含作为吸收剂、凝胶和金属离子载体使用的结构化共聚物的聚合物掺混物的制作方法

文档序号:839781阅读:229来源:国知局
专利名称:含作为吸收剂、凝胶和金属离子载体使用的结构化共聚物的聚合物掺混物的制作方法
技术领域
本发明是在美国政府资助下根据加州大学与DOW化学公司之间的子合同9751405做出的。加州大学持有号码为W-7405-ENG-48的总合同,它是由能源部和加州大学签订的。美国政府对本发明中的有金属离子存在的致密型星形聚合物和有金属离子存在的基质聚合物有某种所有权,本发明其它方面不受美国政府的约束。
本发明涉及结构化的共聚物及其作为吸收剂、凝胶和金属离子载体的应用。使用了能将金属离子从水溶液中萃取到含结构化共聚物的非水溶液中的独特的聚合物试剂。此外,这些含金属的结构化共聚物能分散在另一个聚合物基质之中。更具体地说,本发明涉及一类新的致密型星形聚合物,它具有一个由能够与金属离子结合或螯合的单体单元构成的高度支化的内部结构,和由能形成疏水性外壳的不同单体单元构成的外部。
另外,这类致密型星形聚合物有一个由亲水性单体单元构成的高度支化的内部结构和由能形成疏水性外壳的不同单体单元构成的外部,显示出形成均匀凝胶的独特的物理特性。
将金属离子分散到聚合物基质中、特别是分散到由其制成泡沫体的聚合物基质中,常常遇到困难。金属在聚合物基质中的分散体通常用盐(例如金属的油酸盐)与特定组合的单体来形成,但这一方法存在问题。为了加大盐的溶解度,需要对聚合物基质改性,这会改变基质的熔体流变性质并影响它的成泡特性。此外,某些金属油酸盐(例如油酸铜)在单体中的存在常常阻碍聚合,以致于只能得到低分子量的粘性液体。这种方法显然大大增加了为得到理想产品所必须控制的变量数目。结果是,问题及可能的解决方法都大大地复杂化。因此,将金属分散在与水不混溶的相中(一般地和 特别是在聚合物基质中)的新方法极其有用。
在两相体系(水/有机相)中形成的凝胶在油/水乳状液体系中可作为表面活性剂使用。在连续的水相内保持大量的有机相已知存在某些问题。因此,凝胶在这方面的能力是有用的。
近年来已研制出称作致密型星形聚合物或树状聚合物或者称为STARBURSTTM(Dendritech公司的商标)的聚合物。致密型星形聚合物或树状聚合物的分子构筑特点是径向对称的规则的树状支化。这些径向对称的分子被称作具有“星芒拓扑结构”。这些聚合物是以能形成围绕引发物核心的同心枝形层的方式制成的。星芒拓扑结构是通过重复的单元(常为有机基团)以围绕引发物核心的同心枝形层的形式有序组合构成的;这是以几何上渐近的方式通过许多代分子引入多重性和自复制性(在每层内)而实现的。所形成的高度功能化的分子由于其分支(树状)结构及低聚物本质而被称为“树状聚合物”。因此,术语“致密型星形低聚物”和“致密型星形树状聚合物”均包括在术语“致密型星形聚合物”和“树状聚合物”之中。具有形状及大小可控的微区的拓扑聚合物是通过其活性端基共价桥连的致密型星形树状聚合物,它被称为“致密型星形桥连的树状聚合物”或“枝形桥连的树状聚合物”。术语“致密型星形桥连的树状聚合物”也包括在术语“致密型星形聚合物”中。术语“枝形桥连的树状聚合物”也包括在术语“树状聚合物”中。另外,术语“致密型星形聚合物”和“树状聚合物”可以互换使用。
先前已提到这些致密型星形聚合物是可被溶剂溶解的径向对称的致密型星形聚合物,其中该致密型星形聚合物有从核心发射出的至少一个核心分支,该分支有至少一个端基,条件是(1)端基与核心分支之比为2或更大,(2)每单位体积聚合物内的端基密度至少为有类似的核心、单体部分、分子量及核心分支数目的常规的扩张型星形聚合物的1.5倍,这种常规的扩张型星形聚合物的每个分支只带有一个端基,和(3)这种致密型星形聚合物的分子体积不超过用成比例的Corey-Pauling分子模型进行的量纲研究确定的常规扩张型星形聚合物分子体积的约60-80%,并具有规则的树形分支(例如见,美国专利4,507,466、4,558,120、4,568,737、4,587,329和4,694,064及欧洲专利申请公开0271180中关于致密型星形聚合物的介绍)。已经发现,可以对这些致密型星形聚合物的大小、形状及性质进行分子剪裁以满足特定的最终用途(例如欧洲专利申请公开0271180)。在这些特定的最终用途之中,欧洲专利申请0271180提到使用致密型星形聚合物作为农用物质、药物或其它物质的载体,这包括金属离子,例如碱和碱土金属和由锕系或镧系或其它类似的过渡金属生成的放射性核素。这些致密型星形聚合物轭合物在生物体系中释放承载物质方面特别有用。但是没有一处提到或建议过使用这种结构化的致密型星形树状聚合物作为吸收剂、凝胶和金属离子的载体。
现已发现,某些改性的或结构化的致密型星形聚合物在从水溶液中将金属离子萃取到含这些结构化共聚物的非水溶液中方面特别有效。此外,这些含金属的结构化共聚物能分散到另一种聚合物基质中。本发明涉及这些改性的致密型星形聚合物或树状聚合物,它们有一个由结合或螯合了至少一种金属离子的单体单元组成的高度支化的内部结构和一个由形成疏水性外壳的不同的单体单元构成的外部结构。不存在金属离子的类似的疏水性致密型星形聚合物和树状聚合物也包括在本发明之内。
本发明包括一种包含与金属离子相结合的改性的致密型星形聚合物和聚合物基质构成的聚合物掺混物。
另外,本发明的改性的致密型星形聚合物或树状聚合物在两相体系(水/有机相)中形成凝胶的性质可以在油/水乳状液中作为表面活性剂使用。
具有本发明改性致密型星形聚合物的高度支化内部结构的致密型星形聚合物,必须有与金属离子结合、络合或螯合的亲合性。这种亲合性常常通过在作为核心的致密型星形聚合物高度支化的结构内结合上大量易与金属离子络合的氧或氮原子来实现。这类树状聚合物是已知的化合物,可以根据例如美国专利4,568,737和4,587,329、欧洲专利申请0 271 180及世界专利WO93/14147中所述的步骤制备。用于本发明的优选的致密型星形聚合物是胺结尾的聚(酰氨基胺)树状聚合物、羟基结尾的聚(醚)树状聚合物、胺结尾的聚(亚乙基亚胺)树状聚合物和胺结尾的聚(亚丙基亚胺)树状聚合物。最优选的是聚(酰胺基胺)、聚(醚)、聚(亚乙基亚胺)和聚(亚丙基亚胺)的2到12代树状聚合物,即,其中的单体单元重复6到15000次。
本发明的改性的致密型星形聚合物的外部结构由疏水基团构成,它使外壳具有疏水性。术语“疏水基团”意味着对水无亲合性、排斥水或不能吸附或吸收水的基团〔“Dictionary of science and Tech-nical Terms”,Ed.Sybil p.parker,4th ed.,(1989)〕。致密型星形聚合物表面上的疏水性基团必须能在用来制备掺混物的基质聚合物中溶解、混溶或相容,而且该疏水性致密星形聚合物的内核在基质聚合物中的溶解、混溶及相容性必须要小得多。
“基质聚合物”意味着与疏水性致密型星形聚合物表面上的疏水基团相互溶解、混溶或相容的聚合物。适合用在本发明中的基质聚合物的实例是热塑性聚合物,例如聚乙烯、聚丙烯、聚苯乙烯、聚丙烯酸酯、聚甲基丙烯酸甲酯、聚异丁烯和聚甲基戊烯。
这类疏水基团通常包括一个活性官能基团,例如酰基氯、酯、羧酸、卤化物(即,氯化物或溴化物)、丙烯酸酯或环氧醚。优选的疏水基团是含4-40个碳原子、最好是4-24个碳原子的烃基。这些疏水基团也可以含有氧、氮或硫原子,例如环氧基、羟基、酯基或醚基。但是,所有的取代基必须在空间上彼此相容。
术语“空间上相容”是用来表示取代基不受空间阻碍的影响,如同该术语在“The Condensed Chemical Dictionary”(7th ed.Rein-hold Publishing Co.,N.Y.P.893,(1966)中的如下定义“空间阻碍分子结构的一种特征,分子内原子的空间排列使得它与另一分子的指定反应受阻或速度减慢。”空间上相容可以如D.J.Cram和G.Hammond在Organic Chemistry(2nd.ed.McGraw-Hill BookCompany,N.Y.P.215,1964)中所讨论的,进一步定义成反应化合物的取代基的物理尺寸不需要限制在不足以发挥其正常行为的空间内。
这些烃基包括有4-40个碳原子的直链烷基,它们必要时可独立地被以下基团取代羟基、羧基、C1-C10烷基、C1-C10烷氧基、C1-C10烷氧羰基、苯基或有1到5个C1-C5烷基或C1-C5烷氧基取代基的苯基、苯氧基或有1至5个C1-C5烷基或C1-C5烷氧基取代基的苯氧基。这类烃基的实例是己基、十八烷基、乙基己基、甲苯基癸基、茴香基十二烷基、3-苯氧基-2-羟基-1-丙基、(4-甲基)苯氧基-2-羟基-1-丙基、(4-甲氧基)苯氧基-2-羟基-1-丙基、远螯聚合物(如Telechelic PolymersSynthesis and Ap-plications,ed.,Eric Goethels,CRC Press 1989中所述,这是在末端有单个官能基的聚合物)、由环氧部分开环形成的2-羟基烷基和由2-羟基烷基的羟基烷基化形成的烷氧基。
本发明的改性的树状聚合物是通过用疏水性尾链将含有高度支化的内部结构的致密型星形聚合物封端制得的。封端反应可以用适合所存在的活性基团的任何常用方式进行。在Jerry March的Ad-vanced Organic Chemistry,3rd ed.,John Wiley & Sons,NY(1985)与美国专利4,558,120第12栏中可以找到这类反应的合适实例。
例如,这种改性可以通过作为内部结构的胺结尾或羟基结尾的树状聚合物与合适的烃基氯或烃基溴或(C6-C14芳基)C1-C11烷基氯或溴反应,或者与合适的α,β-环氧化物反应来完成。与卤化物或环氧化物的反应最好是通过胺结尾或羟基结尾的底物与对于每个可利用的末端胺或羟基至少一当量的卤化物或环氧化物在碱性或中性条件下于惰性溶剂中接触来进行。反应可以在从约20到约150℃的温度范围内进行。优选的烃基卤化物是伯烷基氯和溴,它们在有利于双分子亲核取代反应的条件下,用伯烃基尾链将胺和醚封端。优选的环氧化物是由端烯烃环氧化衍生得到的,它在碱性或中性条件下发生开环,用β位上带有羟基取代基的伯烃基尾链将胺和醚基本上封端。最优选的封端物质包括异辛基溴、十六烷基溴、十二烷基溴、缩水甘油基苯基醚、缩水甘油基异丙基醚、缩水甘油基叔丁基醚、缩水甘油基1-萘基醚、缩水甘油基4-甲氧基苯基醚、缩水甘油基2-甲基苯基醚、1,2-环氧基癸烷、1,2-环氧基十八烷、4,4-二苯基-1-丁烯氧化物和11,11-二苯基-1-十一烯氧化物。
将疏水性的改性致密型星形聚合物或树状聚合物与连续的聚合物基质在合适的溶剂中相混合的一种供选择的替代方法是利用已知的熔体掺混方法将合适的疏水性改性致密型星形聚合物或树状聚合物与聚合物相直接混合,即,在Brabender混合机中掺混。
通过改变外部结构的成分,可以对树状聚合物的整体溶解度作重大调整以满足特殊的应用。此外,当前进了足够的代数之后,这些树状聚合物显示出“密堆积”,此时树状聚合物的表面含有大量的端基部分以致于变得空间阻塞,而在树状聚合物的内部则包封着空白的空间。这种阻塞可以提供一种分子水平的势垒,用于控制物质进出树状聚合物内部的扩散。
为实现改性的致密型星形聚合物在给定的或所要的聚合物基质内的均匀分散,疏水基团是必不可少的,它的选择是本领域技术人员力所能及的。对于给定的聚合物基质,疏水基团的选择可以理解为与嵌段共聚物掺混物类似。
高分子量物质的掺混物在热力学方面没有足够大的混合熵来稳定溶液,除非聚合物各组分的表面能很接近。一种聚合物在另一聚合物中的分散体的稳定性由两组分的微区之间的界面能决定。因此,两种均聚物的掺混物会分离成两个分离的相以减小体系的界面积和总能量。
工艺上已知,如果组分之一是一种由溶解度参数很不相同的链段组成的嵌段共聚物,则可能制得稳定的掺混物。例如见Do-main structure and properties of Block and Graft Copolymers andPolymer Blends(Kyoto Uniuersity 1979年出版,by the ResearchStaff of Polymer Mechanics Laboratory at the Department ofPolymer Chemistry,Faculty of Enigeering,Kyoto University)。在这种情形,共聚物链段之间有相当大的界面能。当共聚物的链段是分离的或与掺混物中另一组分相容(优选与至少另一组分相容)时,这种情况得到减轻。适当地选择均聚物和共聚物组分,共聚物内的这种高的内能将高于试图使之相容的两聚合物之间的界面能,结果使掺混物比两个分离的相更稳定。
虽然不想作理论探讨,但是据信在本发明使用的掺混物中存在类似的情形。关于致密型星形聚合物的实验和理论研究表明,分子的很多端基折回到分子的内部以便有效地充满空间。这暗示当物质未掺混时表面改性基团与分子的内部基团之间可能有相当强的相互作用。当使用致密型星形聚合物作为本发明掺混物中的一个组分时,树状聚合物内的这种高能量相互作用减小。使掺混物稳定性最优化的最佳成分选择是使致密型星形聚合物内的内部与端基之间差别最大,而基质聚合物与致密型星形聚合物之间的界面能最小。因此,在与聚苯乙烯的掺混物中,芳族衍生物在改性方面优于脂族烃类衍生物。另一方面,树状聚合物的脂族表面基团在进行树状聚合物于丙烯酸酯/甲基丙烯酯类型体系的相容化改性方面可能更优越。
界面能的减小预期会减小各个微相之间的界面积。通过将所有的共聚物端基置于大分子粒子表面上的球形外壳或一部分球形外壳中可以作到这一点。利用彼此不紧密连结的基团,可以实现受控的微相分离。当端基的多重性足以形成连续的球形外壳时,这一外壳在树状聚合物大分子内部和它分散于其中的基质聚合物之间起着势垒的作用。
虽然不想作理论探讨,但是据信本发明在选择疏水性基团方面的有利后果是掺混物各组分之间的界面能形成能量上有利的平衡。当外部基团与高度支化的内部结构的体积比为约1∶10至10∶1、优选1∶5至5∶1、更优选约1∶1时,最好地说明了这种有利的平衡。
用本发明的改性致密型星形聚合物萃取的金属离子必须能与改性致密型星形聚合物的高度支化的内部结构相结合。这种金属离子的合适实例是以下的盐VIA族的过渡金属(Cr)、VIIA(Mn)、VI-IIA(Fe)、IB(Cu)和IIB(Zn);IA族的碱金属(Li);IIA族的碱土金属(Be);IIIA族的镧系金属(La);Y;Ge;Sn;和Pb。
术语“结合”包括用共价键、氢键、吸附、吸收、螯合、金属键、范得华力、离子键、库仑力、疏水力或亲水力或者上述方式的任何组合,附着、连接或包封在改性致密型星形聚合物的内部。
这些致密型星形聚合物从水溶液中萃取金属的能力提供了很广范围的用途,不限于水纯化或贵金属回收,作法是将小体积的有机溶液与大体积的水相搅拌,以便从水中实际上除掉金属并将其浓集在更可加工和/或可回收的介质中,这种能力也简化了随后要分散在聚合物基质中的承载金属的致密型星形聚合物的制备。分散在聚合物基质中的金属可以使聚合物材料具有吸收电磁辐射的性质,使之可以用于屏蔽辐射或作为可微波加热的材料。
本发明的致密型星形树状聚合物作为表面活性剂及凝胶的用途可以用其物理特性说明。酰化的致密型星形树状聚合物常常不溶于甲苯和水中,但是,当分散于水/有机两相介质时显示出独特的物理特性。结果是形成均匀的不透明白色凝胶。当在两相反应中产生酰胺时这种凝胶形成(<1分钟),并变得稠厚和不流动。将此凝胶过滤(5%重量的产物在1∶1 H2O∶甲苯中)除去一些溶剂,得到粘稠的湿固体(10-20%重量产物)。旋转蒸发后得到仍含50%溶剂的粉末,在真空烤箱中干燥,生成干燥物质。
也可以将凝胶稀释到超过原始值(5%重量,在H2O/甲苯中)。稀释到低至1%时生成稠化的白色凝胶。此种增稠在搅拌时破坏,但在30分钟到1小时内重新形成。进一步用水稀释(即,在混合机中混合)得到奶状白色液体,而加入甲苯只造成透明的甲苯层分离。因此水的容量(在水/甲苯混合物中)不受限制,而甲苯的容量(在水/甲苯中)则限制为超过树状聚合物25-50倍重量的甲苯。当把水中奶状白色稀释液内的甲苯蒸发走时,树状聚合物会沉淀,留下透明的水相。
这些结果暗示,形成了一种以致密型星形树状聚合物作为表面活性剂的油/水乳状液,它能将大量的甲苯保持在连续的水相中。另外,致密型星形树状聚合物在水中不溶,除非有大量的甲苯存在以减小致密型星形树状聚合物的自缔合并将其分散。在水/甲苯中的致密型星形树状聚合物浓度高时(>10%重量),也可以看到这一点,此时对水的容量(R=C5<Ph<C7<C9)被限制成大致为所存在的甲苯的体积。
虽然不想作理论探讨,但是据信增稠现象是由甲苯微区产生并保持在连续水相中的三维疏水性网状结构造成的。当少量致密型星形树状聚合物溶在一种非离子表面活性剂C8H17O(CH2CH2O)5H的水溶液中时,也看到这种疏水性缔合。在将这种发浑的溶液加热时,表面活性剂失去它的溶剂化水,疏水缔合占了优势,形成絮凝的沉淀。
由于致密型星形树状聚合物在甲苯和水中的溶解度都差,所以干燥的产物不能在水/甲苯中充分分散以形成奶油状的凝胶。因此只是在合成产物期间或者在可能时自酸或甲醇中沉淀时才有凝胶产生。
本发明的疏水性改性致密型星形树状聚合物和致密型星形树状聚合物开始与反胶束相似,其中一个亲水内核被包封在疏水性外层之中。另外,较高代的树状聚合物(即,Gen=3以上)的分子尺寸与观察到的胶束尺寸非常接近。虽然这两种体系都具有间隔化和在分子水平上高度有序化的特性,但它们的动态行为显著不同。胶束的破坏与重建很快,而由本发明的致密型星形树状聚合物形成的固定的胶束则长期稳定。
以下的制备实施例是对本发明的改性致密型星形树状聚合物的说明,它只是用来作为本发明的示例。
实施例1第10代(G=10)聚酰氨基胺致密型星形聚合物的缩水甘油基苯基醚衍生物将0.65g自氨、丙烯酸甲酯和乙二胺衍生得到的第10代致密型星形聚合物与0.77g缩水甘油基苯基醚在150ml乙醇中搅拌回流2天。将混合物冷却到0℃之后,过滤分离出白色泡沫状的产物(1.0g),用13C NMR(CDCl3)鉴定,TMS作内标ppm173.2,159.3,129.5,121.2,114.2,64-72(br),48-60(br),32-40(br)。
从水溶液中萃取金属的能力是本发明的一部分。本发明涉及一种从水溶液中萃取这些金属离子的方法,其作法是使含有金属离子的水溶液与改性的致密型星形聚合物溶液在与水不混溶的溶剂中充分接触,该聚合物有一个由能够结合或螯合金属离子的单体单元构成的高度支化的内部结构和一个由能形成疏水性外壳的不同的单体单元构成的外部结构,从水溶液中分离出有机相。然后将含有金属离子的改性的致密型星形聚合物与另一聚合物掺混,以便将金属离子分散到连续相基质中。
以下实施例说明了含金属离子的改性的致密型星形聚合物的制备。
实施例2用缩水甘油基苯基醚改性的第10代(G=10)聚酰氨基胺致密型星形聚合物进行处理,从水溶液中萃取铜离子。
将实施例1的改性的树状聚合物(0.6g)溶于氯仿中。加入0.12g硫酸铜在10ml水中的溶液,混合物在室温下搅拌过夜。分出两层,水层用氯仿萃取。合并的氯仿溶液用硫酸钠干燥,过滤。减压蒸走溶剂,得0.6g蓝色粉末。
其中分散着金属离子的非极性聚合物基质已发现可用来制造屏蔽电磁辐射的制品。本发明涉及一种将含有金属离子的改性的致密型星形聚合物分散到非极性聚合物基质之中的方法,该方法的特征在于(a)使含金属离子的水溶液与改性的致密型星形聚合物的溶液在加入到水不混溶的溶剂中之后立即充分接触,所述聚合物有一个由能够与金属离子结合或螯合的单体单元构成的高度支化的内部结构和一个由能形成疏水性外壳的不同的单体单元构成的外部结构,(b)(i)必要时从水溶液中分离出有机相,该有机相通常与所要求的聚合物基质或聚合物基质的单体前体可溶或混溶,(ii)将带有结合的金属离子的改性的致密型星形聚合物在除掉与水不溶混的萃取溶剂之前或之后与非极性介质混合,和(c)当非极性介质是一种单体时,将混合物聚合。
此方法特别适用于将金属离子分散在非极性聚合物中。在这种情形,将带有金属离子的改性的致密型星形聚合物分散到合适的单体中之后,接着将混合物聚合(步骤d)。
以下实施例说明了分散过程。
实施例3用缩水甘油基苯基醚改性的第10代(G=10)聚酰氨基胺致密型星形聚合物将铜离子分散到聚苯乙烯中将实施例2的含铜的改性树状聚合物加到20g苯乙烯中,混合物间歇地超声处理4天(总计超声10小时),得到均匀溶液。加入偶氮二异丁腈0.15g,将混合物在油浴中于100℃加热16小时。所形成的聚合物是透明的深蓝色,但瓶底上有一小部分是更深的不透明的蓝色。
实施例4改性的PAMAM树状聚合物与聚(甲基丙烯酸甲酯)的掺混物A叔丁基缩水甘油基醚改性向0.5g第7代(G=7)PAMAM(聚酰氨基胺)树状聚合物的溶液中加入0.56g叔丁基缩水甘油基醚(TBGE)。将溶液在一台轨道式混合器上搅拌6天,然后减压蒸馏,除掉溶剂和多余的TBGE,得到1.0g疏水性树状聚合物,其特征为13C NMR(CDCl3),TMS作为内标ppm173.0,27.6,宽峰65、64、36、34。
将上述的TBGE疏水性致密型星形聚合物(0.3g)溶在60g甲基丙烯酸甲酯中。向此溶液中加入0.4克偶氮二异丁腈,所形成的溶液在60℃下加热16小时。将所形成的聚合物研磨,压制成透明的板。
B环氧辛烷改性向0.5g第7代(G=7)PAMAM树状聚合物溶液中加入0.57g环氧辛烷。将溶液在轨道式混合器上搅动6天,然后减压蒸馏除去溶剂和过剩的环氧辛烷,得到0.8g疏水性树状聚合物,其特征为13C NMR(CDCl3),TMS作为内标ppm173.0,32.0,29.5,25.8,22.6,14.1宽峰70、69、64、62、56、50、38、35。
将上述的环氧辛烷疏水性致密型星形聚合物(0.3g)溶在60g甲基丙烯酸甲酯中。向此溶液中加入0.4g偶氮二异丁腈,所形成的溶液在60℃加热16小时。将得到的聚合物磨细,压制成透明的板。
实施例5由NH3得到的第一代(G=1)致密型星形树状聚合物的衍生物(1.0G/NH3)A1.0G/NH3-乙酰;N(CH2CH2CONHCH2CH2NHCOCH3)3将由氨核得到的第1代(1.0G,G=1)致密型星形树状聚合物〔N(CH2CH2CONHCH2CH2NH2)3〕,7.50g(62.7毫克当量)溶在40ml水中,放入一个装有80ml甲苯的机械搅拌的3口圆底烧瓶中。将混合物搅拌,在冰浴中冷却,向其中逐滴加入溶在20ml甲苯中的4.7ml(65.8毫克当量)乙酰氯。一旦开始加入,即加入28ml(69.2毫克当量)的10%NaOH。
加完之后,撤除冰浴,将混合物再搅拌30分钟。然后将溶液蒸发,所形成的油状物溶在乙醇中,过滤除掉NaCl。然后将此溶液蒸发,得到8.6g(85%)油状白色固体产物。产物在乙醚和甲苯中相对不溶,但在水和甲醇中溶解颇好。
1H NMR(D2O)δ3.9(12H,H-3,4),3.4(6H,H-1),3.2(6H,H-2),2.7(9H,CH3)。
取代度%(NMR)=90%
对于实施例5的所有部分,NMR列表中所用的质子指定如下1 2 3 4N(CH2CH2CONHCH2CH2NHX)3B1.0G/NH3-三甲基乙酰基;N〔CH2CH2CONHCH2CH2NHCO-t-C(CH3)3〕3如上面部分A中所述,使7.5g(63毫克当量)部分A中的第1代树状聚合物与三甲基乙酰氯(8.1ml,65mmol)反应。反应物用10%NaOH(28ml,70mmole)中和,然后搅拌2小时,按上面部分A所述进行后处理。
将乙醇溶液蒸发,在真空烤箱中干燥,得到白色固体产物12.3g(96%),熔点92-96℃。产物在乙醚和甲苯中相对不溶,但在水中和甲醇中溶解好。IR(KBr)3300,2930,2890,1640,1540,1450cm-1.1H-NMR(d6-DMS0)δ3.2(12H,H-3,4),2.6(12H,H-1,2)1.1(27H,t-Bu);取代度%(NMR)=97%.分析C30H57N7O6C H N计算值 58.9 9.4 16.0实验值 56.4 9.1 14 9(可能含百分之几的NaCl)C1.0G/NH3-苯甲酰基;N〔CH2CH2CONHCH2CH2NHCO-(C6H5)〕3
将6.8g(57毫克当量)部分A的第一代树状聚合物溶在40ml水中,与50ml甲苯一起在0℃下搅拌。加入苯甲酰氯(6.9ml,59毫克当量)和10%NaOH(25ml,62毫克当量)。两分钟内形成了不透明的白色凝胶。将其在室温下搅拌1.5小时,然后过滤,用水洗三次,用甲苯洗三次。将所形成的白色固体干燥,得到12.3g(97%)产物,熔点176-181℃。此产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。IR(KBr)3280,3040,2920,2850,1640,1605,1550,1490,1440cm-11H-NMR(d6-DMSO)δ8.6(3H,amide),8.1(3H,酰胺),7.9(6H,邻位),7.5(9H,间和对位),3.4(12H,H-3,4),2.8(6H,H-1),2.4(6H,H-2);取代度%(NMR)=98%分析C36H45N7OC H N计算值 64.4 6.75 14.60实验值 64.4 6.81 14.36D1.0G/NH3-己酰基;N〔CH2CH2CONHCH2CH2NHCo-(C5H11)〕3将3.3g(28毫克当量)部分A的第一代树状聚合物溶在大玻璃瓶中的25ml水里。向其中加入溶于15ml甲苯中的己酰氯(3.9ml,28mmole)和10%NaOH(11.0ml,28毫克当量)。摇动后生成白色凝胶。将此固体过滤,用水和甲苯各洗两次。干燥后得3.5g(58%)白色固体产物,熔点192-195℃。产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。IR(KBr)3300,3080,2930,2880,1640,1550,1450cm1H-NMR(d6-DMS0)δ3.1(12H,H-3,4),2.5(6H,H-1),2.2(6H,H-2),2.0(6H,-CH2CO2-),1.3(18H,-C3H6-),0.8(9H,CH3);取代度%(NMR)=90%.
E1.0G/NH3-辛酰;N〔CH2CH2CONHCH2CH2NHCO-(C7H15)〕3将3.3g(28毫克当量)部分A的第一代树状聚合物与辛酰氯(4.7ml,28毫克当量)按照以上部分D的步骤反应。产物为白色固体,6.2g(91%);熔点194-198℃。此产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。
F1.0G/NH3-癸酰;N〔CH2CH2CONHCH2CH2NHCO-(C9H19)〕3将3.3g(28毫克当量)部分A的第一代树状聚合物与癸酰氯(5.7ml,28毫克当量)按照上面部分D的步骤反应。产物为白色凝胶,吸留着全部体积的水和甲苯。将产物过滤,然后用水、甲苯和丙酮各洗两次。干燥后得到白色固体6.8g(90%),熔点195-201℃。产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。
G1.0G/NH3-十二烷酰;N〔CH2CH2CONHCH2CH2NHCO-(C11H23)〕3将9.30g(78毫克当量)部分A的第一代树状聚合物溶在与50ml甲苯一起装在一只机械搅拌的三口烧瓶内的50ml水中。向其中逐滴加入溶在30ml甲苯中的十二烷酰氯(18.0ml,78毫克当量)。在此加料期间还加入10%NaOH(31.1ml,80毫克当量)。
将白色凝胶状产物再搅拌1.5小时,然后过滤,用甲苯、水和甲醇各洗两次。所形成的白色固体(约180g)含大量溶剂。干燥后形成21.2g(90%)白色粉末,熔点196-201℃。产物在水、乙醚、甲醇和甲苯中相对不溶。IR(KBr)3300,3090,2920,2860,1640,1560,1460cm-1分析C51H99N7O6C H N计算值 67.6 11.0 10.8实验值 66.7 10.9 9.7.
H1.0G/NH3-十八烷酰;N〔CH2CH2CONHCH2CH2NHCO-(C17H35)〕3将10.1g(84.3毫克当量)部分A的第一代树状聚合物溶在与100ml水中,加到一个装有硬脂酰氯(30.3g,10mmole)在150ml甲苯中的溶液的500ml分液漏斗中。当摇动时,混合物变得温热,形成粘稠的凝胶。向此凝胶中加入10%NaOH(80ml,200毫摩尔)及补加的100ml水。
20分钟后将奶油状的白色物质过滤,用水和丙酮洗涤,干燥,得32.4g(99%)白色粉末状产物,熔点190-198℃。此产物在水、乙醚、甲醇和甲苯中相对不溶。
实施例6苯基四胺;N〔CH2CH2NHCO-(C6H5)〕3将2.0g(41毫克当量)支化的四胺N〔CH2CH2NH2)3溶于20ml水中,装入125ml分液漏斗中,漏斗内还装有溶于20ml甲苯中的4.8ml(41毫克当量)苯甲酰氯。向此混合物中加入10%NaOH(16.5ml,41毫克当量),将混合物摇动15分钟。
沉淀出一团油状白色固体。用水和丙酮各洗此固体两次,然后干燥,得6.4g(102%)白色粉末状产物,熔点144-149℃,产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。IR(KBr)3360,3300,3080,2930,1640,1610,1550,1480,1460cm-1.1H-NMR(d6-DMSO)δ8.3(3H,酰胺),7.7(6H,邻位),7.3(9H,间和对位a),3.3(6H,H-1),2.7(6H,H-2);取代度%(NMR)=104%.分析C27H30N4O3C H N计算值 70.7 6.59 12.2实验值 70.9 6.52 11.8.
实施例7自乙二胺得到的第一代致密型星形树状聚合物的衍生物(1.0G/EDA)A1.0G/EDA-苯甲酰;(CH2N)2〔CH2CH2CONHCH2CH2NHCO-(C6H5)〕4将从乙二胺得到的3.1g(24毫克当量)第一代酰氨基胺树状聚合物溶在20ml水与10ml 10%NaOH(25毫克当量)中。向此混合物中加入溶于30ml甲苯中的苯甲酰氯(2.8ml,24毫克当量)。将混合物摇动,形成白色沉淀。
此反应混合物保持为两相,只有少量胶凝。大部分产物形成蜡状团。两小时后将固体过滤,用水和甲苯各洗两次,然后干燥。产物为白色粉末.4.95g(88%),熔点190-196℃。此产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。1H-NMR(d6-DMS0)δ8.5(4H,酰胺),8.1(4H,酰胺),7.9(8H,邻位),7.5(12H,间+对位),34(16H,H-3,4),2.8-2.3(20H,H-1,2+NCH2CH2N);取代度%on(NMR)=104%。
B1.0G/EDA-十二烷酰;(CH2N)2〔CH2CH2CONHCH2CH2NHCO-(C11H23)〕4将3.1g(24毫克当量)上面部分A制备的1.0G/EDA树状聚合物溶在20ml水和2.5M NaOH(10ml,25毫克当量)中,与溶在30ml甲苯中的十二烷酰氯(5.5ml,24毫克当量)反应。摇动后生成致密的奶油白色凝胶,它在15分钟内固化。
2小时后将固体过滤,用大量的水和甲苯洗,然后用丙酮洗涤。干燥后得5.65g(76%)白色粉末状产物,熔点195-202℃。此产物在水、乙醚、甲醇和甲苯中相对不溶。IR(KBr)3300,3090,2920,2860,1640,1560,1460cm-1分析C70H136N10O8C H N计算值 67.5 11.0 11.2实验值 67 8 11.1 10.2实施例8自乙二胺得到的第3代(G=3)致密型星形树状聚合物的苯甲酰衍生物(3.0G/EDA-苯甲酰)将2.50g(12.3毫克当量)由EDA核形成的3.0G树状聚合物溶在40ml水中,与25ml甲苯一起装入带有机械搅拌的500ml圆底烧瓶中。向此混合物中加入10%的NaOH溶液(4.9ml,12.3毫克当量),然后加入溶于25ml甲苯中的苯甲酰氯(1.43ml,12.3毫克当量)。
搅拌此混合物,形成油状白色固体沉淀。倒掉液体,固体溶在甲醇中,然后用乙醚沉淀,干燥后得3.43g(90%)白色固体产物,熔点120-125℃(流动),198-203℃(透明)。此产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解好。IR(KBr)3400,3300,3090,2920,2850,1650,1610,1550,1490,1440cm-11H-NMR(d6-DMS0)δ8.5(酰胺),8.0(酰胺),7.7(32H,邻位),7.4(48H,间和对位a),3.3(88H,H-3,3),2.7(80H,H-1,1′),2.2(56H,H-2);取代度%1(NMR)=104%实施例9自乙二胺得到的第4代(G=4)致密型星形树状聚合物的衍生物(4.0G/EDA)A4.0G/EDA-丁酰;(NCH2CH2N)~~~~~~〔(NHCO-(C3H7)〕32将3.06g(14.2毫克当量)致密型星形树状聚合物(NCH2CH2N)~~~~~~(NH2)32(4.0G/EDA)在20ml水中与在25ml甲苯中的丁酰氯(1.6ml,15.2毫克当量)和10%NaOH(7.1ml,25%过量)反应。产物不成沉淀,用蒸走水相的方法将其分离。将它溶在乙醇中二次、过滤、用乙醚沉淀以进行纯化。干燥后得到2.67g(70%)白色固体状产物,熔点112-117℃(流动),212-217℃(透明)。此产物在乙醚和甲苯中相对不溶,但在水中和甲醇中溶解颇好。IR(KBr)3290,3080,2950,2880,2820,1650,1550,1460,1440cm-1.1H-NMR(d6-DMSO)δ8.0(酰胺),3.2(368H,H-3,3′),2.6(352H,H-1,1′),2.2(240H,H-2),2.1(128H,-CH2CO2),1.5(128H,-CH2-),0.9(192H,CH3);取代度%(NMR)=93%.
B4.0G/EDA-苯甲酰;(NCH2CH2N)~~~~~~〔(NHCO-(C6H5)〕32将3.06g(14.2毫克当量)致密型星形树状聚合物(NCH2CH2N)~~~~~~(NH2)32(4.0G/EDA)在20ml水中与在25ml甲苯中的苯酰氯(1.82ml,15.6毫克当量)及10%NaOH溶液(7.1ml,25%过量)反应。产物为油状团,象实施例8所述的(CH2N)2〔CH2CH2CONHCH2CH2NHCO-(C6H5)〕4的情形一样进行分离。干燥后得4.16g(92%)绒毛状白色晶体产物,熔点120-127℃(流动),148-155℃(透明)。产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解颇好。1H-NMR(d6-DMSO)δ8.5(32H,酰胺),8.0(60H,amide),7.8(64H,邻位),7.5(96H,间+对位),3.3(184H,H-3,3′),2.8(176H,H-1,1′),2.2(120H,H-2);取代度%(NMR)=103%分析C526H736N122O92C H N计算值61.7 7.24 16.7实验值61.4 7.12 15.6.
C4.0G/EDA-辛酰;(NCH2CH2N)~~~~~~〔(NHCO-(C7H15)〕32如上面部分B中所述,使3.06g(14.2毫克当量)致密型星形树状聚合物(NCH2CH2N)~~~~~~(NH2)32(4.0G/EDA)与辛酰氯(1.82ml,15.6毫克当量)反应。产物为白色固体,3.37g(70%),熔点150-155℃(流动),>225℃(透明)。此产物在水、乙醚和甲苯中相对不溶,但在甲醇中溶解颇好。
D4.0G/EDA-十二烷酰;(NCH2CH2N)~~~~~~〔(NHCO-(C11H23)〕32如上面部分B中所述,使3.06g(14.2毫克当量)致密型星形树状聚合物(NCH2CH2N)------(NH2)32(4.0G/EDA)与十二烷酰氯(3.61ml,15.6毫克当量)反应。产物为白色的粘稠糊状物,吸留了所有的反应溶剂。将此物质过滤,用水、甲苯和丙酮洗两次,然后干燥,得到4.35g(77%)的白色粉末状产物,熔点170-175℃(流动),201-207℃(透明)。此产物在水、甲醇、乙醚和甲苯中相对不溶。IR(KBr)3300,3080,2910,2860,1640,1560,1470cm-1.分析C686H1312N122O92C H N计算值 64.7 10.38 13.4实验值 65.5 10.60 11.7.
对于本领域的技术人员,根据本说明书或这里公开的对实施本发明的说明,本发明的其它实施方案是显而易见的。这里讨论的本说明书及实施例的用意仅在于示例说明,本发明的真正范围和精神将由以下的权利要求规定。
权利要求
1.一种聚合物掺混物,包括一种改性的致密型星形聚合物和一种聚合物基质,所述改性的致密型星形聚合物有一个由结合或螯合了至少一种金属离子的单体单元构成的高度支化的内部结构和一个由形成疏水性外壳的不同的单体单元构成的外部结构。
2.权利要求1的聚合物掺混物,其中改性的致密型星形聚合物是树状聚合物。
3.权利要求1的聚合物掺混物,其中的高度支化的内部结构由胺结尾的聚(酰氨基胺)树状聚合物、羟基结尾的聚(醚)树状聚合物、胺结尾的聚(亚乙基亚胺)树状聚合物或胺结尾的聚(亚丙基亚胺)树状聚合物构成。
4.权利要求3的聚合物掺混物,其中的聚(酰氨基胺)、聚(醚)或聚(亚乙基亚胺)树状聚合物是从2代到12代。
5.权利要求1的聚合物掺混物,其中的疏水性外壳由4至40个碳原子的烃基构成。
6.权利要求5的聚合物掺混物,其中的烃基含4至24个碳原子。
7.权利要求5的聚合物掺混物,其中烃基包括有4至40个碳原子的直链烷基,该烷基必要时可独立地被以下基团取代羟基、羧基、C1-C10烷基、C1-C10烷氧基、C1-C10烷氧羰基、苯基或有1至5个C1-C5烷基或C1-C5烷氧基取代基的苯基、苯氧基或C1-C5烷基或C1-C5烷氧基取代的苯氧基。
8.权利要求7的聚合物掺混物,其中的烃基是己基、十八烷基、乙基己基、甲苯基癸基、茴香基十二烷基、3-苯氧基-2-羟基-1-丙基、(4-甲基)苯氧基-2-羟基-1-丙基、(4-甲氧基)苯氧基-2-羟基-1-丙基、远螯聚合物、由环氧部分开环形成的2-羟基烷基或由2-羟基烷基的羟基烷基化形成的烷氧基。
9.权利要求1或2的聚合物掺混物,其中改性的致密型星形聚合物由作为其高度支化内部结构的胺结尾的聚(酰氨基胺)树状聚合物衍生得到。
10.权利要求1或2的聚合物掺混物,其中改性的致密型星形聚合物由作为其高度支化内部结构的羟基结尾的聚(醚)树状聚合物衍生得到。
11.权利要求1或2的聚合物掺混物,其中改性的致密型星形聚合物是由作为其高度支化内部结构的胺结尾的聚(亚乙基亚胺)树状聚合物衍生得到。
12.权利要求1或2的聚合物掺混物,其中改性的致密型星形聚合物是缩水甘油基苯基醚改性的第10代聚酰氨基胺树状聚合物,金属离子是铜。
13.权利要求1的聚合物掺混物,其中的改性的致密型星形聚合物是一种改性的聚(酰氨基胺)致密型星形聚合物。
14.权利要求13的聚合物掺混物,其中的聚合物基质是聚苯乙烯。
15.一种将含有金属离子的改性的致密型星形聚合物分散在非极性的聚合物基质中的方法,该方法包括(a)使含金属离子的水溶液与改性的致密型星形聚合物的溶液在加入到一种与水不混溶的溶剂中后立即充分接触,所述的聚合物有一个由能结合或螯合金属离子的单体单元构成的高度支化的内部结构和一个由能形成疏水外壳的不同的单体单元构成的外部结构。(b)(i)必要时从水溶液中分离出通常与所要求的聚合物基质或该聚合物基质的单体前体溶解或混溶的有机相,和(ii)使含有结合的金属离子的改性的致密型星形聚合物在除掉与水不混溶的萃取溶剂之前或之后与非极性介质混合,和(c)当非极性介质是单体时,使混合物聚合。
全文摘要
具有能结合或螯合金属离子的高度支化内部结构的致密型星形聚合物或树状聚合物,通过用能形成疏水性外壳的疏水基团封端进行改性。改性的树状聚合物可用于将金属离子分散在非水的聚合物基质中。另外,具有高度支化亲水性内部结构的致密型星形聚合物或树形聚合物用能形成疏水性外壳的疏水基团封端,这种改性的聚合物可作为凝胶和表面活性剂使用。
文档编号A61K47/48GK1174852SQ9710975
公开日1998年3月4日 申请日期1997年4月25日 优先权日1993年1月22日
发明者D·M·赫斯特朗德, D·A·托马利亚, B·J·赫尔莫 申请人:陶氏化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1