用于改善跨越异种金属焊接接合部的刚度过渡的机构的制作方法

文档序号:13628336阅读:245来源:国知局
用于改善跨越异种金属焊接接合部的刚度过渡的机构的制作方法

相关申请的交叉引用

本申请要求于2015年4月14日提交的美国专利申请no.14/686,175的权益和优先权,上述申请的全部内容通过参引并入本文中。



背景技术:

人体包括各种管腔,比如血管或其他通路。管腔有时可能会变得至少部分地堵塞或弱化。例如,管腔可能会至少部分地被肿瘤、被斑块或者被两者堵塞。可以用可植入支架重新打开或增强至少部分地堵塞的管腔。

支架通常是布置在身体的管腔中的管状本体。支架可以被导管递送在身体内,其中,导管在支架被递送至身体内的期望布置部位时以尺寸减小的构型支撑支架。在布置部位处,支架可以扩张,使得例如支架接触管腔的壁以使管腔扩张。

在将递送导管和支架递送至期望位置时可以采用导引线。例如,导引线可以通过导引导管前进直到导引线的远端梢部刚刚延伸超出支架被植入的位置。待被定位的导管和支架可以安装到导引线的近端部分上,并且导管和支架可以在导引线上前进,直到导管和支架布置在支架待被植入的血管或其他通路内。一旦植入了支架,导管就可以在导引线上取出。导引线也可以被取出,并且支架通常留在原位。

导引线通常可以包括在远端端部附近带有一个或更多个部段的长形芯构件,所述一个或更多个部段向远端渐缩为较小的横截面。对导引线的一个主要要求在于导引线提供有充足的柱强度以在不屈曲的情况下被推动通过患者的脉管系统或其他身体官腔。另一方面,导引线必需足够柔韧,以避免在导引线前进时损坏身体官腔。已作出努力以提高导引线的强度和挠性从而使导引线更适于这些目的,不过这两个所期望的特性通常彼此完全相对,使得一者提高通常导致相对的另一者性能不太符合要求。例如,期望导引线的远端部分相对更柔韧,以便能够更容易地前行通过患者的脉管系统,这种前行在某些部分可能会相当曲折。近端部分可以逐渐坚硬,以提供支撑气囊导管或类似装置的能力。

尽管存在用于解决这些问题的许多不同方法,但仍然存在对改进的导引线及相关制造方法的需求。



技术实现要素:

例如,在一个构型中,本公开针对的是一种多部段血管内导引线,多部段血管内导引线包括长形的远端芯线部分(例如,第一部分)和长形的近端芯线部分(例如,第二部分),其中,长形的远端芯线部分包括第一金属材料,长形的近端芯线部分包括不同的第二金属材料。远端部分和近端部分可以(例如,由固态焊接接合部)端部对端部地直接接合在一起。这种焊接接合部可以被焊接区域包围,该焊接区域的直径相对于导引线的位于焊接区域两侧的远端部分和近端部分的直径减小。导引线可以包括布置在焊接接合部上的刚度调节套筒(例如,覆盖跨越焊接区域的直径减小部分)。刚度调节套筒导致了跨越焊接区域的渐进的而非急剧的弯曲刚度过渡轮廓。刚度调节套筒可以由包括多股螺旋缠绕线的多线线圈形成以及/或者可以包括至少一个端部的厚度渐缩的套筒本体。

本公开的另一实施方式针对的是一种用于形成多部段血管内导引线的方法。这种方法可以包括提供最初分开的远端导引线部段和近端导引线部段,这些部段包括不同的金属材料(例如,分别为镍钛诺和不锈钢)。远端部段和近端部段彼此端部对端部地对准并且可以在焊接接合部处直接固态焊接至彼此。使围绕焊接接合部的焊接区域处的直径减小(例如,被机加工掉),使得焊接区域的直径小于位于焊接区域两侧的相邻的远端部段和近端部段的直径。在焊接区域上方(例如,在对应于直径减小部分的“腔室”或“凹槽”内)定位中空的柱形刚度调节套筒。在实施方式中,刚度调节套筒可以是布置在焊接区域上的包括多股螺旋缠绕线的多线线圈以及/或者可以包括至少一个端部的厚度是渐缩的套筒本体。在任一情况下,刚度调节套筒导致了跨越焊接区域的渐进的而非急剧的弯曲刚度过渡轮廓。

根据本公开的实施方式,包括端部对端部地接合在一起的长形的远端芯线部分和长形的近端芯线部分——其中,远端芯线部分包括第一金属材料,近端芯线部分包括不同的第二金属材料——的多部段血管内导引线通过包括布置在围绕焊接接合部的焊接区域上的刚度调节套筒,可以使得焊接接合部布置成相对于导引线的远端段部或梢部相对紧密接近。例如,焊接接合部与导引线的远端端部相距可以不大于25cm、不大于20cm、不大于15cm、或不大于10cm(例如,3cm、6cm等)。

在实施方式中,可以至少在布置于焊接接合部上的刚度调节套筒上设置聚合物夹套。聚合物夹套还可以覆盖导引线的远端段部。在实施方式中,抵接的近端芯线部分和远端芯线部分可以在抵接的焊接接合部处设置有不同的直径(例如,其中较柔韧的远端芯线部分的直径相对较大),以便至少部分地补偿形成远端芯线部分的金属材料的显著较低的杨氏模量。聚合物夹套可以有助于使由金属芯线部分的外径的这种差异、刚度调节套筒的一个端部或两个端部的渐缩等导致的任何间隙平滑和/或填充该间隙,以便在围绕焊接接合部和套筒的区域上提供平滑的外部轮廓。如果期望,可以由聚合物夹套(即,夹套的厚度可以变化,从而填充任何间隙等)来提供恒定的外径。

所公开的实施方式中的任何实施方式的特征均可以彼此组合使用,而没有限制。此外,对于本领域普通技术人员而言,本公开的其他特征和优点将通过考虑以下详细描述和附图而变得明显。

附图说明

为了进一步阐明本公开的优点和特征中的至少一些优点和特征,将参照本公开的在附图中示出的各种实施方式来提供对本公开的更详细的描述。应当理解的是,这些附图仅描绘了本公开的各种实施方式,因此不被认为是限制本公开的范围。将通过使用附图用附加的特征和细节来描述并说明各种实施方式,在附图中:

图1是根据本公开的实施方式的多部段管腔内导引线的侧视局部截面视图;

图2是根据本公开的实施方式的多部段管腔内导引线的简化侧视图;

图3是根据本公开的实施方式的包括聚合物夹套的多部段血管内导引线的侧视局部截面图;

图4是示出在通过固态焊接将导引线的两个部段直接接合在一起时形成的焊接区域和焊接熔核的放大的侧视图;

图5a是示出在布置刚度调节套筒之前于焊接区域被磨去并且焊接熔核被去除的情况下的图4的两个焊接部段的侧视截面视图;

图5b是在套筒已被定位在焊接接合部上的情况下的与图5a的侧视截面视图类似的侧视截面视图;

图6a示出了通过示例性刚度调节套筒的侧视局部截面视图,其中,示例性刚度调节套筒在套筒的近端端部处的厚度是渐缩的;

图6b示出了一种刚度调节套筒的侧视局部截面视图,其中,刚度调节套筒在套筒的近端端部和远端端部两者处的厚度都是渐缩的;

图6c示出了一种刚度调节套筒的侧视正局部截面视图,其中,刚度调节套筒包括形成在套筒的近端端部中的狭槽;

图7示出了由包括多股螺旋缠绕线的多线线圈形成的刚度调节套筒的立体图;

图8示出了包括布置在焊接区域上的刚度调节套筒的焊接区域的截面图,其类似于图6a的刚度调节套筒,其中,焊接区域两侧的直径已被减小以容纳套筒和布置在焊接区域上的聚合物夹套;

图9绘制了跨越近端芯线段和远端芯线段的弯曲刚度的示例性过渡轮廓,其中,将在焊接接合部上定位有刚度调节套筒的情况下的弯曲刚度过渡轮廓与在焊接接合部上没有定位有刚度调节套筒的情况下的弯曲刚度过渡轮廓进行比较;

图9a绘制了在没有任何刚度调节套筒的情况下的跨越近端芯线段和远端芯线段的弯曲刚度的示例性过渡轮廓;

图9b绘制了在于焊接接合部上具有镍钛诺刚度调节套筒的情况下的跨越近端芯线段和远端芯线段的弯曲刚度的示例性过渡轮廓;

图9c绘制了在于焊接接合部上具有不锈钢刚度调节套筒的情况下的跨越近端芯线段和远端芯线段的弯曲刚度的示例性过渡轮廓;以及

图10a至图10c包括示出对应于图9a至图9c的构型的套筒和导引线部段的特性的表。

具体实施方式

i.引述

在实施方式中,本公开针对的是多部段管腔内导引线,多部段管腔内导引线包括:长形的第一远端部分,第一远端部分包括第一金属材料(例如,镍钛诺);以及长形的第二近端部分,第二近端部分包括与第一金属材料不同的第二金属材料(例如,不锈钢)。远端长形部分和近端长形部分可以由固态焊接接合部端部对端部地直接接合在一起。围绕焊接接合部的位于焊接接合部两侧的焊接区域的直径可以相对于导引线的位于焊接接合部两侧的远端部分和近端部分的直径减小(例如,经研磨的)。可以在焊接接合部上布置刚度调节套筒,使得跨越焊接区域的弯曲刚度的过渡轮廓是较渐进而不是从导引线的远端部分向导引线的近端部分急剧跨越。在实施方式中,刚度调节套筒可以由布置在焊接区域上的包括多股螺旋缠绕线的多线线圈形成,使得跨越焊接区域的弯曲刚度的过渡轮廓是渐进的而不是急剧的。焊接接合部可以相对靠近导引线的远端部分的远端端部(例如,在端部的25cm内、在端部的20cm、15cm或10cm内)。可以至少在刚度调节套筒上例如并且至少在导引线的远端部分的一部分上布置聚合物夹套。在实施方式中,刚度调节套筒可以包括至少一个端部(例如,布置在不锈钢近端导引线部分上的近端端部)的厚度是渐缩的套筒本体,渐缩进一步有助于提供跨越焊接区域的较渐进的而不是急剧的弯曲刚度过渡轮廓。

本公开的另一实施方式针对的是一种用于形成多部段管腔内导引线的方法,该方法包括提供最初分开的远端导引线部段和近端导引线部段,这些部段包括不同的金属材料(例如,镍钛诺和不锈钢);将分开的部段端部对端部地对准,并且将分开的远端部段和近端部段在焊接接合部处焊接(例如,固态焊接)至彼此(例如,直接焊接至彼此)。使围绕焊接接合部的焊接区域的直径相对于导引线的位于焊接区域两侧的远端部段和近端部段减小。可以在焊接区域上定位刚度调节套筒。套筒可以在径向上减小(例如,通过旋转锻造,卷曲等),使得套筒位于焊接接合部上的直径减小的部段内。焊接接合部可以相对接近导引线的远端部分的远端端部(例如,在端部的25cm内、在端部的20cm、15cm或10cm内)。可以至少在刚度调节套筒上例如并且至少在导引线的远端部分的一部分上布置聚合物夹套。在实施方式中,套筒可以由多线线圈形成,以及/或者包括至少一个端部(例如,近端端部)的厚度是渐缩的套筒本体。套筒用于使跨越焊接区域的弯曲刚度的过渡轮廓从急剧(如由于只有焊接接合部的情况下而会发生的)改变为较渐进。

ii.示例性多部段管腔内导引线

有利地提供了一种多部段管腔内导引线,多部段管腔内导引线包括由具有较大杨氏模量(即,较大刚度)的金属材料形成的近端部段或近端部分和由具有比近端部段的杨氏模量低的杨氏模量的金属材料形成的远端部段或远端部分。术语部段和部分可以在本文中可互换使用。通过示例,这种近端部分可以由不锈钢形成,并且远端部分可以由镍钛诺形成。这为导引线的远端端部提供了大的柔韧性和耐久性,同时给予近端端部大的支撑和扭矩传递。然而,当将远端部段和近端部段对接焊接至彼此时,特别地在焊接接合部大致垂直于导引线的纵向轴线延伸的情况下,焊接区域在焊接接合部处呈现急剧的刚度过渡,因为以超弹性或线性弹性形式的镍钛诺的杨氏模量显著低于不锈钢(例如,aisi304或316)或钴基合金(例如,l605或mp35n)的杨氏模量。例如,该差异约为2至4倍,比如镍钛诺的杨氏模量约为8msi至10msi,而奥氏体不锈钢和钴基合金的约20msi至35msi的杨氏模量取决于奥氏体不锈钢和钴基合金内的晶体学织构而引起的各向异性程度。

在针对最大扭矩传递或其他原因的情况下的导引线构型中,期望焊接接合部定位成相对接近导引线的远端端部(例如,在端部的25cm内),与焊接接合部相关的杨氏模量的急剧改变可能会不利地影响导引线通过曲折的脉管系统前进的能力。目前公开的实施方式通过改变弯曲刚度的过渡轮廓来减小跨越焊接接合部的刚度变化的急剧性,以便即使在焊接接合部本身可相对于导引线的纵向轴线大致垂直的情况下跨越焊接接合部的刚度变化也是较渐进的而非急剧的。

图1是包括根据本公开的特征的导引线100的侧视局部截面视图。导引线100可适于插入患者的身体官腔例如静脉或动脉中。导引线100可以包括长形的相对高强度的近端芯部分102,近端芯部分102可以在焊接接合部103处直接焊接至相对柔韧的远端芯部分104。在焊接接合部103上设置有刚度调节套筒105,刚度调节套筒105有助于使跨越焊接区域103的弯曲刚度的过渡轮廓较渐进,而非急剧且完全集中在焊接接合部103处,如在焊接接合部103大致垂直于导引线100的纵向轴线的情况下可能会发生的,如所示。刚度调节套筒105包括并且提供了显著的刚度,使得当刚度调节套筒105附接在焊接区域上时,与不存在刚度调节套筒的情况相比,刚度调节套筒105增大并且有助于焊接接合部的每侧的刚度。刚度调节套筒105不仅仅是如美国专利no.6,866,642中所述的不会增加显著刚度的增强套筒。例如,刚度调节套筒105可以是金属的(例如,镍钛诺——与远端芯部分相同的材料)且具有影响跨越焊接区域的刚度的充足厚度(例如,刚度调节套筒105的壁厚通常可以为约0.001英寸至0.004英寸、或0.002英寸至0.003英寸)。

如图1中所看到的,焊接区域(焊接接合部和周围区域)的直径在制造期间减小以容纳插入其中的套筒105。下面将更加详细地讨论刚度调节套筒105。远端芯部分104可以包括渐缩部段106,渐缩部段106沿远端方向渐缩至较小的厚度。可以绕远端芯部段104布置有螺旋线圈108,并且螺旋线圈108可以紧固至圆形梢部110。尽管焊接接合部103被示出为位于靠近螺旋线圈108、渐缩部段106以及106与118之间的渐缩部段的位置处,但应当理解的是,在一些实施方式中,特别地在焊接接合部非常接近远端端部110(例如,在端部的15cm内、10cm内、6cm内或3cm内)的情况下,焊接接合部103可能会不一定远离这些特征(例如,焊接接合部103可以被线圈108覆盖、焊接接合部103可以在渐缩部分上或者远离渐缩部分)。

线圈108的远端部段116的长度可以被拉伸以利用相邻线圈108之间的间隙或较大间隙提供附加的柔韧性。远端芯部分104的远端梢部118可以紧固至圆形梢部110,以防止远端梢部118穿过任何拉伸线圈108之间的任何间隔。芯部分104的远端梢部118的至少一部分可以被冷加工或以其他方式构造成减小梢部118的最远端部分的弹性(例如,以便较容易接纳j形弯曲、l形弯曲或其他弯曲)。这可以通过使梢部118的期望的最远端部分变平(例如,变平为矩形截面)或者通过其他方式给予冷加工来实现。在一些实施方式中,即使在这种冷加工或其他处理之后,梢部118的最远端部分也可以是圆形的横截面。美国专利申请no.14/042,321和no.14/499,856中公开了在已冷加工之后具有这种圆形截面特征的导引线芯梢部,上述申请的全部内容通过参引并入本文中。

图2示出了包括本公开的特征的另一管腔内导引线200的简化实施方式。芯部分202和204可以在制造期间于焊接接合部203处直接焊接在一起。部分202可以包括具有相对较高弹性模量的材料(例如,不锈钢)。部分202的远端端部可以通过焊接(例如,固态的端部对端部对接焊接)直接接合至远端部分204,远端部分204包括具有相对较低弹性模量的不同材料(例如,镍钛诺)。远端部分204可以包括可成形的远端梢部218,远端梢部218可以被永久地变形(例如,通过手指压力)以产生类似于梢部118的可转动通过患者的脉管系统的梢部。如所示,远端梢部218可以弯曲成或变形成j形弯曲部、l形弯曲部或类似的弯曲部219。可以在远端芯部分204的一部分上布置有线圈208。与实施方式100一样,尽管焊接接合部203和套筒205被示出为靠近各种特征(线圈208、渐缩的远端部分等),但应当理解的是,焊接接合部可以比所示更远地布置。

图3示出了包括本公开的特征的管腔内导引线300的另一实施方式。导引线300可以包括可在接合部303处直接焊接在一起的近端芯部分(例如,不锈钢、钴基合金等)302和远端芯部分304。远端芯线部分304可以在306处渐缩,同时梢部318靠近圆形梢部310。在远端芯部分304上可以布置有线圈308。线圈308可以向近端延伸任何期望的程度。在实施方式中,特别地在焊接接合部303相对接近导引线的远端梢部(例如,25cm内、20cm内、15cm内、10cm内等)的情况下,线圈308可以延伸经过焊接接合部303、刚度调节套筒305的一部分或全部、和/或甚至近端芯部分302的一部分。导引线300被示出为包括至少覆盖导引线300的远端端部(例如,圆形梢部310、线圈308和远端芯线部分304)的聚合物夹套320。如所示,聚合物夹套320可以覆盖焊接区域303,以及套筒305的全部或至少一部分。

在实施方式100、200和300中的任一者中,相应的焊接接合部通常可以包括围绕焊接接合部(103、203或303)的热影响区,其中,热影响区由于材料在该区域内的固态变形而导致。相应的套筒(105、205、305)位于的减小部分的长度可以至少等于热影响区的长度。通常,套筒的长度可以大于热影响区域的长度。例如,刚度调节套筒的典型长度可以为0.5cm至4cm、1cm至3cm、或约2cm。

针对导引线100、200和300的所示构型仅仅是许多可能构型中的三个构型,以及包括可被焊接或以其他方式接合在一起的多个部段并且其中在焊接接合部上设置有刚度调节套筒的其他导引线构型包括在本公开中。

远端芯部段(例如,104、204、304)可以由镍钛合金——比如,为包含约30%至约52%原子百分比的钛且余量通常为镍的超弹性合金的镍钛诺——制成。可选地,可以包含高达约10%原子百分比或高达约3%原子百分比的一种或更多种其他合金元素。其他合金元素包含但不限于铁、钴、铬、钒、铂、钯、铜及它们的组合。在一个实施方式中,在包含铂、钯、铜、钒或它们的组合的情况下,上述元素中的每者均可以被以高达约10%原子百分比的量包含。在一个实施方式中,在包含铁、钴、铬、或它们的组合时,上述元素中每者均可以被以高达约3%的原子百分比的量包含。

相对于钛的超过等原子量的镍的增加使发生应力诱导奥氏体向马氏体转变的应力水平提高。该特性可用于确保马氏体相向奥氏体相热转变的温度远低于人体温度(37℃),使得奥氏体是体温下唯一的温度稳定相。在使用期间发生应力诱导转变的情况下,过量的镍还可以在非常高的应力下提供扩张的应变范围,这具有提高远端芯部段的表观刚度的触觉效果。

由于镍钛诺的扩展的应变范围特性,远端部分的至少大部分由这种材料制成的导引线可以容易地通过曲折的动脉通路前进,并且使扭结的风险最小化。类似地,这种特性在导引线的远端镍钛诺部分可能会有意或无意脱垂的情况下是有益的。如果期望,这种镍钛诺合金可以被处理以产生与超弹性形式相比呈现出增大的表观刚度的线性弹性性能,这是由于缺乏由引起超弹性的可逆奥氏体/马氏体转变导致的特性应力平台。包括类似性能的其他材料(例如,其他超弹性合金或其他方式的高弹性合金)可以被类似地采用,其中,镍钛诺仅是示例。

导引线的近端部分(例如,102、202、302)通常可以明显比远端部分更强(即,具有较高的屈服强度和拉伸强度)。例如,近端部分可以由不锈钢(例如,sae304不锈钢)形成。还可以采用其他高强度材料,包括但不限于钴基合金比如mp35n和/或l605。

本申请的申请人已经发现,将不相容的异种材料(比如,不锈钢和镍钛诺)直接相容地焊接至彼此是极其困难的。例如,即使可以进行焊接连接,异种材料界面处或周围的热影响区域内的局部可变性可导致表明上看来焊接完整性可能会被随机地减弱,同时没有已知的非破坏性检测方法。因此,许多如此提出的或者甚至存在的异种焊接部件的焊接性能会呈现不期望的高变化,具有不可预测的故障特性。

由于此类异种材料直接焊接在一起的这些困难,通常已通过将不锈钢(例如)部段和镍钛诺(例如)部段经由采用定位在不相容的材料之间的第三过渡件而间接地接合至彼此(例如,参见美国专利no.7,316,656)、或者通过在不依赖于焊接的情况下将它们接合(例如,使用粘合剂和/或联接)来避免这种直接焊接连接。本申请的申请人已经发现可以实现对此类异种材料的直接焊接,如美国公开no.2014/0200555中所描述,其全部内容通过参引并入本文中。尽管单独的异种金属材料的直接焊接可以是优选的,但应当理解的是,如本文中所描述的刚度调节套筒还可以采用在替代性结构中。

图4示出了此类的两个异种芯线部分402和404的焊接附接。这可以通过固态电阻焊接过程来实现,其中各部段的对接部分经受受控的加热和变形而不使任何一种材料熔化,因为熔化可导致焊接延展性差等问题(例如,形成不期望的金属间化合物等)。冶金结合部在两种材料保持成固态的情况下并且通常通过在异种金属的界面处同时施加热和压力来产生。

简要描述,芯线400的分开部分或部段(例如,402和404)彼此对准(例如,在轴向上端部对端部)。在将电流递送通过导引线部分402和404的同时施加轴向力。由于所施加的压力和热,在导引线部分或部段之间形成焊接熔核422。焊接熔核422的厚度可以表示围绕焊接接合部403的热影响区(或至少热影响区的大部分)的厚度。例如,热影响区的厚度通常可以小于约0.25mm、小于约0.20mm、小于约0.18mm、或者从约0.15mm至约0.18mm。在示例中,焊接熔核的平均厚度可以为约0.15mm。芯线部段402和404通常可以相对较薄。例如,在实施方式中,芯线部段402和404的直径可以从约0.013英寸至约0.020英寸(例如,标称为0.014英寸或0.018英寸)。

在实施方式中,芯线部段402和404两者的直径可以彼此大致相同。在另一实施方式中,芯线部分中的一者可以有意地比另一者窄。例如,远端芯线部分可以有意地定尺寸成大于近端芯线部分。这种实施方式可以进一步有助于减小两个部分之间的弯曲刚度的差异,因为柱形构件的弯曲刚度与直径的4次方成正比。例如,因此,向较低杨氏模量的远端芯线部分提供略大的直径可以极大地有助于减小两个部分之间的弯曲刚度的任何差异。例如,在实施方式中,相对于近端芯线部分的端部端部对端部地焊接的远端芯线部分的端部的直径可以比近端芯线部分的界面端部的直径大2%至15%、3%至10%或4%至8%。所选定的具体量可以取决于两种材料之间的杨氏模量的实际差异以及其他因素。通过示例,在实施方式中,对于标称0.018英寸的导引线,可以采用焊接端部直径为0.0165英寸的不锈钢近端芯线部分和焊接端部直径为0.0175英寸的镍钛诺远端芯线部分。在制造期间,焊接区域以及整个镍钛诺长度可以在焊接之后被研磨至0.0165英寸以下。焊接区域可以被研磨至约0.0145英寸或更小,其中聚合物夹套将被施加在焊接区域上。在焊接之后施加聚合物夹套可以平滑掉任何剩余差异,从而在焊接接合部的过渡部分和远端芯线部分上提供恒定的外径(或期望的平滑渐缩)。

如图中所示,在实施方式中,焊接接合部403可以相对于所得的导引线的纵向轴线a大致垂直。当将两个芯线部分按压在一起时,这种垂直结构更易于处理,但两个部段之间的倾斜界面导致两个芯部分在施加压力时具有在彼此上滑动并滑动通过彼此的趋势,而非将两个芯部分保持成期望的对准。

尽管倾斜构型在理论上可能会是期望的,因为有助于减少跨越接合部的弯曲刚度的过渡轮廓的急剧性(例如,参见美国专利no.6,866,642和no.6,001,068),但特别地在开始考虑芯线部分的直径如此小(例如,0.013英寸至0.020英寸)的情况下,作为实际问题,在两个部段之间实现可靠的固态焊接会是非常困难的。如美国专利no.6,001,068的图17或美国专利no.6,866,642的图1和图2中所示的这种渐缩端部或倾斜端部实际上变为刃状边缘,并且在试图对准期间,特别地在包括持续施加轴向力的焊接情况下,趋于滑动通过彼此。除了难以防止这种界面表面滑动通过彼此之外,此类结构还会存在安全隐患。至少针对这些原因,在至少一些实施方式中,焊接接合部(以及在芯线部分402和404附接至彼此之前的芯线部分402和404的端部)优选地大致垂直于导引线400的纵向轴线。尽管90°的垂直取向可以是优选的,但仍然可以利用几乎垂直的角度获得适当的结果(例如,在焊接期间,防止最初分开的部段被按压时彼此之间发生滑移)。例如,焊接接合部与导引线的纵向轴线之间的任何角度可以在相对于垂直方向的1°内、3°内、5°内、或10°内。

参照图5a,一旦两个部段已被接合在一起,就可以例如通过研磨来去除布置在其间的焊接熔核422。例如,沿侧向延伸超出相邻近端部段和远端部段的直径的焊接熔核材料可以在无心研磨操作中被磨掉。如图5a中所示,直径减小部分424可以类似于由近端侧的芯线部分402的较大直径侧部或边缘426以及远端侧的芯线部分404的较大直径侧部或边缘428界定的凹槽或腔室(本文中可互换使用)。换句话说,围绕焊接接合部403的减小部分424的直径比导引线400的在位置424处的金属芯的最终尺寸小。如与图4相比示出的,去除的材料的侧向宽度可以比焊接熔核422的厚度大并且比相关的热影响区域的厚度大。例如,针对在焊接接合部处的0.018英寸的标称导引线直径以及0.0165英寸至0.0175英寸的实际线直径(远端部分的直径可以更大),去除的材料的厚度可以使得焊接接合部403上的减小部分的直径为从0.004英寸减至0.0145英寸。实际减小量可以取决于焊接接合部相对于导引线的远端梢部的位置,例如,较远地布置的焊接接合部可以定位在芯线的直径已减小至小于0.0165英寸或0.0175英寸的开始直径的部分内。在实施方式中,减小的凹槽424处的直径相对于近端侧部或远端侧部的直径(例如,分别为427或429)的减小百分比可以为5%至75%、8%至55%、10%至50%、10%至20%、10%至25%、或30%至50%。示出各种焊接接合部位置、标称的线直径、减小的线直径和“凹槽的顶部”的线直径的示例在下面的表1中示出。将从表1明显看出的是,直径减小百分比可以取决于焊接接合部位置,其中在焊接接合部相对较接近远端梢部的情况下,通常具有较多的减小。在考虑到由于实际原因套筒的壁厚通常可以为约0.001英寸至约0.002英寸的情况下,该特性是明显的。

表1

如本文中所描述,焊接接合部403(和刚度调节套筒405)可以设置成相对接近导引线400的远端端部(即,远端梢部)。这可能存在特别困难的问题,其中焊接接合部在导引线通过脉管系统或其他身体官腔前进时可能会更显著地遭遇较大曲率。例如,在实施方式中,焊接接合部可以布置成与远端端部相距不大于25cm、与远端端部相距不大于20cm、与远端端部相距不大于15cm、或与远端端部相距不大于10cm。例如,焊接接合部可以与远端端部相距从约3cm至25cm(例如,与远端端部相距3cm、与远端端部相距6cm、与远端端部相距10cm、与远端端部相距15cm、与远端端部相距20cm或与远端端部相距25cm)。

如图5b中所示,一旦实现了围绕焊接接合部的直径减小,刚度调节套筒405就可以跨越异种焊接接合部403定位并附在凹槽424内。这种刚度调节套筒405可以是中空的并且为大致筒形。套筒405可以使用任何适当的技术定位在凹槽424上。例如,在实施方式中,中空套筒可以设置有最初大于远端芯线部分和/或近端芯线部分内径的内径。套筒可以从位于合适部分上的一个端部开始前进,以便位于凹槽424上。套筒一旦定位在腔室或凹槽424上就可以通过任何适当的过程例如旋转锻造、卷曲和/或拉拔等来减小直径。

在实施方式中,可以最初在套筒405内(例如,沿着其全长)设置纵向狭缝,从而允许套筒405在凹槽424上的扩张,紧接着,套筒405在凹槽上的随后收缩(例如,通过旋转锻造、卷曲、拉拔等)使套筒405相对于凹槽424固定。在设置有纵向狭缝并且套筒405的材料足够柔韧的情况下,可以通过简单地按压套筒405或以其他方式使套筒405横向地、直接地在凹槽424上前进来扩张通过狭缝的开口而不必使套筒405在导引线的端部上沿轴向前进。例如,可以拉伸或牵拉在这种狭缝处开口的镍钛诺套筒,并将套筒按压在凹槽上。套筒一旦定位在凹槽424上就可以迅速返回至其原始构型,在这种实施方式中,套筒的内径(在拉伸前)可以不大于芯线部分的内径。

当然,在导引线的端部上的前进还可以根据期望采用有具有纵向狭缝的套筒。在任何情况下,一旦套筒405位于直径减小的凹槽424内,就可以采用软钎焊、硬钎焊和/或粘合剂(例如,胶水)以帮助将套筒405固定就位。侧部426和428的存在可以有助于固定套筒405,即使在不使用软钎焊、硬钎焊或粘合剂的情况下也是如此。在制造过程中的随后步骤中,在套筒405上施加聚合物夹套可进一步有助于将套筒405固定在减小部分424和焊接接合部403上的期望位置中。

套筒405有利地构造(例如,厚度、大小、材料等)成呈现相当大的刚度。套筒405的目的不仅在于覆盖或增强焊接接合部403,例如防止焊接芯线部分402和404的不期望的分开(在仅通过焊接接合部403提供充足强度的情况下)。而是,套筒405的目的在于对包括套筒和下面的芯线部分402和404的复合结构的刚度特性做出显著贡献,以便使刚度产生较渐进的变化,而不是如具有单独的焊接接合部的情况下发生的急剧的“梯级”。换句话说,边缘426与边缘428之间的任何点的复合结构的刚度值根据通过复合结构的纬度位置而增加,并且取决于的套筒的厚度和减小的芯部分402a或404a的厚度的贡献总和。套筒405针对任何给定位置的贡献通常都不是可忽略的。例如,在纬度位置b处,复合结构的整体刚度特性由套筒505在位置b处的厚度和材料特性等与直径减小的芯线部分402a(例如,由不锈钢形成)的厚度和材料特性等相结合而贡献。在位于焊接接合部403的另一侧的纬度位置d处,复合结构的刚度特性由套筒405的在位置d处的厚度和材料特性等与直径减小的芯线部分404a(例如,由镍钛诺形成)的厚度和材料特性等相结合而贡献。如上所描述,部分404(和404a)通常可以由具有比近端部分402(例如,不锈钢和/或钴基合金等)的杨氏模量显著更低的杨氏模量的材料(例如,镍钛诺等)形成。

比如通过简单地去除图4的焊接熔核而将产生的过渡轮廓将使刚度在整个焊接接合部403处产生单一的急剧变化。如图5b中所示的实施方式有利地将变化的幅度分成多个较小的“梯级”变化或甚至斜坡变化(取决于套筒405的构型),并且在套筒405的长度上扩展该变化,从而导致较渐进且不太急剧的过渡轮廓。图9中示出了示例性通用曲线图,其中,示出了过渡轮廓可以被如何改变以便不再如此急剧,而可以显著地较渐进。线p10绘制了示例性轮廓p10,其中,示出了弯曲刚度在整个焊接接合部403处的单梯级变化(在不使用套筒的情况下)。线p12示出了弯曲刚度的变化幅度可以如何在套筒405的长度上扩展,其中,变化分成多个梯级和/或渐进的倾斜变化。

图9a至图9c示出了针对包括各种套筒构型的实际多部段导引线的弯曲刚度的示例性曲线图。图9a中看到的曲线图针对的是在没有任何套筒的情况下基于外径为0.0175英寸的镍钛诺远端部分急剧变化至外径为0.0165英寸的不锈钢近端部分的构型。图9b的曲线图针对的是基于类似尺寸的导引线部分但在焊接接合部上布置有镍钛诺套筒的构型。图9c的曲线图针对的是基于类似尺寸的导引线部分但在焊接接合部上布置有不锈钢套筒的构型。具体的套筒特性和导引线部分特性如图10a至图10c的表中所示,其中,图10a对应于图9a、图10b对应于图9b、并且图10c对应于图9c。在每个示例中,焊接接合部在3cm处(例如,与梢部相距3cm),并且套筒的长度为2cm并在焊接接合部上居中。应当明显的是,套筒的任何渐缩和/或狭槽将进一步改变轮廓(例如,使轮廓更加渐进)。在针对给定位置(例如,在2cm处)计算2个值的情况下,这些位置紧接地位于所述位置的两侧。例如,2cm的“远端niti”针对的是通过镍钛诺远端导引线部分的2cm处的位置。2cm的“远端套筒”针对的是通过套筒的远端端部和镍钛诺远端导引线部分的位于套筒边缘的2cm处的位置。类似地,针对3cm和4cm的双重指定位置被指定为紧接地在界面的两侧(例如,分别为焊接界面或套筒边缘)。

对于图10a至图10c中的各计算中的每个计算,针对直径为d的实心圆柱的惯性矩(i)被计算为i=(pi/64)·d4。针对外径为d且内径为d的实心圆柱的惯性矩被计算为i=[(pi/64)·d4]-[(pi/64)·d4]。弯曲刚度(inlbsf·in2)被计算为i乘以弹性模量(e)。

为了进一步平滑跨越导引线过渡部分的弯曲刚度的渐进变化,刚度调节套筒内可以存在一个或更多个具体特征。这些特征的示例在图6a至图6c中示出并且在图7中示出。在实施方式中,刚度调节套筒405可以由与远端芯线部分404(例如,镍钛诺)相同的材料形成。如图6a至图6b中所示,套筒405的一个端部或两个端部可以是渐缩的(例如,研磨成渐缩的)以使套筒405的弯曲刚度渐进地变化。换句话说,除了选择形成套筒405的材料之外,套筒405的厚度也影响在沿着由套筒405覆盖的过渡的任何给定纬度位置处增加的刚度量。如图6a中所示,在实施方式中,仅近端端部430是渐缩的。这是有利的,因为近端端部430抵接不锈钢边缘426,从而将渐缩部分定位在不锈钢减小部分402a上。在实施方式中,渐缩部可以在套筒405的近端半部上延伸,使得渐缩部在焊接接合部403上的位置c(图5b)处终止。以这种方式,在直径减小的镍钛诺部分404a上可以不存在渐缩部。这是有利的,因为不锈钢材料已经呈现出比镍钛诺更大的弯曲刚度。因此,套筒和直径减小的跨越部分424因此用于相对于在没有套筒和没有直径减小的情况下的弯曲刚度减小从套筒开始至位置c(焊接接合部)的弯曲刚度。

如图6b中所示,在另一实施方式中,套筒405的两个端部430和432可以是渐缩的。图6a的实施方式可以是优选的,因为在焊接接合部的镍钛诺侧部上减小刚度(通过渐缩)可能没有益处,这是由于镍钛诺侧部已表示了具有最低弯曲刚度的部分并且可能期望在该端部上提高刚度而不是降低刚度。实际上,图6a的实施方式可以用于使芯线的不锈钢侧的弯曲刚度朝向镍钛诺侧的弯曲刚度逐渐降低,其中,至少在套筒405的渐缩的近端部分上提供平滑(即,不是梯级)且渐进地减小的弯曲刚度。

用于减小弯曲刚度过渡轮廓的梯级变化(或至少梯级变化的幅度)的另一机构是在套筒405中设置狭槽(例如,狭槽图案)。如图6c中所示,这种狭槽434可以形成到套筒405的近端部分中,使得狭槽434布置在不锈钢部分402a上。以与图6a的渐缩类似的方式,狭槽434还用于减小近端过渡部分(即,套筒405的布置在不锈钢部分402a上的近端半部)内的弯曲刚度。狭槽434的相对较高密度的图案用于进一步减小刚度(即,较高密度的狭槽导致相对较低的刚度)。狭槽密度可以跨越套筒405改变(例如,邻近近端端部430的密度最高)。尽管图6c示出了与沿着近端半部朝向近端端部430的渐缩结合的狭槽434,但应当理解的是,在另一实施方式中,可以不为狭槽434设置渐缩。在另一实施方式中,狭槽可以设置在套筒405的近端半部和远端半部中的一者或两者内。可以如本文所描述的那样设置一个半部或两个半部的渐缩。

在提供渐缩或狭槽的情况下,由这些特征导致的外部尺寸(例如,直径)的任何差异可以用聚合物夹套覆盖或填充,聚合物夹套可以在制造期间随后被施加。例如,如从图6a和图5b可以明显看到,如果图6a的渐缩套筒405布置在图5b的凹槽424中(替换图5b的示出为非渐缩的套筒),在边缘426可能会未被图6a的套筒405的近端端部430完全覆盖的情况下,可能会存在间隙,因为套筒405可能没有足够的高度来覆盖边缘426。这种间隙可以在将聚合物夹套施加在芯线部分404、402和套筒405上时被填充。图8示出了这种示例,其中示出了可能会在提供近端渐缩的情况下导致的间隙429可以如何被聚合物夹套420填充。应当理解的是,在套筒包括形成在其中的一个或更多个狭槽的情况下,在制造期间狭槽可以类似地被聚合物夹套填充。这种聚合物夹套可以通过任何适当的过程例如通过挤出、共挤出、间隙填充聚合物粘合剂等施加。带聚合物夹套的导引线的示例在美国专利no.6,673,025、no.7,455,646和no.7,494,474中公开,上述美国专利中的每一者均通过参引并入本文中。这种聚合物夹套可以有助于防止内管腔塌陷事件——例如,其中气囊可能会塌陷并锁定到裸线上——的发生。这种聚合物夹套可以是相对润滑的,从而提供低摩擦表面(例如,涂覆有ptfe、亲水聚合物或类似物)。

图7示出了用于提供刚度调节套筒505的另一机构。在图7的实施方式中,刚度调节套筒405构造成为多线线圈,例如,包括螺旋缠绕金属线的多股线507。尽管示出有四个单独的股线507,但应当理解的是,可以类似地采用更多或更少的股线(例如,2、3、4、5、6等)。与包括类似尺寸(例如,相同的内径和外径)的管相比,这种多线线圈结构固有地更加柔韧。各股线的相对于线圈纵向轴线的铺设角可以为约45°,但可以通过改变股线数和/或股线直径来容易地改变。与单线线圈相比,这种多线结构还不太适于用作为弹簧(并且更像是管)。这种多线线圈呈现出比类似尺寸的单线圈更大的刚度同时还非常柔韧。这种多线线圈可以包括与本文中的其他套筒类似的尺寸(例如,内径与外径之间的差异通常为从0.002英寸至0.004英寸,长度通常为从0.75cm至1.5cm,或本文中针对套筒描述的任何值)。将明显的是,如果期望在刚度调节套筒内包括狭槽图案,则管结构可以优于多线线圈,不过在注意确保使磨损最小化或防止磨损的情况下渐缩(例如,研磨成渐缩的)对于多线线圈是可以的。例如,当采用多线线圈时,任何切割或渐缩可以通过激光切割或类似的过程来实现,因为在这种过程期间各股线的端部可能会趋于熔合或以其他方式粘合在一起(非常类似于尼龙绳索的端部的熔化)。类似熔合可以通过将多股线507的端部激光焊接至彼此和/或激光焊接至相邻的芯线部分402或404(例如,侧壁边缘426和428)来实现。在实施方式中,多线线圈的端部可以浸入焊料或以其他方式在其上包括焊料,并且然后被切割(激光切割或以其他方式切割)。任何磨损端部可以变为嵌入在焊料中,从而将端部保持就位以防止进一步磨损。用焊料或类似材料对端部进行这种“预锡焊(pretining)”,然后切割(例如,激光、机械、放电加工“edm”等)可以使磨损最小化或防止磨损。

即使在没有对多线线圈的任何激光焊接或激光切割的情况下,多线线圈套筒的端部磨损的任何趋势可以在包括套筒、通常是邻近于近端芯线部分的一些部分的整个过渡部分(并且通常地整个远端芯线部分)被包封在聚合物夹套内的情况下最小化或被防止。这种聚合物夹套因此可以用于限制多线线圈套筒的任何杂散端部。关于任何其他刚度调节套筒所描述的任何其他特征中同样可以采用在多线刚度调节套筒内。

在任何情况下,各种预期的刚度调节套筒中的任何一者与围绕焊接区域403的减小直径结合起来用于减小跨越异种金属焊接接合部的弯曲刚度变化的急剧性,其中,异种金属焊接接合部处的两种金属在它们的杨氏模量值方面显著不同。跨越芯线的刚度变化通过研磨或以其他方式将位于焊接接合部403的两侧的一定距离的焊接区域减小至较小直径(例如,小于图5a的相邻金属导引芯线位置427和429的最终外径)来减小。与没有设置使过渡在较大长度上扩展的刚度调节套筒的情况相比,借助这种套筒来使过渡进一步变得不太急剧,其中,整个过渡正好发生在两个芯线部分相交的焊接接合部处。

如本文中所描述,为了使近端芯线部分的弯曲刚度值和远端芯线部分的弯曲刚度值彼此较接近,近端金属芯线部分402可以形成为具有比远端金属芯线部分404的外径更小的外径。远端金属芯线部分(由具有比近端金属芯线部分的杨氏模量低的材料形成)的较大直径至少部分地补偿较低的杨氏模量,从而将远端芯线部分的弯曲刚度增大至更接近近端芯线部分的弯曲刚度。例如,对于标称0.018英寸的导引线,近端芯线部分402的直径可以为0.0165英寸,并且远端芯线部分404的直径可以为0.0175英寸。聚合物夹套可以至少覆盖焊接接合部、任何套筒和/或远端芯部分的至少一部分。例如,远端芯线部分404的直径可以比近端芯线部分402的直径大2%至15%、3%至10%或4%至8%(例如,6%)。

金属芯线部分402的外径和金属芯线部分404的外径的任何这种差异可以在于套筒和焊接接合部上施加聚合物夹套时被填充。例如,这种聚合物夹套(参见图3和图8)可以包封导引线的远端端部,直至并包括刚度调节套筒,使得聚合物夹套涂层对导引线提供恒定总直径(或至少提供可以是渐缩的平滑外表面)。在实施方式中,至少跨越套筒和焊接区域的外部轮廓的直径可以是恒定的,或者包括其他期望的尺寸均匀性(例如,平滑的——通常为恒定的外直径但可以渐缩)。在套筒定位在导引线金属芯的渐缩部分上的实施方式中,渐缩可以在聚合物夹套下于导引线的套筒和金属芯线内继续。与对金属芯线部分和套筒的影响相比,聚合物夹套对弯曲刚度的任何影响可能会是不显著的(例如,小于对弯曲刚度总贡献的10%、5%、3%、2%、1%)。

本文中在特定实施方式的上下文中描述的任何特征可以被采用在本文中描述的任何其他实施方式内。

如本公开的实施方式所属领域的普通技术人员应当理解的,本文中所述的数目、百分比或其他值意在包括所述值、以及大约为或近似于所述值的其他值。因此,所述值应被广泛地解释为足以包括至少足够接近所述值以执行期望功能或达到期望结果的值。所述值至少包括在适当的制造过程中的预期变型,并且可以包括在所述值的10%内、5%内、1%内等的值。此外,如本文中所使用的术语“大致”、“约”或“近似”表示仍然执行期望功能或实现期望结果的接近所述量的量。例如,术语“大致”、“约”或“近似”可以指在所述量或值的10%内、5%内或1%内的量。

必需指出的是,如本说明书和所附权利要求书中所使用的,除非上下文另有明确规定,否则单数形式“一”、“一个”和“该”包括复数指代。

本文中引用的所有出版物、专利和专利申请的全部内容都通过参引以如同每个单独的出版物、专利或专利申请被具体且单独地指定成通过参引并入的相同程度并入本文。

本公开的各实施方式可以在不背离本公开的精神或本质特性的情况下以其他具体形式实施。所描述的实施方式在所有方面被认为仅是说明性的而非是限制性的。因此,本公开的范围由所附权利要求书而非前面的描述来指定。在权利要求的等同含义和范围内的所有变化都将被包括在权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1