载输入到停靠站1200,1300并且引导VSPM1150被存储到与该设备负载相关联的存储器1412。

在可选的步骤2426,操作者建立了用于VSPM 1150的过程极限值。过程极限值可包括用于被包括在VSPM 1150中的一个或多个过程测量值的上极限值和/或下极限值。例如,在一个实施例中,操作者能够确定用于灭菌过程的最小过氧化氢浓度或过氧化氢浓度下极限值是8mg/L而最大过氧化氢浓度或过氧化氢浓度上极限值是10mg/L。过程极限值的确定可利用从分别具有不同的灭菌过程测量值和条件的多个灭菌过程循环中收集的数据执行。在过程极限值被确定之后,操作者利用键盘1426设定用于VSPM 1150的过程极限值,或过程测量值验证软件1466传输和引导过程极限值被存储到存储器1412。另外,VSPM到设备负载的关联被存储到存储器1412。方法2400终止。

XIX.监控容器内容物的无菌性的操作方法

参考图25,示出了监控容器内容物的无菌性的方法2500的流程图。方法2500被特别描述为利用容器组件400(图7)执行。然而,本方法可利用在前面描述的容器组件中任一执行。对本方法的描述总体上参考前面附图中示出的特定部件。在图25的讨论中,还参考图7-7D和14中的部件和传感器模块200。

方法2500开始于步骤2502,其中在处理器1020上运行的无菌监控软件1158监控从霍尔效应传感器480发送的电信号。在步骤2504,无菌监控软件1158确定该霍尔效应传感器信号是否改变,以指示磁场不再被检测到。

响应于霍尔效应传感器信号没有变化,在处理器1020上运行的无菌监控软件1158继续监控从霍尔效应传感器480发送的电信号(步骤2502)。响应于霍尔效应传感器信号的变化或丢失,在处理器1020上运行的无菌监控软件1158致使LED 487中的绿色LED断电并且使LED 487中的红色LED被点亮,在步骤2506,表示容器锁栓被改变,潜在地允许破坏容器内的灭菌。霍尔效应传感器信号随锁栓446的运动或盖450的运动,例如升离容器402或从容器402移除,而变化。当磁铁448被移离霍尔效应传感器480时,导致至传感器480的磁场消失。红色LED的点亮指示容器402的内容物、比如手术器械180处于升高了的无菌风险中或不再是无菌的。方法2500终止。

XX.将手术器械装载到容器内的操作方法

参考图26示出了在灭菌处理之前将手术器械装载到容器内的方法2600的流程图。方法2600被解释为利用容器组件100(图2-4C)和停靠站1200(图15)执行。然而,方法2500可利用前述带有传感器模块的容器组件中任一或停靠站执行。对本方法的描述总体上参考前面附图中示出的特定部件。在图26的讨论中,还参考图2-4C,15和17中的部件。

方法2600开始于步骤2602,其中操作者定位容器100使其靠在停靠站搁板1212上。在可选步骤中,电子传感器模块200被经由缆线146连接到停靠站1200以进行通信。

在步骤2604,操作者使用手持读取器1240扫描容器100上的条形码或RFID标签135和托盘160上的条形码或RFID标签167。在步骤2606,在处理器1410运行的容器装载软件1464搜索容器/托盘配置数据1465,从与相应扫描的条形码和RFID标签对应的数据1465中选择显示屏1260并且使该显示屏1260显示在显示器1230上。显示屏1260示意将被装载到托盘160内的手术器械180和将被装载的手术器械180的正确位置和定向。

在步骤2608,操作者使用手持读取器1240扫描第一手术器械条形码或RFID标签181。在决定步骤2610,在处理器1410运行的容器装载软件1464利用容器/托盘数据1465确定所扫描的手术器械180是否是将被装载到托盘160内的正确手术器械。

响应于所扫描的手术器械180被不正确地装载到托盘160内,在步骤2612,在处理器1410运行的容器装载软件1464通过改变视频屏1260指示选择了错误的手术器械进行装载。在一个实施例中,红色警告符号在显示器1230上闪烁,并且声音警告指示操作者他们已经选择了不正确的器械。方法2600返回步骤2608,操作者扫描下一个待装载的手术器械180。

响应于在步骤2608中扫描的手术器械180是正确的将被装载到托盘160内,操作者参考在显示屏1260上显示的位置和定向信息将手术器械180放置于托盘160内(步骤2614)。在将手术器械放置到托盘160内的过程中,显示屏1260引导操作者。

虽然没有显示为单独的步骤,但在处理器1410运行的容器装载软件1464确定托盘160是否完全装满手术器械180。如果此评估测试为否定,那么操作者在重新执行步骤2608时扫描下一个待装载的器械180。当该评估确定托盘满了的时候,在步骤2618中处理器1410使显示屏1260指示所有的手术器械被装载到托盘160内并且容器100准备好进一步处理了。

在步骤2616,在处理器1410运行的容器装载软件1464将容器/托盘数据1465发送至医院计算机系统1454,以用被装载的容器的当前位置和状态,托盘和手术器械更新数据库1456。在示例性实施例中,容器/托盘数据1465以容器100的位置、包含在托盘160中的特定手术器械180更新数据库1456,以及容器和内容物当前不是无菌的。

XXI.校准传感器的操作方法

参考图27,示出了校准传感器或证实传感器精确度和电子传感器模块的方法2700的流程图。校准和传感器精确度证实被用于响应于已知的一组模拟的或被生成的环境条件而检查(证实)和/或调节(校准)传感器。校准和传感器精确度证实方法被用于确保当被用于生成VSPM数据或用传感器模块证实VSPM数据时传感器测量值是精确的。方法2700被解释为利用容器组件400(图7-7C),传感器模块1050(图12B,14)和停靠站1300(图16,17)执行。然而,方法2700可利用在这里描述的任一个传感器模块执行。对本方法的描述总体上参考前面附图中示意的特定部件。

方法2700开始于步骤2702,其中操作者定位容器组件400使其靠在停靠站搁板1342上或放置于校准腔1320内并且将停靠站缆线1340连接到容器连接器485。操作者还将停靠站连接器1336和1338连接到一起,使得停靠站1300与容器组件400通信用于传感器校准。更具体地,停靠站控制器1402与电子传感器模块控制器1120通信。

在步骤2704,在处理器1410运行的传感器校准软件1460使显示屏1260被显示在显示器1230上。如果传感器模块具有需要校准或需要传感器性能证实的传感器,则显示屏1260示出容器402和待校准的传感器和操作者指令以进行正确的校准或传感器证实。如果还没有定位,则操作者将容器组件400放置于校准腔1320内并且关闭门1326。

例如,在步骤2708,在处理器1410上运行的传感器校准软件1460使校准腔1320和电子传感器模块1050执行传感器校准过程或传感器证实循环。根据需要校准或证实的传感器类型,停靠站内的不同系统被单独或组合使用来校准或证实传感器精确度。在步骤2708中,传感器校准过程可包括通电和操作蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438。蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438都按照由在处理器1410运行的传感器校准软件1460生成的并且经由输入/输出接口电路1414传输的一组被定义的校准操作参数操作。

在传感器校准循环期间,在步骤2708中,蒸汽发生器1430供应标准浓度的蒸汽到校准腔1320并且过氧化氢发生器1432供应标准浓度的过氧化氢气体给校准腔1320。在校准循环的第一部分期间,压力泵1434使校准腔1320中的压力增大到标准压力。在校准循环的后一部分期间,真空泵1436在校准腔1320内抽标准真空水平。加热器1438加热校准腔1320至预定的标准温度。每个发生器系统的一个或多个状态可被产生以实现已知的单一点、两点或多点参数状态来校准或证实传感器响应。

在另一实施例中,在步骤2708,在处理器1410上运行的传感器校准软件1460触发在处理器1020上运行的传感器校准软件1154来操作一个或多个发生器系统,用于校准水蒸气传感器1024,压力传感器1026,温度传感器1028和过氧化氢传感器1052。

在步骤2710,在处理器1410上运行的传感器校准软件1460查询和接收来自在处理器1020上运行的校准软件1154关于每个传感器上的校准过程是成功或是失败的反馈。在处理器1410上运行的校准软件1460确定是否所有的传感器已经被正确校准或证实至特定的精确度内。

响应于传感器1024-1052中的一个或多个没有被正确校准到指定的校准测量值,在步骤2714,这些特定的传感器被识别和标记进行证实和维修。在处理器1410上运行的校准软件1460使指示有缺陷的传感器的显示屏1260显示在停靠站1300上。在另一实施例中,校准软件可指令传感器模块向操作者提供校准失败的视觉指示,例如利用闪烁的LED。方法2700终止。

响应于传感器1024-1052被正确校准和/或证实至特定的测量值,在步骤2712,传感器被指示进行了成功的校准。在处理器1410上运行的校准软件1460使显示屏1260显示在停靠站1300上,该显示屏1260指示容器组件400中的所有传感器1024-1052已经得到正确地校准或证实并且可以在它们的适当灭菌过程中使用了。方法2700终止。

在本发明的可选形式中,传感器校准软件1460被设定为需要根据传感器使用的次数来进行传感器校准。

XXII.监控容器使用情况和根据单次使用费开账单的方法

转向图28,示出了监控容器使用情况和根据单次使用费开账单的方法2800的流程图。方法2800被解释为利用停靠站1200(图18),制造商计算机系统1510(图18)和医院计算机系统1454(图18)执行。方法2800与在前面描述的容器90-800中任一个一起使用。方法2800被参考图18和图28进行描述。

方法2800开始于步骤2802,其中在处理器1410上操作的应用软件1470监控和跟踪容器或传感器模块在医疗机构内的使用情况。当停靠站1200在灭菌之前的容器装载和/或传感器编程过程中使用时,应用软件1470跟踪容器或传感器的使用频率,生成应用数据1472并且将应用数据存储到存储器1412。在另一实施例中,应用软件1472读取传感器模块存储器并且提取应用数据进行处理。在又另一实施例中,应用软件1472清空或重新设置传感器模块存储器中的应用数据。在步骤2804,在处理器1410上运行的应用软件1470定期发送应用数据1472给制造商计算机系统1510。在一个实施例中,应用数据1410被每周一次从停靠站1200发送至制造商计算机系统1510。

在步骤2806,在制造商计算机系统处理器1520上运行的账单软件1530根据应用数据1472定期地生成账单1532。账单被存储到存储器1522。在步骤2808,在处理器1520上运行的账单软件1530定期发送账单1532给医院计算机系统1454。在一个实施例中,账单1532被生成并且每周一次从制造商计算机系统1510发送至医院计算机系统1454。在步骤2810,医院计算机系统1454接收账单1532并且将账单存储到存储器1572,进行支付处理。方法2800终止。

方法2800被与其中停靠站1200、传感器模块或容器90-800被租赁或出租给医疗机构或医院的商业模式协同使用。医疗机构或医院根据单次使用费支付使用停靠站、传感器模块和容器的费用,如应用软件1470和账单软件1530所确定的。

XXIII.带有可拆除的传感器的容器

图29-39示意出带有可拆除的传感器的容器。特别参考图29和30,容器组件2900包括容器2902和可拆除的传感器器械3000。可拆除的传感器器械3000在下面描述为包括包含防拆封无菌屏障监控系统的可选实施例。在下面的描述中,本可选实施例的防拆封无菌屏障监控系统使用一个或多个磁铁和霍尔效应传感器。其它防拆封系统、比如可破坏的塑料机械锁可用于通知操作者无菌屏障已经被拆封,并且这些其它防拆封系统可与可拆除的传感器器械3000组合。

图29和30的容器2902与在前面描述的图7的容器402相同,除了侧面板406上的矩形形状的开口414和418被省略并且在侧面板406上添加了圆形形状的开口415以外。图29和30的盖450与在前面描述的图7的盖450相同,除了磁铁488已经从盖450拆除并且安装到容器盖栓496的向内朝向的表面(参考图41)之外。盖450包括通过过滤器支撑构件442固持到盖450的一次性过滤器440。

过滤器440由灭菌剂可透过的微生物屏障材料形成。过滤器440允许灭菌剂从盖450外面、通过孔459、通过过滤器440、通过孔隙445进入容器2902的内腔420,在内腔420灭菌剂与包含于其中的手术器械接触。过滤器440还形成用于在容器组件2900经历了灭菌过程之后防止微生物进入的微生物屏障。过滤器可设置于一个或多个其它容器面板上,代替在容器组件2900中示出的盖过滤器或作为其附加。这允许提供一个或多个被过滤的路径,供灭菌剂进入和离开容器组件,同时保持微生物屏障。

包含待灭菌的手术器械180(图2)的托盘160(图2)被放置于容器2902内使得托盘160搁靠在底面板407上。盖450使用锁紧用盖栓496固持到容器2902。锁紧用盖栓496被使用者向上转动到盖台阶446上方然后向下转动到锁紧位置,其中盖450被固持到和锁定到容器2902。

参考图31,32和33,示出了可拆除的传感器器械3000的细节。可拆除的传感器器械3000包括传感器模块接收器3100和可拆除的传感器单元、装置或模块3500。可拆除的传感器单元或模块3500可插入被传感器模块接收器3100内和从其移除。

传感器模块接收器3100包括接收器外壳3102,固持环3200,外壳盖3250,载架组件3300和锁紧机构3400,所有这些可由注射成型塑料或金属形成。接收器外壳3102具有大致方形形状的中央本体3104,中央本体3104具有一体附接的三角形形状的延伸部3105。本体3104具有前表面3106,后表面3108和五个侧面3110。两个狭槽3112被限定于其中的两个侧面3110上。带狭槽的侧面3110在本体3104的相反两侧平行和在直径方向上彼此对置设置。狭槽3112的长度通过本体3104的厚度限定。螺纹孔3114被限定于每个狭槽3112的基部。内孔3114从每个狭槽3112的基部垂直延伸部分地延伸到本体3104内。

特别参考图33,圆筒形的套筒3118远离前表面3106垂直延伸并且终止于远侧端3120。台阶3128设置于套筒外表面上并且被定位于远侧端3120和沟槽3126之间的近似半途处。台阶3128分离开近侧环形外表面3123和远环形外表面3124。近侧环形外表面3123比远环形外表面3124直径大。螺纹3129被限定于外表面3123上。套筒3118还包括限定出通孔3125的环形内表面3122。在套筒3118的基部或近侧端,环形沟槽3126被环绕着套筒3118设置于本体前表面3106上。沟槽3126被设计尺寸为接收容器O环3127(图32)。O环3127安置于沟槽3126内。组装后,通过用固持环3200螺纹压缩将密封件3127压缩在面板406的面板内表面412之间,容器O环3127在接收器外壳3102和容器面板406之间形成密封。

远侧端3120的两个在直径方向上对置的部分被去除,以限定出在直径方向上对置的弓形形状的凹槽3132。远侧端3120的剩余部分形成两个在直径方向上对置的弓形形状的肩部3134。肩部3134邻近环形内表面3122的最内边缘被斜切。两个螺纹孔3136被限定在每个凹槽3132的基部中。内孔3136从每个凹槽3132的基部垂直延伸,部分地延伸到套筒3118内。

指状部3138和3140远离环形内表面3122垂直延伸,部分地延伸到通孔3125内。指状部3138和3140在内孔3125的相反两侧上在直径方向上彼此对置设置,并且被朝向内孔3125的近侧端定位。指状部3140具有比指状部3138大的宽度。

环形沟槽3142被置于本体的后表面3108上,与通孔3125的开口间隔开并且环绕着通孔3125的开口。沟槽3142被设计尺寸为接收O环3144(图32)。O环3144安置于沟槽3142内。O环3144在接收器外壳3102和板3350之间形成密封。在本发明的一些形式中,粘接剂被用于将O环3144保持于沟槽3412中。矩形形状的腔3146被限定于三角形延伸部3105中并且具有朝向前表面3106的开口。腔3146被设计尺寸为接收印刷电路板,如下面将要描述的。

端子组件3150被安装在接收器外壳3102中。端子组件3150包括通过绝缘体3154电隔离的多个细长的导电端子3152。端子3152由导电材料比如铜合金形成。绝缘体3154是围绕着端子3152成型的材料比如聚酰亚胺,以形成端子组件3150。

在一个实施例中,端子组件3150被放置在与用于由塑料注塑成型接收器外壳3102的模具相同的模具中。在另一实施例中,端子组件3150被气密性密封到接收器外壳3102。在成型或密封之后,端子组件3150是接收器外壳3102的一体部分。端子组件3150在套筒3118内限定出端子3152延伸穿过的内部通道3155。

在另一实施例中,端子组件3150是插入套筒3118内的内部通道3155中的柔性电路。柔性电路被利用硅粘接剂或其它合适的可固化粘接剂或密封剂保持在位。

端子3152还具有面朝内孔3125的齐平的近侧接触端3156。端子3152还具有远离套筒外表面3124垂直延伸的远侧接触端3158。接触端3156和3158被电连接到其它电部件,如下面描述的。在另一实施例中,另一组端子3160可延伸穿过通道3155并且穿过被限定出于延伸部3105中的另一通道3162。端子3160具有终止于腔3146中的端部3164和远离套筒外表面3124垂直延伸并且与接触端3158相邻的端部3166。

另外参考图31,可选的实施例可包含带有霍尔效应印刷电路板3170的电子无菌屏障监控系统,霍尔效应印刷电路板3170具有被附接的霍尔效应传感器3172。霍尔效应印刷电路板3170被安装在腔3146内并且通过适当的方法、比如焊接或引线接合法电连接到端子端部3164。霍尔效应传感器3172检测磁铁448(图29)的存在与否。当盖450被安装和栓锁到容器2902时,霍尔效应传感器3172检测磁铁448产生的磁场并且发射表示检测到磁场的电信号。当盖450从容器2902移除时,盖栓496被远离霍尔效应传感器3172枢转使得传感器3172检测到磁场不存在并且发射表示没有磁场的电信号。

转向图34,示出了固持环3200和盖3250的细节。固持环3200总体上是圆形形状的并且具有近侧面3202,远侧面3204,环形外表面3206和环形内表面3208。远侧面3204的外周围边缘被斜切。螺纹3210被限定于环形内表面3208上。固持环螺纹3210与接收器外壳螺纹3129相配合以将传感器模块接收器3100紧固和密封到容器2902。螺纹孔3212从远侧面3204垂直延伸、部分地延伸到固持环3200内。

盖3250是大致圆形形状的,带有延伸的部分3252。盖3250具有远侧面3254,近侧边沿3255,环形外表面3256和内台阶3258。内台阶3258限定环形内表面3262。环形内表面3262终止于近侧面3254并且限定出开口3263。圆形的裙部3260在向近侧方向上远离台阶3258延伸并且终止于边沿3255。裙部3260和环形表面3262限定通孔3264。远侧面3254的外周围边缘被斜切

两个在直径方向上对置的弓形肋3270从环形内表面3262垂直延伸到内孔3264内。肋3270的内边缘被斜切。肋3270的朝向远侧的表面与近侧面3254齐平。两个孔3272被限定于每个肋3270上。孔3272整个延伸穿过肋3270。肋3270限定位于每个肋3270之间的两个在直径方向上对置的弓形缝隙3274。

延伸的部分3252被形成有矩形的电路板保持架3280。保持架3280包括朝向远侧的开口3282和底壁3284。保持架3280在远侧面3254处是敞开的。孔隙3286被限定于底壁3284上。

另外参考图31,容器印刷电路板(PCB)3800被安装和保持于保持架3280中。开口3282被设计尺寸为接收PCB 3800。特别地,PCB 3800被通过旋拧到孔隙3286内的自攻螺钉3290紧固到底壁3284。支座3292被定位于底壁3284和PCB 3800之间以从底壁3284间隔开PCB 3800。螺钉3290还穿过支座3292。容器PCB 3800的部件将下面描述。透明的透镜3294被安装到远侧面3254、遮盖开口3282。透镜3294允许使用者从视觉上看到被安装到PCB 3800的发光二极管。透镜3294被利用超声焊接附接到或被热立桩到远侧面3254。

PCB 3800被电连接到端子组件3150(图33)。特别地,PCB 3800被通过适当的方法比如焊接或引线接合法连接到端子端部3158和3166。PCB 3800经由端子3160(图33)与包含霍尔效应PCB 3170的可选实施例通信。

通过使固持环螺纹3210与接收器外壳螺纹3129相配合,固持环3200被附接到接收器外壳3102。然后,盖3250被安装到固持环3200。盖3250被与接收器外壳3102对正并且在向近侧方向上移动,使盖的肋3270滑动到或安装到接收器外壳缝隙3138内,并且接收器外壳肩部3134滑动到或安装到盖缝隙3274内。

盖3250接触固持环3200使得盖台阶3258抵接环远侧面3204并且盖裙部3260环绕着环的环形外表面3206。紧固件比如螺钉3296穿过肋孔3272并且被固持到螺纹孔3212内,从而将盖3250附接到固持环3200。

现在参考图31和35,传感器模块接收器3100还包括载架组件3300。载架组件3300附接到接收器外壳3102。载架组件3300引导板3350在板的打开和关闭位置之间移动。载架组件3300包括支撑托架3302,板3350和锁紧机构3400。

支撑托架3302包括基部3304,四个正交臂3306远离基部3304延伸。臂3306形成X-形状。每个臂3306具有被附接的远侧支脚3310,远侧支脚3310被定向为与臂3306成近似45度。从每个支脚3310的中心,圆柱形形状的支柱3312远离支脚3310垂直延伸并且具有端子端部3313。从每个支脚3310的外侧,矩形形状的支腿3314远离支脚3310垂直延伸并且具有端子端部3315。支柱3312平行于支腿3314。孔3316被朝向端子端部3315限定在每个支腿3314中。孔隙3320被限定在每一个最下面的臂3306上。支撑托架3302环绕着内部区域3322。

板3350是大致圆形形状的并且被安装到支撑托架3302以沿着支柱3312滑动。板3350具有近侧3354,远侧3352和环形外表面3356。四个耳状部3358径向远离环形外表面3356延伸。耳状部3358在环形外表面3356上彼此间隔开90度。内孔3359被形成在每个耳状部3358上。内孔3359延伸穿过耳状部3358的整个厚度。内孔3359被精确地形成以允许板3350沿着支柱3312滑动运动。

板3350还具有被限定在近侧3354上的第一环形台阶3360和被限定在近侧3354上的第二环形台阶3362。台阶3360具有比台阶3362大的直径并且环绕着台阶3362。螺纹孔3364被限定于台阶3362的中心。内孔3364垂直于台阶3362。

第三环形台阶3368被形成在远侧3352并且限定出环形槽道3370。远侧3352的剩余部分形成指向远侧的环形面3355。装配后,环形面3355与位于沟槽3142中的面密封O环3144并置。圆形形状的鼓形部3372在向远侧方向上远离台阶3368的中心垂直延伸。圆柱形凸部3374从鼓形部3372开始在向远侧方向上平行于鼓形部3372延伸。凸部3374具有比鼓形部3372小的直径。一对在直径方向上对置的鞋状部3376通过杆3378附接到凸部3374。鞋状部3376通过杆3378与凸部3374分隔开。狭槽3377被限定于鞋状部3376的对置面之间。插口3380被限定于鞋状部3376的朝向近侧的部分和凸部3374的朝向远侧的部分之间。狭槽3377和插口3380被设计尺寸为接收箱体3502的一部分,如在下面描述的。

板3350被接合到支柱3312使得板3350沿着支柱3312滑动。板复位盘簧3382被安装在每个支柱3312上并且环绕支柱3312。盘簧3382的一端抵接支脚3310,盘簧3382的另一端抵接耳状部3358的近侧面。内孔3359被与支柱3312对准,并且板3350被滑动到支柱3312上,使得支柱3312延伸通过内孔3359。在此位置,板复位盘簧3382被压缩在支脚3310和耳状部3358的近侧面之间。板复位盘簧3382在向远侧的方向上朝向接收器外壳3102偏压板3350。

载架组件3300还包括锁紧机构3400。当板3350处于关闭位置时,锁紧机构3400用于防止板3350被打开或移动到打开位置。锁紧机构3400包括毂部3402,四个正交臂3406远离毂部3402延伸。臂3406的两端被导圆。毂部402具有朝向远侧的椭圆形升高壁3408,其环绕着并且限定出椭圆形形状的中央开口3410。

杆3412被安装到每个臂3406的朝向近侧的表面。杆3412在向近侧方向上垂直于并且远离臂3406延伸。杆3412的两个终止端被导圆。操纵杆3414被连接到毂部402。特别地,操纵杆端部3416被附接到毂部3402。另一操纵杆端部3418被弯曲或带钩。操纵杆3414被配置用于被操作者手动抓住。

锁紧机构3400被以允许被锁紧机构3400相对于板3250滑动运动的方式固持到板3350。紧固件比如带螺纹螺钉3422穿过开口3410并且被接收和固持在板的螺纹孔3364中。螺钉3422具有被设计尺寸为直径比开口3410的直径大的头部。安装过程中,螺钉3422的头部被拉靠在毂部402的近侧表面上,从而将锁紧机构3400固持到板3250。

内腔3424被形成为穿过椭圆形形状的升高壁3408的底部、开口3410下方。锁复位盘簧3426设置于内腔3424中,使弹簧3426的一端抵接螺钉3422而另一端抵接台阶3362的外周向壁。复位盘簧3426在向上的方向上朝向盖450(图30)偏压锁紧机构3400。

载架组件3300通过如下组装:使所附接的锁紧机构3400在支柱3312上方的方式用盘簧3382滑动板3350,使得支柱3312延伸通过内孔3359。然后将载架组件3300安装到接收器外壳3102。四个支撑托架支腿3314中的每一个被定位于外壳接收器狭槽3112中,使支腿孔3316与外壳接收器内孔3114对准。带螺纹紧固件3430延伸穿过支腿孔3316并且延伸到内孔3114内。这样,载架组件3300被连接到接收器外壳3102。

特别参考图31和36,示意了可拆除的传感器模块3500的细节。可拆除的传感器模块3500被插入传感器接收器3100内并且被传感器接收器3100接收。可拆除的传感器模块3500包含用于感测容器2902(图29)内操作环境的一个或多个传感器。可拆除的传感器模块3500包括安装到传感器箱体3502的电路板组件3700。传感器箱体3502是大致圆柱形形状的并且具有近侧端3504和远侧端3506。箱体3502具有环形外表面3508。箱体3502还包括将箱体3502一分为二并且垂直于外表面3508的中央分割壁3510。第一环形裙部3512从壁3510开始在向远侧方向上延伸,终止于远侧端3506。第二环形裙部3520从壁3510开始在向近侧方向上延伸,终止于近侧端3504。第二裙部3520和分割壁3510限定出环形腔3530。

第一裙部3512被横跨第一裙部3512的直径延伸的抓握部3514一分为二。抓握部3514的基部被连接到分割壁3510朝向远侧的那一侧。抓握部3514和第一裙部3512限定出两个指状切口3516。操作者通过将他们的手指插入切口3516内并且在它们的手指之间挤压抓握部3514来手动操作或转动可拆除的传感器模块3500。

圆柱形形状的鼓形部3522从分割壁3510的中心在向近侧方向上垂直延伸。椭圆形形状的头部3523通过轴杆3526附接到鼓形部3522。头部3523被轴杆3526与鼓形部3522在向近侧方向上间隔开。头部3523包括一对在直径方向上对置的翅状部3524,它们在相反的方向上远离头部3523延伸。翅状部3524垂直于轴杆3526。头部3524和翅状部3525被设计尺寸为与鞋状部3376(图35)相配合。缝隙3525被限定在翅状部3524和鼓形部3522朝向近侧的那一侧之间。

翅状部3524与鞋状部3376相配合(图35)以将箱体3502接合到板3350。头部3523被设计尺寸为当箱体3502被定向为使翅状部3524平行于鞋状部3376(图35)时安装到板狭槽3377内(图35)。随着箱体3502被在向近侧方向上手动插入接收器外壳3102内,头部3523将最终接触和抵接凸部3374朝向远侧的那一侧。在此位置,箱体3502被转动90度,导致翅状部3524移入插口3380内。插口3380被设计尺寸为接收翅状部3524。箱体3502现在被固持到板3350。

环形沟槽3532被限定于环形外表面3508上。沟槽3532被设计尺寸为接收圆形的O环3534。O环3534被安置于沟槽3532中。O环3534与套筒3118(图33)的环形内表面3122形成密封。

两个槽道3540和3541被限定于箱体形外环表面3508上。槽道3540和3541在箱体3502的周长的相反部分上在直径方向上彼此对置设置。槽道3540具有邻近近侧端3504的入口3542(图31)。槽道3541具有邻近近侧端3504的入口3543(未示出)。槽道3541和入口3542被形成为具有比槽道3540和入口3542更大或更宽的宽度。槽道3540从开口3542开始在向远侧的方向上沿着表面3508的周长成角度并且终止于L形捕获器3544中。槽道3541从开口3543开始在向远侧的方向上沿着表面3508的周长成角度并且终止于另一L形捕获器3544中。槽道3540被设计尺寸为在传感器箱体3502装载到接收器外壳3102内的过程中与指状部3138相配合并且接收指状部3138。在传感器箱体3502装载到接收器外壳3102内的过程中,槽道3541接收指状部3140并且与其相配合。指状部3138,3140和槽道3540,3541分别作为键和键槽作用以相对于接收器3100正确地对准和指引箱体3502。

因为开口3542小于指状部3140的宽度,所以,如果箱体3502与接收器3100不对准,则箱体3502被阻挡而不能插入接收器3100内。箱体3502只有在指状部3138与槽道开口3543对准并且指状部3140与槽道开口3542对准的情况下才能插入接收器3100。

箱体3502还包括设置于捕获器3544之一和近侧端3504之间的连接器通道3550。连接器通道3550通过第二裙部3520垂直延伸到腔3530内。连接器通道3550被设计尺寸为接收被附接到电路板组件的连接器3750。

螺纹孔3554被限定在位于腔3530底部的分割壁3510的近侧表面上。螺纹孔3554垂直延伸到壁3510内并且被设计尺寸为接收PCB支座3556的带外螺纹的远侧端3558。PCB支座3556还具有带内螺纹的近侧端或头部3560。PCB支座3556被旋拧到内孔3554内,形成用于电路板组件3700的支撑。

转向图36,37A和37B,示出了电路板组件3700的细节。组件3700具有印刷电路板(PCB)3701,该印刷电路板是大致平面和圆环形的。PCB 3701包括朝向近侧的一侧3702和朝向远侧的一侧3704,圆形的开口3706被限定为穿过PCB 3701的中心。PCB 3701安装在箱体腔3530内。具体地,PCB远侧3702以侧面3702抵接头部3560的方式靠在支座3556并且通过支座3556支撑。裙部3520环绕PCB 3701的周向外边缘。在此位置,头部3523(图36)和鼓形部3522(图36)延伸通过中央开口3706。螺钉3710延伸通过PCB孔3712并且被带内螺纹的头部3560接收,将PCB 3701固持到箱体3502。

PCB 3701是包括使安装在PCB 3701上的电部件和传感器互连的许多印刷电路线3716的多层印刷电路板。电池3720,处理器1020,存储器1022,I/O接口1124和无线收发器1138安装到PCB 3701的朝向远侧的一侧3704。电池3720给安装到电路板组件3700的各部件供电。处理器1020,存储器1022,I/O接口1124和无线收发器1138与在前面描述的图12B和13中的相同。

一个或多个传感器被安装到可拆除的传感器模块3500并且被连接到PCB 3701。在图示实施例中,传感器被安装到PCB 3701的朝向近侧的一侧3702。水蒸气1024,压力传感器1026和温度传感器1028被安装到侧面3702。水蒸气传感器1024,压力传感器1026和温度传感器1028与在前面描述的图12B和13中的相同。在可选的实施例中,还安装到侧面3702的是感测被传输经过容器2902内的光学路径长度3770的红外(IR)或紫外(UV)光的量的光学传感器1052。在一个实施例中,光学传感器1052检测和测量过氧化氢蒸汽(H2O2)的浓度。在一个实施例中,光学传感器1052检测水蒸气或另一气体或蒸汽,其中该气体或蒸汽的吸光度特征是已知的。

光学传感器1052包括安装到侧面3702的IR或UV源或发射器1056,光学发射器或镜子3764和IR或UV接收器或检测器1058。滤光器(未示出)可围绕着源1056或检测器1058安装,以去除任何不希望的波长。镜子3764被定位成用于朝向检测器1058反射入射光。镜子3764由将发射能1056向回反射到检测器1058的材料比如玻璃上的真空沉积铝形成。

与不使用镜子3764可能得到的光学路径长度相比,镜子3764允许较长的光学路径长度3770。较长的光学路径长度3770提高了所检测到的过氧化氢蒸汽浓度的测量值的准确性和精度。

因为过氧化氢蒸汽吸收具有特定已知波长的红外或紫外光,所以被传输经过包含过氧化氢蒸汽的已知路径长度3770的具有该频率的光的量与过氧化氢蒸汽的浓度成正比。具有已知波长吸光度特征的其它蒸汽或气体可通过适当选择的发射器1056和检测器1058来检测和测量。

连接器3740安装到PCB 3701。特别地,连接器3740具有包含多个端子3744的绝缘本体3742。端子3744通过适当的方法比如焊接而附接到PCB 3701。端子3744的另一端被连接到按钮接点3746。按钮接点3746从本体3742径向向外朝向。按钮接点3746与接收器外壳的近侧接触端3156(图33)相配合以在可拆除的传感器电路板组件3700和容器印刷电路板3800之间形成电连接。当PCB 3701被安装在箱体3502中时,连接器3740被连接器开口3550接收并且设置于连接器开口3550(图36)中。按钮接点3746延伸稍稍超出绝缘本体3742并且延伸稍稍超出邻接的环形外表面3708(图36)。按钮接点3746这样延伸允许它们在可拆除的传感器模块2500正确地插入传感器接收器3100内时与近侧接触端3156相配合。

图38示意容器印刷电路板(PCB)3800的细节。PCB 3800被安装于盖电路板保持架3280(图34)中。PCB 3800是大致平面和矩形形状的。PCB 3800包括朝向近侧的一侧3802和朝向远侧的一侧3804。PCB 3800是多层印刷电路板,该多层印刷电路板包括用于使各电部件以及,在某些实施例中,安装在PCB 3800上的各传感器互连的许多印刷电路线(未示出)。孔3810被限定于PCB 3800上。螺钉3290(图31)穿过孔3810以将PCB 3800固持到盖3250(图31)。

电池3820,控制器3830,一个或多个LED 3842,3844,3846都安装到朝向远侧的一侧3804。电池3820为PCB 3800的部件供电。控制器3830是微控制器,其包括存储指令集或软件的内存器。PCB 3800也可包括存储器,该存储器能够存储数据,比如来自灭菌过程的测量数据,VSPM数据,应用数据或其它工作流过程数据、例如将传感器模块编程写入VSPM数据的操作者或将设备负载装配到容器内的操作者或灭菌过程的时间和日期。与可拆除的传感器PCB 3700组合的PCB 3800类似于蒸汽传感器模块1000,过氧化氢传感器模块1050,组合的蒸汽和过氧化氢传感器模块,或在这里描述的其它传感器模块200,460,560,660,760,850行使功能。PCB 3800将具有一些附加电子部件,带有可拆除的传感器模块PCB 3700的一些冗余部件,使得在可拆除的传感器模块3500被拆除后,PCB 3800存储器可包含与特定灭菌过程相关的信息,设备负载,操作者信息,编程信息和用于跟踪、记录或监控用于灭菌事件的商业过程、调节过程或质量控制过程所需的其它信息。控制器3830经由端子3162(图33)与可选的霍尔效应电路板3170(图31)通信。当可拆除的传感器模块3500被耦合到传感器模块接收器3100(图31)时,控制器3830经由I/O接口1024与处理器1020通信。控制器3830允许数据和指令被发送至处理器1020和从处理器1020接收。

红色LED 3842,黄色LED 3844和绿色LED 3846为使用容器组件2900的使用者提供视觉信息。使用者通过透明的透镜3294(图31)观察LED 3842,3844和3846。在一个实施例中,红色LED 3842表示容器2902及其内容物已经经过了灭菌循环,但该灭菌循环在满足预先设定的一组最小经验证灭菌过程测量值、比如在前面描述的VSPM 1150(图19)方面是不成功的。因此容器2902的内容物被认为是非无菌的。

在另一实施例中,黄色LED 3842表示容器2902及其内容物没有经过灭菌循环。在附加实施例中,绿色LED 3846表示容器2902及其内容物已经经过了灭菌循环,该灭菌循环在满足预先设定的一组最小经验证灭菌过程测量值、比如在前面描述的VSPM 1150(图19)方面是成功的。因此,容器2902的内容物被认为是无菌的。

XXIV.可拆除的传感器模块的插入和拆除

图39-43示意出将可拆除的传感器模块3500插入传感器接收器3100内和从其拆除的一系列步骤。特别参考图31和39,可拆除的传感器模块器械3000被示出处于初始或第一位置,其中传感器模块3500被与接收器3100分开。在此位置,板3350被弹簧3382压在面密封O环3144上,在指向远侧的环形面3355(图35)和O环3144之间形成密封。在一些实施例中,此密封和板与容器组件2900形成无菌屏障封壳的一部分。此外,在第一位置,锁紧机构3400处于锁紧状态。在锁紧状态,锁紧机构3400防止板3350被打开或移离接收器外壳3102,维持密封位置。在该锁紧位置,锁紧机构3400处于最上位置,在此位置升高壁3408(图35)抵接台阶3362(图35)的上侧壁并且杆3412被定位成与托架臂3306成邻近和抵接关系,防止板3350在向近侧的方向上远离接收器外壳3102移动。

转向图31和40,传感器模块3500被示出处于正在装载到接收器3100内的第二位置。在此位置,盖450已经被从容器2902移除,并且可拆除的传感器模块3500已经被手动插入开口3263(图34)和套筒3118(图34)的内孔3125(图34)内。在第二位置,O环3534与套筒3118(图33)的环形内表面3122(图33)形成密封。因为箱体3502被在向近侧方向上手动插入接收器外壳3102内,所以头部3523最终接触和抵接凸部3374的朝向远侧的一侧,限制了在向近侧方向上的运动。此外,在此位置,指状部3138和3140被与槽道开口3542(图31)对准。板3350仍处于被密封和锁紧的位置。

作为插入传感器模块的过程的一部分,操纵杆3414被手动向下压。这将锁紧机构3400置于解锁位置。锁紧机构的这种重新定位使板3350变得自由从而向内移动。使板3500变自由而进行移动允许传感器模块3500继续插入容器接收器3100内。随着传感器模块被插入接收器内,该模块推在板3350上并且使其移位。板3350的此移位临时破坏了接收器外壳3102和板之间的密封。

在此解锁位置,锁紧机构3400处于最低位置,其中升高壁3408(图35)抵接台阶3362的下侧壁(图35)而操纵杆端部3418抵接板3350的外表面。这防止操纵杆3414的进一步向下运动。此外,在此解锁位置,上面两个杆3412被定位于上托架臂3306下方,下面两个杆与孔3320(图35)轴向对准,允许板3350在向近侧方向上远离接收器外壳3102移动。

下面,操作者使箱体3502转动45°。此转动导致翅状部3524移入板插口3380和相邻鞋状部3376(图35)内。插口3380被设计尺寸为接收翅状部3524。现在,箱体3502被固持到板3350。

箱体3502接着被转动另外的45°。此转动的结果,指状部3138和3140沿着槽道3540跟踪。这导致箱体3502被在向近侧方向上朝向托架3302拉动。因为箱体3502被接合到板3350,所以箱体3502的转动也使板3350在向近侧方向上远离接收器外壳3102做类似运动,打开板3350。随着板3350在向近侧方向上运动,弹簧3382被压缩,并且杆3412也在向近侧方向上移动经过托架臂3306并且穿过孔3320(图35)。板3350移离O环3144,在板3350和传感器电路板组件3700之间形成通道4110。该通道4110允许电路板组件3700上的传感器暴露于容器2902内的操作环境和条件。

如图41中所示,箱体3502处于其中箱体3502的远侧端3506已经被移动至稍稍经过了盖3250的远侧面3254并且进入内孔3264(图34)的位置。

参考图31和42,可拆除的传感器模块3500被示出处于第四操作位置。当操作者手动松开箱体3502时,被压缩的盘簧3382致使板3350和箱体3502在向远侧的方向上移动,使得指状部3138和3140被安置于捕获器3544中(在图36中最佳看出)。现在,箱体3502被可转动地锁定到接收器外壳3102。同时,箱体3502的向远侧移动还导致接触按钮3746(图37B)被接合和坐靠在端子端部3156上(图33),经由端子3152(图34)在传感器PCB 3702和容器PCB 3800之间建立电连接。现在传感器PCB 3702的部件与容器PCB 3800的部件处于通信中。

待灭菌的手术器械180被手动装载到容器2902内并且盖450被置于容器2902上方。锁紧用盖栓496被移动至锁紧位置,将盖450固持到容器2902。在可选的实施例中,盖栓496的枢转导致磁铁448被定位成靠近霍尔效应传感器3172,使得霍尔效应传感器3172感测由磁铁448产生的磁场。现在容器组件2900准备好在灭菌腔52(图1)内进行灭菌过程循环了。在灭菌过程循环期间,可拆除的传感器模块3500监控和收集关于容器2902内的操作环境、条件和过程测量值的数据。

灭菌过程循环完成之后,传感器模块3500被从传感器接收器3100移除,同时保持容器组件2900内部的无菌状态。通过在向近侧方向上压模块箱体3502同时逆时针转动箱体,传感器模块被拆除。箱体3502的向近侧移动导致指状部3138和3140移出捕获器3544。随着箱体3502被逆时针转动,指状部3138和3140沿着槽道3540跟踪,导致箱体3502被在向远侧方向上拉离接收器外壳3102。应理解板3350被接合到箱体3502进行轴向移动。因此,箱体3502的纵向移位导致板3350的类似移位。箱体3502和板3350在向远侧方向上的运动通过盘簧3382辅助。箱体3502的逆时针转动还导致接触按钮3746从端子端部3156断开连接。图41示出了处于此位置的传感器模块3500。

最后,板3350的指向远侧的环形面3355(图35)接触O环3144。这在板3350和接收器外壳3102之间建立密封。此密封关闭通道4110(图42)。密封建立之后,锁紧机构3400被盘簧3426偏压(图35)而移动至锁紧状态。盘簧3426致使锁紧机构3400移至最上位置,其中升高壁3408(图35)抵接台阶3362(图35)的上侧壁,限制了锁紧机构3400的向上运动,并且杆3412被与托架臂3306相邻地定位,防止板3350在向近侧方向上远离接收器外壳3102移动。

在传感器模块的此移除过程中,板3350被向外拉。这导致板3350被压在O环3144上。这增大了弹簧3382施加到板上的力,以将板保持于被密封和锁紧的位置。

随着箱体3502被进一步逆时针转动,翅状部3524将移离与鞋状部3376的接合并且移出板插口3380,允许箱体3502从板3350分开。操作者继续手动地在向远侧方向上移动箱体3502,导致可拆除的传感器模块3500从接收器外壳内孔3125(图34)和开口3263(图34)移除和分开。在可拆除的传感器模块从传感器接收器移除的过程中,密封件3534和3144一起作用,使得至少一个密封件始终密封到相邻的表面,防止空气和微生物在移除过程中进入容器内部。在移除过程期间,此至少一个密封件被保持的实施例临时形成无菌屏障封壳的一部分。现在,可拆除的传感器模块3500可与其它容器2902一起在灭菌处理过程中使用了。

传感器模块3000被构造成使得无菌密封被保持在容器2902和接收器3100之间,无论可拆除的传感器模块3500处于什么位置。当传感器模块3500从接收器3100移除时,板3350的环形表面3355(图35)和面密封O环3144形成防止污染物通过接收器3100进入容器2902内的无菌密封。在插入或拆除传感器模块3500时,无论板3350什么时候处于打开位置,O环3534和环形内表面3122(图33)保持另一无菌密封,形成另一无菌屏障。

当容器经历灭菌时,板3500和相邻的接收器的表面以及O环3534的暴露表面被暴露于灭菌剂。因此,当在拆除传感器模块过程中这些表面相互抵接以形成密封时,几乎没有污染物被捕获在这些表面之间的可能性。

锁紧机构3400被设计为使得板3350只有在盖450打开或移除时才能打开。锁紧机构3400必须从容器2902内部手动致动来打开。在容器2902已经灭菌并且在传感器模块3500已经从接收器3100拆除之后,随后任何试图再插入另一可拆除的传感器模块3500到接收器3100内都被处于锁紧状态的锁紧机构3400阻挡,因而保持容器2902内的无菌条件。第四,因为可拆除的传感器模块3500可从容器2902拆除,所以可拆除的传感器模块3500可与其它附加容器2902一起在灭菌过程中使用。如果可拆除的传感器模块3500是相对高成本的物品,那么小数量的可拆除的传感器模块3500与较大数量的容器2902一起使用将导致用于在灭菌过程中监控过程测量值的更经济有效的解决方案。此外,设置于可拆除的传感器模块3500上的传感器或电子部件将不会被暴露于来自清洁、自动清洗和粗处理的可能损坏情形中,而被永久地安装到容器的传感器或电子部件可能经历这些损坏情形。

在本发明的一些实施例中,构成感测组件的一部分的部件中的一些被安装到容器。典型地,这些部件被安装到接收器。可被附连到接收器的部件包括处理器,存储器,指示灯或电池。此外,一些传感器可被永久安装到容器。

XXIV.与可拆除的传感器模块一起使用的停靠站

参考图44,示出了停靠站1300的另一实施例。停靠站4400与可拆除的传感器器械3000协同使用。停靠站4400在将手术器械装载到容器2902内的过程中使用,用于校准可拆除的传感器模块3500的传感器和使电池再充电。停靠站4400与在前面参考图16描述的停靠站1300具有许多共同的特征。停靠站4400不同于停靠站1300在于校准腔1320被修改为除去了门1326(图16)而添加了固定前面板4410。多个传感器接收器3100被安装到前面板4410。虽然图中示出六个传感器接收器3100安装到了校准腔1320,但可以使用更多或更少个传感器接收器3100。

可拆除的传感器模块3500是与传感器接收器3100中的每一个可附接并且可拆开的。停靠站4400的传感器接收器3100被连接到停靠站控制器1402(图17)并且与停靠站控制器1402通信。当传感器模块3500被插入接收器3100内时,传感器处理器1020(图37)与停靠站控制器1402和停靠站处理器1410(图17)通信。

停靠站4400包含蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438(图17),所有这些可根据需要使用,用于在校准过程期间在校准腔1320内提供已知的浓度和值。

以与停靠站1300和容器402一起使用的相同的方式,停靠站4400与可拆除的传感器器械3000协同使用。停靠站4400用于,在如前面描述的图21的步骤2108中的灭菌过程之前,将可拆除的传感器模块3500编程写入经验证灭菌过程测量值(VSPM)1150。停靠站4400被用于再充电可拆除的传感器模块3500中的电池3720(图37)。停靠站4400被用于,以与在前面描述的图27中的步骤2704-2714中相同的方式,校准可拆除的传感器模块3500中的传感器。在校准与相应可拆除的传感器模块3500相关联的传感器的过程中,传感器校准软件1460(图17)由停靠站4400使用。在校准过程中,传感器校准软件1460至少部分地控制蒸汽发生器1430,过氧化氢发生器1432,压力泵1434,真空泵1436和加热器1438的操作。

请注意,停靠站4400可用于同时编程和校准大量的可拆除的传感器模块3500。

XXV.在灭菌过程期间利用可拆除的传感器模块确定经验证灭菌过程测量值已经获得的操作方法

参考图45,示出了在灭菌过程期间利用可拆除的传感器模块3500确定容器内的经验证灭菌过程测量值是否已经获得的方法4500的流程图。方法4500示意在前面附图中呈现的容器组件3000和可拆除的传感器模块3500执行能够实施本公开的一个或多个实施例的不同方面的示例性方法。在图45的讨论中,还参考图29-44中的部件。

方法4500起始于步骤4502,其中可拆除的传感器模块3500被编程写入VSPM 1150。可拆除的传感器模块3500被装载到停靠站4400(图44)内用于编程。在步骤4502,存储器1022(图37)被编程写入特定的经验证灭菌过程测量值(VSPM)1150,在停靠站处理器1410(图17)上运行的容器编程软件1461(图17)利用从手持读取器1240(图44)获得的数据识别出与容器设备负载相关联的特定VSPM 1150,并且传输VSPM1150以存储在存储器1022上。被传输的VSPM 1150专门用于该待灭菌的设备负载。

可选地,在步骤4502,在使用之前校准可拆除的传感器模块3500的传感器。可拆除的传感器模块3500被停靠站4400使用。

在步骤4504,可拆除的传感器模块3500被从停靠站4400拆除并且被加载到附接到容器2902(图40)的传感器接收器3100(图40)内。步骤4504包括当盖打开以允许插入箱体3502时将内锁紧机构3400手动压到容器2902内。传感器模块3500处理器1020(图37)在此刻与容器控制器3830建立通信。

在步骤4506,由操作者制备该设备负载的手术器械180(图2)用于灭菌处理。在步骤4506,手术器械被放置于托盘160(图2)内并且托盘160被放置于容器2902内。盖450(图40)被附接和封闭到容器2902。

在可选步骤4508,手术器械180和/或托盘160和/或容器2902在进行灭菌处理之前被包裹在无菌屏障材料中。

在方框4510处的另一可选步骤中,在处理器1020上运行的灭菌证实软件1152(图14)打开容器黄色LED 3844(图38),指示使用者容器组件还没有经过灭菌过程循环。

在步骤4512,容器402被放置于灭菌腔52(图1)内并且在灭菌腔52内开始灭菌过程循环(方框4514)。在灭菌过程循环期间,灭菌腔被加热、加压,并且灭菌剂、比如蒸汽或过氧化氢气体被泵送到灭菌腔内。灭菌过程循环还包括冷却阶段和在腔内抽真空。这些子步骤使残留的冷凝的灭菌剂从容器除去。灭菌腔被设定为利用一组腔过程参数(CPP)66(图1)操作。CPP 66是灭菌腔内的一组名义过程参数。灭菌腔被设定为利用CPP 66操作。

此外,在步骤4514,在灭菌过程期间,在处理器1020上运行的灭菌证实软件1152监控和收集来自传感器模块3500中的相应电子传感器的实时数据。传感器监控它们相应容器内的环境特征。被收集的实时操作数据被作为数据1156(图14)存储在存储器1022中。例如,在处理器1020上运行的灭菌证实软件1152收集来自水蒸气传感器1024的水蒸气数据,来自压力传感器1026的压力数据,来自温度传感器1028的温度数据和来自过氧化氢气体传感器1052的过氧化氢浓度数据。在灭菌过程期间记录的所有数据被作为数据1156存储在存储器1022中。

在步骤4516,处理器1020使观察到的环境测量值与VSPM 1150相比较。在决定步骤4520,在处理器1020上运行的灭菌证实软件1152确定灭菌过程期间的实时测量数据1156是否满足或超过了用于每个操作参数的最小VSPM 1150值以确保容器内容物的灭菌。例如,如果VSPM 1150的最小温度和时间值为250华氏度20分钟,则灭菌证实软件1152使这些值与数据1156中的被记录时间和温度值相比较。

响应于所记录的数据1156值满足或超过了用于每个灭菌操作测量值的最小VSPM 1150值,方法4500继续进行步骤4526,在步骤4526中,在处理器1020上运行的灭菌证实软件1152通过通电绿色容器LED 3846来指示容器内容物已经被成功灭菌(图38)。在一个实施例中,与灭菌过程相关的附加数据可被传输至PCB 3800的容器存储器用于存储、工作流过程或质量控制实践。例如在一个实施例中,测量值数据、VSPM编程的数据集、灭菌证实结果、灭菌数据和VSPM程序操作者可存储在PCB3800的容器存储器上。在步骤4528,容器组件被从灭菌腔移除并且可拆除的传感器模块3500被从容器2902拆除。在传感器模块3500从容器2902断开连接的过程中和之后,容器2902的内容物保持于被密封的无菌状态。然后方法4500结束。

响应于所记录数据1156值不满足或超过最小VSPM 1150,处理器1020继续进行步骤4524,步骤4524与在前面描述的步骤2126相同。

在步骤4528,容器被从灭菌腔移除并且可拆除的传感器模块3500被从容器2902拆除。容器2902的内容物应在使用前进行重新处理。然后方法4500结束。

在存储期间,控制器3830(图38)执行类似于无菌监控软件1158(图14)的指令集,使控制器3830监控在存储期间从带有霍尔效应传感器3172(图31)的可选实施例接收的电信号。如果盖450被打开,来自霍尔效应传感器3172的电信号变化,触发控制器3830断电绿色LED 3846(图38)并且打开红色LED 3842(图38)。红色LED 3842的发光为操作者提供容器2902的内容物不再认为是无菌的指示。

XXVI.带有剪刀式升降机构的自动关闭容器

转向图46和47,示出了另一自动关闭容器组件4600。容器组件4600利用剪刀式机构4700来关闭可移动框架4750。在灭菌过程被执行并且残留的灭菌剂被从容器撤出之后框架被关闭。

容器组件4600包括容器4602。图46的容器4602与在前面描述的图7的容器402相同,除了开口414和盖栓496从容器402省略之外。为了说明容器组件4600,容器4602将参考与图7的相同的参考数字。

容器组件4600还包括支架或托盘4620。托盘4620可由适当的材料比如不锈钢或铝形成。托盘4620包括大致平面的矩形形状的基部4622,基部4622被穿透孔4626的阵列。孔4626允许灭菌剂在基部4622下面循环。基部4622具有上表面4623和底表面4624。四个支撑脚部4628被安装到基部4622并且从底表面4624垂直向下延伸。当托盘4620被放置于容器4602内时脚部4628搁靠在支撑构架4710的上表面上。

在无菌处理过程中,托盘4620被用于将医疗/手术器械180保持于容器4602内。托盘4620包括安装到基部4622的相反两端的一对间隔开的手柄4632。手柄4632允许使用者抓住和提升托盘4620。

托盘4620被形成有从基部4622向上延伸的多个支撑构件4638。医疗/手术器械180隔靠在支撑构件4638上并且通过支撑构件4638支撑。支撑构件4638被设计尺寸和形状为使得医疗/手术器械180被保持和固持在进行无菌处理的优选定向中。对于一些医疗/手术器械180来说在无菌处理过程中被定向到特定的几何定向是很重要的,以便灭菌剂能够很容易地进入和离开手术器械。

盖4650被用于遮盖和封闭容器4602。盖4650包括大致矩形形状的面板4652,面板4652被升高的周围凸缘4654包围。盖4650由材料比如冲压铝或其它适当的材料形成。两个锁栓4658被安装到在盖4650的相反两侧。每个锁栓4658与另一个在直径方向上对置布置并且被附接到凸缘4654。锁栓4658与从可移动框架4750的两端向外延伸的夹具4758配合。当盖4650被向下移动到与可移动框架4750接触时,锁栓4658稍稍枢转并且接合夹具4758,从而将盖4650固持到框架4750。盖4650具有被固持到沟槽455(参考图7B)中的弹性垫圈456(参考图7B)。垫圈456与框架4750的周围唇缘4760配合以在盖4650和可移动框架4750之间形成密封。将盖固定和密封到可移动框架的其它锁栓可被使用,只要这些锁栓允许操作者解栓、拆除盖并且触及容器内部的内容物。

容器组件4600还包括剪刀式机构4700。剪刀式机构4700通过容器4602的内腔420接纳并且搁靠在底面板407上。剪刀式机构4700被用于在容器组件4600的灭菌处理过程中升高和降低框架4750。剪刀式机构4700包括通过一对中央横向构件4712链接的狗骨形状的构架4710。构架4710具有相反的端部4738和4739。构架4710和横向构件4712在构架4710内限定出三个腔4713,4714和4715。四个开口4716被限定于构架4710的相反两端。开口4716接收锁紧指状部4717,锁紧指状部4717具有被附接到的、开槽的头部4718,头部4718从构架4710的顶表面向上朝向。在构架4710靠在容器底面板407上时,开槽的头部4718被利用比如螺钉驱动器的工具转动,迫使锁紧指状部4717与侧壁405和406的侧表面上的固持特征(未示出)接合。锁紧指状部4717与固持特征的接合将构架4710固定到容器460并且将剪刀式机构4700固持到容器4602。在一个实施例中,构架被可松开地固定到容器底部。在又另一实施例中,构架被紧固到容器底部。在所有实施例中,构架被接合到容器,以允许构架和致动器系统在可移动框架和容器之间生成足以防止微生物进入的密封力。

传感器模块1050安装在腔4713中并且通过固持装置4711固持到构架4710。传感器模块1050与在前面描述的图12B中的相同,除了致动器驱动电路4708被引入模块1050之外。

回转致动器4720安装在腔4714内。回转致动器4720被通过C形夹具4722附接到构架4710的侧部分4721。带螺纹轴杆4723远离回转致动器4720的一端垂直延伸。回转致动器4720可被以顺时针或逆时针转动的方式转动,致使带螺纹轴杆4723类似的顺时针或逆时针转动。带螺纹轴杆4723具有最靠近致动器4720的近侧端4724,中心部分4725和远侧端4726。

可移动载架4730被安装在腔4715中。可移动载架4730包括被定位于腔4715内的矩形形状的块体4731。块体4731具有整个延伸穿过块体4731并且垂直于轴杆4723的带螺纹中心内孔4731。带螺纹轴杆4723被旋拧到螺纹孔4731内并且伸出块体4731的远侧。轴杆4723的远侧端4726被接收在轴承4732中,轴承4732安装在构架4710的端部4739内。

两个在直径方向上对置设置的杆4734被固定到块体4731的两端并且远离块体4731的两端以垂直方式延伸。杆4734被在直径方向上对置设置的狭槽4719接收,狭槽4719被朝向端部4739限定于构架4710的两侧。可移动载架4730在任一方向上的运动通过杆4734抵接在狭槽4731的端部上而被限制。

因为回转致动器4720被固定到构架4710,带螺纹轴杆4723的顺时针转动导致块体4731移离致动器4720。带螺纹轴杆4723的逆时针转动导致块体4731移向致动器4720。

剪刀式机构4700还包括四个细长臂4770。每个臂4770具有近侧端4771,中心部分4772和远侧端4773。孔隙4775被限定为穿过每个相应近侧端4771,中心部分4772和远侧端4773。每个孔隙4775接收固持构件4776。

在构架端部4738,下臂近侧端4771固持构件4776具有延伸到构架4710上的孔4778内的销4777。销4777允许下臂近侧端4771相对于构架4710转动。

在框架端部4756,上臂近侧端4771固持构件4776被接收在延伸到框架4750内的孔(未示出)中。固持构件4776允许上臂近侧端4772相对于框架4750转动。在中心部分4772中,固持构件4776使两个横向臂4770枢转地附接。固持构件4776允许这两个臂4470相对于彼此转动。

在构架端部4739,下臂远侧端4773具有杆4734延伸穿过的孔隙4775。杆4734延伸穿过远侧端4773并且终止于狭槽4719中。孔隙4775被设计尺寸为稍稍大于杆4734以允许下臂远侧端4773相对于构架4710转动。

在框架端部4757,上臂远侧端4773固持构件4776被延伸到框架4750内的狭槽4761接收的销4777。销477远离远侧端4773垂直延伸。狭槽4761被设计尺寸为稍大于销4777以允许销4777在狭槽4761中滑动。此外,孔隙4775被设计尺寸为稍大于销4777以允许上臂远侧端4773相对于构架框架4750转动。

可移动框架4750的周围限定出中央开口4752。另外参考图48,示出了可移动框架4750的横截面图。可移动框架4750包括终止于唇缘4760中的向上延伸的壁4762。两个间隔开的壁4764和4765从框架4750向下延伸,在它们之间限定出槽道4766。槽道4766接收弹性开口式唇缘垫圈或密封件4777。垫圈或密封件4777被分成限定出沟槽4778的两个唇缘。当可移动框架4750被剪刀式机构4700降低到容器4602上时,垫圈4777在沟槽4778中接收和接合边沿413,在框架4750和容器4602之间形成密封。

容器组件4600还包括多个传感器,用于检测可移动框架4750的打开和关闭或盖4650的插入和拆除。关闭位置微开关或极限开关4810被安装到构架端部4739,面对着腔4715内。打开位置微开关或极限开关4812被安装到横向构件4712,面对着腔4715内。微开关4810和4812经由电缆4814与电子传感器模块1050通信。

当可移动框架4750移动到关闭位置时,块体4731的一侧接触和闭合微开关4810。当可移动框架4750移动到打开位置时,块体4731的另一侧接触和闭合微开关4812。当可移动框架4750处于打开位置时,通道4830被形成在容器4602和框架4750之间。处理器1020(图13)能够解释来自微开关4810和4812的信号以确定可移动框架4750的位置。

霍尔效应传感器4820被安装到框架壁4762的面对着开口4752的内表面。霍尔效应传感器4820经由电缆4822与电子传感器模块1050通信。磁铁4824(图46)被附接到盖4650的、与锁栓4658相反的升高凸缘4654。

当盖4650被放置于可移动框架4750上方并且附接到可移动框架4750时,磁铁4824被定位成靠近霍尔效应传感器4820。霍尔效应传感器4820检测磁铁4824产生的磁场并且将表示检测到磁场的电信号发送至处理器1020(图13)。当盖4650被从可移动框架4750移除时,磁铁4824被远离霍尔效应传感器4820定位。霍尔效应传感器4820检测不到磁场并且将表示检测不到磁场的电信号发送给处理器1020。处理器1020利用该电信号确定盖4650的位置。

XXVII.利用带有剪刀式升降机构的自动关闭容器在灭菌过程期间确定经验证灭菌过程测量值是否已经实现的操作方法

参考图49,示出了在灭菌过程期间利用自动关闭容器组件4600确定容器内的经验证灭菌过程测量值是否已经实现的方法4900的流程图。方法4900示意了在前面附图中呈现的容器组件4600和电子传感器模块1050用来执行能够实现本公开的一个或多个实施例的过程的不同方面的示例性方法。在图49的讨论中,还将参考图46-48的部件。

方法4900开始于步骤4902,其中如果移动框架4750不处于打开位置,则处理器1020被触发使框架4750移动到打开位置。在一个实施例中,容器组件4600放置于停靠站1300上(图16)并且使用被连接到电子传感器单元1050的连接器1032的连接器1338(图16)和缆线1340(图16)通信地耦合到停靠站1300。停靠站处理器1410(图17)与容器处理器1020通信,询问容器处理器1020比如可移动框架4750的位置。如果可移动框架4750不处于打开位置,则处理器1410发射信号,触发处理器1020使回转式致动器4720以逆时针方式转动带螺纹轴杆4723。

带螺纹轴杆4723以逆时针方式转动导致块体4731在向近侧的方向上朝向致动器4720线性运动,这反过来导致剪刀臂4770向上远离容器4602的边沿413移动可移动框架4750。在一个实施例中,块体4731的近侧与打开位置微开关4812的接触触发处理器1020使其断电回转式致动器4720。现在,框架4720处于打开位置,此时在灭菌处理过程中灭菌剂能够通过通道4830进入容器4602。在可选实施例中,容器组件被放置于灭菌室中,同时可移动框架处于关闭状态。在本实施例中,在灭菌器52内执行灭菌过程期间,来自控制器1020的信号提升和打开框架。

在步骤4904,传感器模块1050被编程写入经验证灭菌过程测量值(VSPM)1150。存储器1022(图14)被编程写入特定的经验证灭菌过程测量值(VSPM)1150。在停靠站处理器1410(图17)上运行的容器编程软件1461(图17)识别出与容器设备载荷相关联的特殊VSPM 1150,可选地利用从手持读取器1240获得的数据(图44),并且传输VSPM 1150以存储于容器存储器1022上。被传输的VSPM 1150是专用于该待灭菌的设备载荷的。然后从连接器1032断开连接器1338和缆线1340。

由操作者准备该设备载荷的手术器械180来进行灭菌过程。在步骤4906,手术器械180被放置在托盘4620上,托盘4620被放进容器4602。如果对于该内容物ID不需要器械支架,则器械被放在没有器械支架的容器内。通过锁栓4658栓锁到夹具4758,盖4650被附接到并且封闭到可移动框架4750(步骤4908)。盖4650现在被密封到可移动框架4750了。

在步骤4910,容器4602被放进灭菌室52内(图1),并且在灭菌室52内开始灭菌过程循环(方框4912)。在灭菌过程循环期间,通过将灭菌剂、比如蒸汽或过氧化氢气体引入灭菌室内,灭菌室运行常规的灭菌过程。灭菌剂通过当可移动框架没有处于封闭和密封位置时形成的通道4830进入和离开。灭菌过程循环可还包括冷却阶段和在腔上抽真空以除去任何残留冷凝的灭菌剂。在一个实施例中,通过在灭菌过程的此阶段中将可移动框架保持于打开位置,灭菌剂被通过通道4830从容器的内容物除去。灭菌室被设定为使用一组腔过程参数(CPP)66(图1)操作。CPP 66是用于该灭菌室的那一组名义过程参数设置,以利用CPP 66进行操作。

此外,在步骤4912,在灭菌过程循环期间,在处理器1020上运行的灭菌证实软件1152(图14)监控和收集来自传感器模块1050中的相应电子传感器的实时数据。传感器监控它们相应容器内的操作过程测量值和条件。所收集的实时操作数据被作为数据1156(图14)存储在存储器1022中。例如,在处理器1020运行的灭菌证实软件1152收集来自水蒸气传感器4102的水蒸气数据,来自压力传感器1026的压力数据,来自温度传感器1028的温度数据和来自过氧化氢气体传感器1052的过氧化氢浓度数据。在灭菌过程期间记录的所有数据被作为数据1156存储在存储器1022中。

在步骤4914,在处理器1020上运行的灭菌证实软件1152使在灭菌过程循环期间收集的观察到的实时数据1156与VSPM 1150相比较。在决定步骤4916,在处理器1020上运行的灭菌证实软件1152确定在所执行的灭菌过程期间的测量数据1156是否满足或超过了用于每个操作参数的最小或临界值VSPM 1150值以确保容器内容物灭菌。例如,如果VSPM 1150的最小温度和时间值为250华氏度持续20分钟,那么灭菌证实软件1152使这些值与数据1156中的所记录的时间和温度值相比较。

响应于所记录的数据1156值满足或超过了用于每个灭菌操作参数的最小或临界值VSPM 1150,表示容器内容物的灭菌,方法4900继续进行步骤4920。在步骤4920,处理器1020触发回转致动器4720使其以顺时针方式转动带螺纹轴杆4723。在可选实施例中,在VSPM数据已经得到证实之后,灭菌证实软件保持通道4830打开,以在用可移动框架关闭通道之前实现灭菌剂从容器内容物中的去除。在此实施例中,基于遵循本循环的致死灭菌部分的特定时间间隔或者在某一传感器监控到指示灭菌剂去除完成的信号之后,关闭信号可从控制器发出。

带螺纹轴杆4723的顺时针转动导致块体4731在向远侧方向上朝向构架端部4739线性运动,导致剪刀臂4770将可移动框架4750向下移动至与容器4602的边沿413接合。在一个实施例中,块体4731的远侧与关闭位置微开关4810的接触触发处理器1020以断电回转致动器4720。

现在,可移动框架4720被密封到容器4602并且处于关闭位置。盖处于关闭状态用作容器内的负载被正确灭菌的指示。容器组件4600的内容物现在处于被密封的无菌状态并且准备好进行存储了。在方法4900的这种基础执行过程中,残留的灭菌剂从容器离开、通过微生物屏障进入周围的环境。

响应于所记录的数据1156指示环境测量值不满足VSPM 1150,如步骤4922呈现的,处理器将框架保持于打开位置。框架4750处于打开状态用作容器的内容物没有得到正确灭菌的指示。

存储期间,处理器1020执行一组指令、比如无菌监控软件1158(图14),使处理器1020监控在存储期间从霍尔效应传感器4820(图47)接收的电信号。如果盖4650被打开,来自霍尔效应传感器4820的电信号会改变,触发处理器1020以将可移动框架4750移动到打开位置。在可选实施例中,无菌监控软件使LED闪烁而不是打开可移动框架。可移动框架4750在打开位置指示技术人员容器2602内的内容物不再认为是无菌的。

在本实施例的一个可选形式中,在传感器模块测量容器内的环境特征之后,执行灭菌过程的灭菌部分。在步骤4916的评估指示容器中的负载被正确灭菌之后进行此监控。在此操作阶段期间,传感器测量残留的灭菌剂在多大程度上仍存在于容器中。处理器,基于这些测量值,确定其残余灭菌剂是处于还是低于可接受水平。当处理器确定容器处于此状态时,处理器执行步骤4920,致使框架关闭以密封容器。

XXVIII.在蒸汽灭菌过程期间证实容器中的灭菌过程参数的操作方法

参考图50,示出了在蒸汽灭菌过程期间确定容器内的经验证灭菌过程测量值是否已经获得的方法5000的流程图。方法5000示意出在前面附图中呈现的容器组件90,300,400,500,600,700和800(90-800)和电子传感器模块200,460,560,660,760,850,950,1000,1050和1080(200-1080)中任一用来执行能够实现本公开的一个或多个实施例的不同方面的示例性方法。方法5000被特别描述为利用容器组件400(图7)和传感器模块1050(图12B)中任一执行。然而,方法5000可利用容器组件90-800和电子传感器模块200-1080中任一执行。对本方法的描述总体上参考前面附图中示意的特定部件。在图50的讨论中,还参考图7,12B和15的部件。

总体上,方法5000被描述为经由容器处理器1020并且特别地通过在处理器1020内运行的软件/固件模块提供的代码的执行来实现。然而,应意识到所描述的方法的某些方面可经由其它处理装置和/或其它代码的执行来实现。

方法5000开始于步骤5002,在步骤5002中,由操作者准备该设备负载的手术器械180以进行灭菌过程。步骤5002包括将容器402定位于停靠站1200或1300上,并且如果容器具有连接器,将对应的连接器485,1032连接到停靠站。在步骤5002,手持读取器1240被用于扫描容器402,托盘160和待灭菌的手术器械180。在步骤5006,手术器械放置于托盘160内,托盘160放置于容器402内,盖450被附接并且被锁栓封闭。在手术器械180的装载过程中,操作者参考由停靠站1200或1300显示的显示屏1260,观察正确的设备负载和定向。

在可选步骤5004中,在使用之前校准电子传感器模块1050的传感器。电子传感器模块1050利用停靠站1300进行校准。

在步骤5008,容器402内的存储器1022被编程写入特定的经验证蒸汽灭菌过程参数(VSPP)1150。在停靠站处理器1410(图17)上运行的容器编程软件1461(图17)利用从手持读取器1240获得的数据识别出与容器设备负载相关联的特定VSPP 1150,并且将VSPP 1150经由连接器485发送以存储在容器存储器1022上。被发送的VSPP 1150是专门用于该待灭菌的容器内的设备负载的。

在图50的蒸汽灭菌例子中,VSPP 1150包括:

1.表示饱和蒸汽的温度范围:132℃≤Tsat≤135℃

2.被暴露于饱和蒸汽的时间周期:t≥4分钟

3.计算得到的饱和蒸汽温度和测得的温度之间的温度差的可接受范围±1.6℃

4.表示负载被饱和蒸汽包围的、在容器内间隔开的位置处测得的温度之间的温度差的范围±1.6℃。

在方框5010处的另一可选步骤中,处理器1020通电LED 1030中的黄色发光二极管(LED)。这是表示该容器组件还没有被循环经过该灭菌过程。

在步骤5102中,容器402被放置于灭菌腔52内。步骤5014是灭菌过程的开始。在灭菌过程期间,灭菌腔被加热、加压,并且蒸汽灭菌剂被引入灭菌腔内。灭菌过程循环还包括冷却阶段和在腔内抽真空以去除任何残留冷凝的灭菌剂。灭菌腔被设定为利用一组腔过程参数(CPP)66操作(图1)。CPP 66是该灭菌腔内的一组过程参数设置。该灭菌腔被设定为利用CPP 66操作。

此外,在步骤5014中,在灭菌过程循环期间,运行灭菌证实软件1152的处理器1020监控和收集来自与其通信的相应电子传感器的实时数据。传感器监控安装传感器的容器内的环境的特征。被收集的基于时间的测量值被作为数据1156存储在存储器1022中。例如,处理器1020收集来自湿度传感器1024的湿度数据,来自压力传感器1026的压力数据,来自温度传感器1028的温度数据和时间数据。温度数据包括记录蒸汽进入阶段(Tsteam)期间的温度,负载的温度(Tsurrogate)和空气检测腔内的含蒸汽的空气的温度(Tair detector)。负载的温度被认为是代理温度,因为可能很难提供用来监控负载温度的传感器。相反,传感器监控负载附近的空隙。因此该代理温度应认为大致等于、即便不相等的话、负载的实际温度。此空隙的温度被认为代表负载的温度。所有在灭菌过程期间记录的数据被作为数据1156存储在存储器1022中。

在步骤5016,运行灭菌证实软件1152的处理器1020使在灭菌过程循环期间收集的所观察到的实时数据1156与VSPM 1150极限值相比较。

在决定步骤5018,处理器1020确定在所执行的蒸汽灭菌过程期间实时测得的数据1156是否处于用于每个操作参数的VSPP 1150极限值内,以确保容器内容物的灭菌。

如果所测得的环境特征满足VSPM,则处理器执行步骤5024。步骤5024与在前面描述的步骤2122相同。

所测得的环境特征可能不满足用于本负载的VSPM。如果是这种情况,则处理器执行步骤5022。步骤5022被理解为与步骤2126相同。

响应于在步骤5020中没有完成该灭菌过程循环,方法5000返回步骤5016,在该步骤中,处理器1020继续监控和记录灭菌过程循环期间的灭菌过程操作参数。

响应于在步骤5020中完成了该灭菌过程循环,在步骤5022中,通过通电红色LED、比如LED 1030中的红色LED,处理器1020指示容器内容物还没有被成功地完成灭菌处理并且不是无菌的。方法5000结束。

图51示意出由利用蒸汽灭菌过程进行处理的器械的容器402内的传感器模块1050取得的过程参数测量值的示例性图表5100。在图表中只示出了暴露阶段的测量值。图51示出了温度和压力与时间的图表5100。测量值包括Tsteam(Tmeasured)或Tload5102,Tair detector5106和压力5108。图表还包括基于容器内的压力测量值计算的用于饱和蒸汽的温度(Tsat5104)的叠加图。

XXIX.用于在过氧化氢灭菌过程期间证实灭菌过程参数的操作方法

图52示出了确定用于利用汽化过氧化氢灭菌过程进行灭菌的负载的经验证灭菌过程测量值的方法5200的流程图。方法5200示意了在前面附图中呈现的容器组件400,500,600,700和800(400-800)和电子传感器模块460,560,660,760,850,950,1000,1050和1080(460-1080)用来执行本公开的一个或多个实施例不同方面的示例性方法。方法520被特别描述为利用容器组件400(图7)和传感器模块1050(图12B)执行。然而,方法5200可使用容器组件400-800和电子传感器模块460-1080中任一执行。对本方法的描述总体上参考前面附图中示意的部件。在图52的讨论中,还参考图7,12B和15中的部件。

总体上,方法5200被描述为经由容器处理器1020并且特别地通过由在处理器1020内运行的软件/固件模块提供的代码的执行来实施。然而,应意识到所描述的方法的某些方面可经由其它处理装置和/或其它代码的执行来实施。

方法5200开始于步骤5202,在步骤5202中,由操作者准备手术器械180的设备负载以进行灭菌过程。步骤5202包括将容器402定位到停靠站1200或1300上,并且如果容器具有连接器,将对应的连接器485,1032连接到停靠站。在步骤5202,手持读取器1240被用于扫描容器402,托盘160和待灭菌的手术器械180。在步骤5206,手术器械被放置于托盘160内,托盘160放置于容器402内,并且盖450被附接和栓死封闭。在手术器械180的装载过程中,操作者参考通过停靠站1200或1300显示的显示屏幕1260,观看正确的设备负载和定向。

在可选步骤5204中,在使用前校准电子传感器模块1050的传感器。电子传感器模块1050利用停靠站1300进行校准。

在步骤5208,存储器1022被装载验证的过氧化氢灭菌过程测量值(VSPM)1150。在停靠站处理器1410(图17)上运行的容器编程软件1461(图17)利用从手持读取器1240获得数据识别出与容器设备负载相关联的特定VSPM 1150,并且经由连接器485传输VSPM 1150以存储在容器存储器1022上。被传输的VSPM 1150是专用于此待灭菌的容器内的本设备负载的。

在图52的过氧化氢灭菌例子中,VSPM 1150包括:

1.最小预注射压力:P预注射≤0.8托

2.蒸气压缩压力:300托≤PVC≤450托

3.蒸气温度极限值:20℃≤T蒸汽≤50℃

4.时间积分的H2O2*浓度(面积)极限值:

H2O2蒸气面积≥2500mg-s/l

5.暴露过程中H2O饱和度极限值:

H2O实际/H2O饱和>0.8

在方框5210处的另外可选步骤中,在处理器1020上运行的灭菌证实软件1152打开LED 1030中的黄色发光二极管(LED),指示使用者容器组件还没有进行灭菌过程循环。

然后,在步骤5212中,将容器402放置于灭菌腔52(图1)内并且在灭菌腔52内开始灭菌过程循环(方框5214)。在灭菌过程循环期间,灭菌腔被加热、加压,并且过氧化氢灭菌剂被泵送到灭菌腔内。灭菌过程循环还包括冷却阶段和在腔上抽真空以去除任何残留冷凝的灭菌剂。灭菌腔被设定为利用一组腔过程参数(CPP)66操作。

而且,在步骤5214,处理器1020记录从传感器接收的环境特征的基于时间的测量值。

所记录的温度测量值应理解为包括过氧化氢蒸气的温度(T蒸汽)。在灭菌过程期间记录的所有数据都作为数据1156存储在存储器1022中。

在步骤5216,运行灭菌证实软件1152的处理器1020使所测量的环境特征与VSPM 1150相比较。被利用汽化过氧化氢过程灭菌的负载的一组示例性VSPM 1150是:

1.预注射压力:P预注射≤0.8托

2.蒸气压缩压力:300托≤PVC≤450托

3.负载温度:20℃≤T蒸汽≤50℃

4.时间积分的H2O2*浓度(面积):

H2O2蒸气面积≥2500mg-/l

5.暴露期间的H2O饱和度:

H2O实际/H2O饱和>0.8

在决定步骤5218,处理器1020确定所测量的环境特征是否满足或超过了用于此负载的VSPM 1150。上面的第三个经验证测量值是基于时间的浓度曲线下面积。步骤5218的一部分包括对在一时间段上取得的个别H2O2浓度进行积分,以确定这些测量值的积分值。

响应于所测量的环境特征满足了VSPM,处理器1020执行步骤5224,步骤5224与前面描述的步骤2122相同。

可选地,在步骤5216中,可能确定所测量的环境特征不满足用于此负载的VSPM 1150。如果存在这种情况,那么处理器执行步骤5222,步骤5222与在前面描述的步骤2128相同。

图53示意出通过用过氧化氢灭菌的器械的容器402内部的传感器模块1050获得的过程参数测量值的示例性图表5300。压力测量值是利用在蒸气压缩阶段期间(大约400托)的压力测量值放置于该曲线的可见部分下面的比例制成的曲线。在温度和压力(左轴)与时间和过氧化氢和水蒸气浓度(右轴)与时间的曲线5300中。测量值包括过氧化氢蒸气的温度(T灭菌剂蒸气)5304,在蒸汽注射之前容器内的压力(预注射压力)5312,过氧化氢浓度5308和水蒸气浓度5310。

许多环境特征的测量值被显示出来,它们是在灭菌过程的时间周期上重复获得的。这些是在步骤5216中用来确定过氧化氢曲线下积分面积的测量值。这些测量值还用于确定饱和水蒸气的存在性。

图53的环境测量值是与VSPM 1150进行比较的测量值。作为此比较的结果,处理器确定所测量的环境特征中的四个满足与这些特征相关联的经验证测量值。特别地,当用于此压缩的经验证测量值在300至450托的范围内时,汽化过氧化氢被压缩至400托的压力。当用于此温度的经验证测量值在20至50℃的范围内时,蒸气状态的过氧化氢被测量出在36和38℃之间的温度处波动。对时间积分的汽化过氧化氢是2846mg-s/l。用于此特征的经验证测量值是至少2500mg-s/l的值。第五个被测量的环境特征是存在的总水蒸气与水饱和度的比值,被计算为1.63。用于此负载的测试灭菌过程显示用于此特征的最小经验证测量值是0.8。

然而,在本过程期间测量的预注射压力是1.5托。用于此负载的VSPM显示本压力的最高水平是0.8托。因此,当评估这些数据时,在步骤5218中,处理器确定并不是所有被要求的经验证灭菌测量值都得到了满足。因此处理器1020将执行步骤5222,给出本负载没有得到令人满意地灭菌的指示。

容器可具有其它结构特征。例如,控制按钮可被安装到传感器模块。从模块伸出的导体将按钮连接到被按钮控制的容器电气装置。

在本发明的一些形式中,可断开的、易折断的单次使用、防篡改装置可安装到本发明的容器中。这些装置的状态提供环绕容器的密封的未破坏/破坏状态的视觉指示。这些装置可用作如上所述的电子装置的附加或替代,提供未破坏/破坏密封状态的指示。

除霍尔传感器之外的传感器可用于检测容器盖的打开/关闭状态。这些传感器包括机械开关和磁阻换能器。

同样,测量气体浓度的传感器容器具有与本容器一起使用的那种类型的灭菌器的功能。一些传感器监控灭菌气体、比如臭氧或乙撑氧的浓度。如果灭菌过程涉及将多种气体引入容器内,则容器具有能够监控每一种气体浓度的一个或多个传感器。如果传感器组件能够测量和输出代表在灭菌过程中使用的所述多种气体浓度的信号,则只需要单一的传感器组件。

因此应理解,监控气体浓度的传感器不限制于通过监控所选波长的光的吸收来行驶功能的传感器。输出信号与被传感器测得的气体的浓度相关地变化的可选传感器可被集成到本发明的可选形式中。例如,这些包括与目标气体的浓度相关地改变电阻或电容的换能器。

在带有可拆除的传感器模块的本发明的形式中,传感器模块可包括部件,比如当模块正确安装时被闭合的开关。开关的闭合导致光被发出,指示本单元被正确地安装。

同样,本发明的可拆除的传感器模块可放置于校准腔中,而不必须首先将传感器模块放置在容器中。

因此,附属权利要求的目的是覆盖落在本发明的实质和范围内的所有这些变化和修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1