耐热性无纺布的制作方法

文档序号:1752715阅读:556来源:国知局

专利名称::耐热性无纺布的制作方法
技术领域
:本发明涉及一种由聚苯硫醚纤维构成的耐热性无纺布。
背景技术
:聚苯硫醚(以下简记作PPS)纤维具有较高的耐热性、耐潮热性、耐药性、难燃性、可以在非常严酷的环境下使用这样的特征。因此,由PPS纤维构成的无纺布以往用于工业药品用的过滤器、袋滤器、电池隔板等用途,特别是期待在需要耐热性、耐药性的严酷的环境下使用。作为基本性能,PPS具有可承受这样的严酷的环境的性能,但另一方面,在使PPS成形为纤维状而将其无纺布化的情况下,存在尺寸相对于热量的稳定性较差,纤维或无纺布的热收缩较大的问题。例如,利用熔喷法制成的PPS纤维无纺布的构成纤维较细,可以期待良好的过滤性能,但存在抗拉强度较低,尺寸相对于热量的稳定性较差这样的问题。因而,为了获得可承受实际应用的PPS纤维无纺布,在形成无纺布之后,需要通过在后工序中进行尺寸相对于热量的稳定化处理而降低热收缩。以往,在PPS纤维无纺布中,作为改善尺寸相对于热量的稳定性的方法提出了各种方案。例如,在日本特开昭57-16954公报中公开有这样的方法,即,在利用针刺法对长纤维网(web)处理之后,使其热收缩而呈螺旋状的巻缩,通过化合来改善尺寸相对于热量的稳定性。在日本特开平l-292161公报中公开有使未巻缩的长纤维30%以上热粘接而在400°C以下使其不熔融化的方法。另外,在日本特开2005-154919公报中公开有在将PPS纤维布化之后,以玻化温度以上的温度使其双轴延伸的方法。但是,由于分别需要热处理工序、不熔融化工序、延伸工序,因此,存在生产工序复杂、生产效率降低而成本易于升高这样的问题。另外,作为源自PPS原料的改善方法,提出了向PPS中添加支化聚合物、共聚物来改善尺寸相对于热量的稳定性的方法(美国专利第4458189i兌明书,专利第2890470号7>才艮等),^f旦存在需要特殊的原料这样的问题。另一方面,针对改善PPS纤维自身的尺寸相对于热量的稳定性的方法也提出了各种方案。例如,提出了对PPS氧化处理而使聚合物不熔化的方法(日本特开昭63-182413公报,曰本特开平3-104923/>才艮等),但存在通过氧化处理获得的纤维非常脆这样的问题,或者存在因使用氧化剂而制造工序复杂这样的问题。另外,在日本特开昭58-31112公报中记载有,通过高速纺丝技术获得的PPS纤维的结晶温度小于120°C且熔点为285°C,其耐热性和尺寸稳定性优良。该PPS纤维的熔点较高的结晶部为核心而耐热性升高,非晶部有助于提高尺寸稳定性,但存在纤维构造与结晶度的关联并不明确,而且热收缩率较大等问题。如上所述,以往提出的任一种PPS纤维均无法用作将纤维网照原样地热压接而成的纺粘型无纺布用的纤维。因而,期望一种制造方法筒单、且高生产率、经济效率良好、生产稳定性优良、热收缩率极小的PPS纤维无纺布。
发明内容本发明的课题在于提供一种耐热性无纺布,在形成无纺布之后不需要在用于尺寸稳定化的后工序中进行热处理,且由制造容易、尺寸稳定性、耐热性、耐药性等物理特性优良的PPS纤维构成。本发明人等为了解决上述课题而进行深入研究的结果发现,具有特定范围的结晶度且具有特定的熔化特性的PPS纤维的热收缩率较小,尺寸相对于热量的稳定性优良。还发现,由这样的PPS纤维构成的无纺布即使在后工序中不进行热处理,尺寸相对于热量的稳定性也优良,具有耐热性、耐药性、难燃性等。本发明人等还针对将无纺布做成多层构造进行了各种研究。结果发现,例如,将由尺寸相对于热量的稳定性优良的PPS纤维构成的无纺布层作为上下层、利用熔喷法获得的PPS微细纤维作为中间层进行层叠一体化而成的3层构造无纺布、或者在由尺寸相对于热量的稳定性的PPS纤维构成的无纺布上层叠利用熔喷法获得的PPS微细纤维而成的2层构造无纺布除了上述特征之外,还具有良好的过滤性及阻隔性。本发明即是基于上述观点做成的。即,本发明如下所述。1.一种耐热性无纺布,其特征在于,由PPS纤维构成,该PPS纤维的30wt。/。以上的结晶度为25~50%。2.根据上述技术方案l所述的耐热性无纺布,其特征在于,上述PPS纤维在85~240°C的范围内不具有在利用差热分析计以每l分钟20°C的升温速度测定时求出的熔化峰值。3.根据上述技术方案1或2所述的耐热性无纺布,其特征在于,上述PPS纤维是纤维直径为150pm的长纤维。4.根据上述技术方案l~3中任一项所述的耐热性无纺布,其特征在于,上述无纺布是利用热粘接一体化接合而成的纺粘型无纺布。5.根据上述技术方案或2所述的耐热性无纺布,其特征在于,上述无纺布是对至少1层以上的由纤维直径为3501im且结晶度为25~50%的PPS长纤维构成的层、与至少l层以上的由纤维直径为0.1~3nm且结晶度为10~50%的PPS微细纤维构成的层进行层叠一体化而成的。6.根据上述技术方案l或2所述的耐热性无纺布,其特征在于,在上述无纺布中,具有由纤维直径为350pm且结晶度为25~50。/。的PPS长纤维构成的层作为上下层,具有由纤维直径为O.l~3!im且结晶度为10~50Q/。的PPS^f鼓细纤维构成的层作为中间层,而且,上下层与中间层被层叠一体化。7.根据上述技术方案l~6中任一项所述的耐热性无纺布,其特征在于,在上述耐热性无纺布中,180。C条件下的收缩率为3%以下,单位面积重量的抗拉强度为0.2(N/cm)/(g/m2)以上。下面,详细说明本发明。本发明是一种由PPS纤维构成的无纺布,即一种保持作为PPS本来的特性的耐热性、耐药性、难燃性且大幅度改善了尺寸相对于热量的稳定性的耐热性无纺布。本发明的耐热性无纺布由PPS纤维构成,构成无纺布的PPS纤维的30wtQ/Q以上的结晶度为2550%。更优选为构成无纺布的PPS纤维的40wt%以上、特别优选为60wt%以上的结晶度为25~50%。在结晶度为25~50%的范围这样的、结晶性较高的PPS纤维占构成无纺布的纤维的30wtQ/。以上、优选为40wt。/Q以上、特别优选为60wt。/。以上时,结晶度较高的PPS纤维自身的热收缩性的降低效果较大地发挥作用,结果,作为无纺布整体可获得充分的尺寸相对于热量的稳定性。因而,通过以层状使用结晶度较高的PPS纤维而使无纺布形成多层构造,可获得尺寸相对于热量的稳定性良好的无纺布。例如,将结晶度较高的PPS纤维层作为上下层、结晶度较低的PPS微细纤维层作为中间层而成的多层构造无纺布是本发明的优选方式。本发明人等基于对PPS纤维的结晶度与PPS纤维的沸水收缩率的关系进行各种研究的结果发现,沸水收缩率很大程度依赖于结晶度。即发现,如图1所示,在结晶度小于25%时,沸水收缩率非常大,为50%以上,但在结晶度大于25%时,沸水收缩率急剧降低,在结晶度为30%以上时,沸水收缩率为几%。因而,通过将PPS纤维的结晶度控制在特定范围,可以降低沸水收縮率,降低由PPS纤维构成的无纺布的热收缩率。在本发明的耐热性无纺布中,PPS纤维的30wt。/。以上的结晶度为25~50%,优选为结晶度为30~40%。在结晶度小于25%时,纤维自身的热收缩率较大,网在热粘接时引起收缩,无法获得满意的无纺布。在结晶度大于50%时,结晶性过高,热粘接性降低,无法获得高强度的无纺布。另外,结晶度的测定方法见后述。为了将PPS纤维的结晶度控制在特定范围,可以通过使聚合物条件、纺丝阶段的纺丝速度、加热、延伸条件适当化而获得规定范围的结晶度。特别是,可以通过提高纺丝速度、促进在纺丝部的延伸而获得特定范围的结晶度。该结晶度控制方法由本发明人等发现。在本发明中,PPS长纤维的纤维直径优选为1~50pin,更优选为l-30(xm,特别优选为215pm。在纤维直径为上述范围时,可获得均匀且高强度的无纺布。在本发明中,不需要在以往为了尺寸相对于热量的稳定化而进行的后工序中进行热处理。但是,也可以在不损失本发明稳定化处理,进一步谋求尺寸相对于热量的稳定化,这样的耐热性无纺布也在本发明的范围内。通过在形成纤维之后,对PPS纤维进行尺寸相对于热量的稳定化处理,可以将结晶度提高到20~50%,从而可以付与优良的尺寸稳定性。通常,考虑到降低纤维的高伸长率,PPS纤维的尺寸相对于热量的稳定化处理可在PPS纤维的玻化温度、即85。C~240。C的范围内花时间充分地进^f亍。但是,通过该尺寸稳定化处理,根据处理温度而形成在PPS纤维的熔点(285~300°C)以下熔化的不稳定的结晶,因此,无法有效地保持PPS本来具有的耐热性,从耐热性方面考虑不佳。另外,利用由差热分析计进行测定,不稳定的结晶被检测出85~240。C范围的熔化峰值,例如,在处理温度为160。C的情况下,表现为160。C附近的熔化峰值。并且,通过进行该尺寸稳定化处理,易于产生纤维间缺少热粘接性、无法获得高强度的无纺布这样的问题。在本发明中,从获得充分的耐热性的方面考虑,优选为使用差热分析计、以1分钟20。C的升温速度测定时求出的熔化峰值不在85~240。C的范围内。在本发明中,作为这样特征在于特定范围的结晶度和熔化峰值的PPS纤维的尺寸相对于热量的稳定性和热粘接'性优良的理由在于,通过具有特定范围的结晶度,PPS分子的凝集能密度升高,因此,分子间的约束力增大,妨碍热量的緩和产生的收缩,而且,通过不进行热处理,获得适度地具有有助于热粘接的非晶部分的构造。本发明的PPS纤维的沸水收缩率优选为20%以下,更优选为10%以下,特别优选5%以下。本发明的PPS纤维的强度为2cN/dtex以上,更优选为2.5cN/dtex以上,特别优选为3cN/dtex以上。本发明的PPS纤维可以是长纤维、短纤维中的任一种,但从生产效率的方面考虑,优选为通过纺粘法获得的长纤维。本发明的耐热性无纺布在180。C下的收缩率优选为3%以下,更优选为1%以下,特别优选为0.5%以下。另夕卜,单位面积重量的抗拉强度优选为0.2(N/cm)/(g/m2)以上,更优选为0.4(N/cm)/(g/m2)以上。在收缩率和抗拉强度为上述范围时,可获得优良的尺寸稳定性、强度、过滤性能及阻隔性能。本发明的耐热性无纺布并不特别限定为该构造,可列举纺粘型无纺布、SM层叠无纺布、SMS层叠无纺布、4层以上的多层构造无纺布、短纤维无纺布。其中,从生产效率、高功能化方面考虑,优选为纺粘型无纺布、SM层叠无纺布、SMS层叠无纺布、3层以上的多层构造无纺布。另外,S是纺粘型的意思,M是熔喷型的意思。在本发明中,从无纺布的形状稳定化、表面绒毛稳定化、强度付与、柔软性等方面考虑,将使用至少1层由结晶度为25~50。/。的PPS纤维构成的网与由微细纤维构成的层进行层叠一体化而成的多层构造无纺布、或者将在上下层中使用由结晶度为25~50Q/。的PPS纤维构成的网与由微细纤维构成的层进行层叠一体化而成的多层构造无纺布为优选方式。作为多层构造无纺布的优选方式,可列举以下方式。(i)至少l层以上的由纤维直径为3~50pm且结晶度为925~50%的PPS纤维构成的层、与至少l层以上的由纤维直径为0.1~3ium且结晶度为10~50。/。的PPS微细纤维构成的层被层叠一体化而成的多层构造无纺布。(ii)具有由纤维直径为350^im且结晶度为2550%的PPS纤维构成的层作为上下层、具有由纤维直径为O.l~3jLim且结晶度为10~500/。的PPS微细纤维构成的层作为中间层、且上下层与中间层被层叠一体化而成的多层构造无纺布。在多层构造无纺布中,PPS长纤维的纤维直径优选为350拜,结晶度优选为25~50%。在多层构造无纺布中,PPS微细纤维的纤维直径优选为0.1~3(xm,更优选为0.23nm,特别优选为0.3~3|am。这样的PPS微细纤维可以通过日本特公平3-80905号公报中所述的熔喷法等容易地制造。另外,被层叠的微细纤维层可以是单层,也可以被层叠多层。PPS微细纤维的纤维直径可在上述范围内根据作为基体材料的无纺布的纤维直径、无纺布的用途适当选择,但在纤维直径为0.13^im时,可获得良好的过滤性能、阻隔性能。在本发明的耐热性无纺布中,作为接合方式可列举热粘接方式、射流喷网法、针刺法等,但从生产效率的方面考虑,优选为热粘接方式。另外,热粘接可以是整个表面,也可以是局部。多层构造无纺布的微细纤维层的PPS纤维的结晶度优选为10~50%,更优选为15~30%。在结晶度小于10%时,微细纤维层的软化点变低,结果,在热粘接工序中,易于产生微细纤维自长纤维层渗出而在中间层的纤维附着在热压接辊上、无法稳定地生产这样的问题。在结晶度大于50%时,中间层与上下层的热粘接力易于降低,存在产生多层构造的层间剥离的倾向,而且存在多层构造无纺布的强度降低的倾向。接着,作为制造本发明的耐热性无纺布的工艺的1个方式,说明通过纺粘法获得的无纺布。对于PPS聚合物的粘度,在负载为5kg及温度为315.6。C的条件下利用ASTM-D1238-82法测定的熔融流量(MFR)优选为10-700(g/10min)的范围,更优选为50~500(g/10min)的范围。另外,PPS聚合物优选为线状。在MFR为上述范围时,在纺丝工序中形成纤维的变形追随性良好,断线较少,而且PPS聚合物的分子量足够高,因此,可获得在实用上强度足够的纤维。另外,在不损害本发明效果的范围内,也可以向PPS聚合物中添加原料着色剂、氧化钛、紫外线吸收剂、热稳定剂、抗氧剂等任意的添加剂。列举纺丝工序的1个例子,在利用通常的挤压机将PPS聚合物熔融之后,将该熔融物经过计量泵输送到温度为300380。C的、具有许多个细孔的喷丝头中,将其熔融挤出而做成丝状物,然后,通过用牵引装置(例如,喷射器装置)使其延伸,可获得PPS纤维网。使用热压接辊,连续地热粘接将该未进行尺寸相对于热量的稳定化处理的PPS纤维网一体化接合,从而可以获得本发明的耐热性无纺布。熔融纺丝时的纺丝温度优选为290~380°C,更优选为300~370°C,特另ij优选为300~340°C。在纺丝温度为上述范围时,可以在稳定的熔融状态下获得不存在不均匀及着色且强度满意的纤维。对于采用的喷丝头的形状并没有特别的限制,可以采用圆形、三角形、多边形、扁平等形状,通常,喷嘴直径优选为0.1~l.Omm左右的圓形。ii在规定的纺丝温度下自喷嘴被挤出的熔融聚合物自喷射器装置的出口与空气流一同喷出而成为延伸纤丝群,并且,被捕捉在设置于其下方的移动式的多孔性接受器(例如,金属制或树脂制的匀速行进的网状物等)上而作为网。在此,喷射器装置是指这样的装置,即,将由加压空气产生的高速空气流作为推进力,具有以高速引出熔融纺丝后的纤丝而将其细化、且使纤丝跟随该高速空气流的功能。自喷射器被挤出的纤丝的速度、即纺丝速度是纤丝单丝的细化指标,速度越高单丝的细化程度越高,可获得强度及尺寸稳定性优良的纤维。纺丝速度优选为600015000m/min。在纺丝速度小于6000m/min时存在这样的情况,即,纤丝未充分延伸,因此,强度及尺寸相对于热量的稳定性不充分,而且,在热粘接时网发生收缩。在纺丝速度为600015000m/min时,结晶度为25~50%,可稳定地获得强度及尺寸相对于热量的稳定性优良的高品质的无纺布。此时,在自喷射器喷出的纤丝群存在易于凝固且被捕捉的网的展宽较窄、作为薄片的均匀性及品质有所欠缺这样的倾向时,在纤丝相互远离的状态下设法将其喷出而捕捉特别有效。因此,例如可以采用如下方法在喷射器的下方设置冲撞构件,使纤丝冲撞于冲撞构件,使纤丝摩擦起电而使其开纤的方法,或者在喷射器的下方,通过电晕放电强制地使该纤丝带电而使其开纤的方法等。在捕捉网时,由于跟随该纤丝群而碰到接受器的空气流的原因,有时暂时堆积的网被吹动而散乱,为了防止该现象,优选釆用自接受器的下方吸引空气的方法。PPS长纤维可以是单层,也可以重叠多层使用。接着,在本发明的耐热性无纺布中,对制造多层构造无纺布的工艺的l个例子说明如下。由PPS长纤维构成的层可通过上述纺粘方法来制造。为了将层叠的PPs微细纤维的纤维直径与结晶度调整为规定范围,例如,通过采用以负载5kg、温度315.6。C的条件按照ASTM-D1238—82;去溯寸定的溶鬲虫;危量(MFR)为100~1000(g/10min)的聚合物,可以在通常的熔喷纺丝条件下进行调整。多层构造无纺布可通过层叠由PPS长纤维构成的层与由PPS微细纤维构成的层而使其一体化来获得。另外,将通过熔喷法获得的PPS微细纤维直接喷在由PPS长纤维构成的层上而将其层叠时,可利用微细纤维进入到长纤维层中这样的效果来防止层间剥离,进而强化长纤维层,可获得高强度的无纺布,因此优选。通过将如上述那样获得的网连续地热粘接而将其一体化接合,可以获得本发明的耐热性无纺布。热粘"f妻优选在200270。C的加热条件下、以压接面积率为3%以上的条件进行,通过热粘接可以将纤维相互间良好地粘接。这种情况下的热粘接是短时间的瞬间热量付与,PPS纤维的结晶构造不会发生变化。作为热粘接的方法,可以使用加热的平板进行热压接,但是使网通过一对压延辊之间而将其热压接的方法的生产率优良,因此优选。压延辊的温度及压力应根据供给来的网的单位面积重量、速度等条件适当选择,总体来讲也存在无法决定的方面,但在谋求获得的无纺布的强度这一方面优选温度为210~260°C,压接面积率为3%以上,压力至少是线压为50N/cm以上。作为压延辊,可以使用其表面平滑的、雕刻有花紋的辊(例如,长方形型、点状孔隙型、网紋花紋、Y形花紋、粗斜花紋、人字花紋、四边形花紋、横棱花紋碎白点、斜碎白点花紋),或者使用通过组合这些同种类辊、组合不同种类辊而得到的多个旋转辊。在良好地发挥无纺布强度的方面,热压接部的面积优选为无纺布的整个面积的3%以上。在本发明中,通过使PPS纤维的结晶度处于特定范围内,可以将PPS纤维自身的热收缩率抑制得较低,其结果,可以大幅度地降低由PPS纤维构成的无纺布的热收缩率。例如,由结晶度为30%的PPS长纤维构成的纺粘型无纺布在180。C下的干热收缩率为0.1%,显示出极为优良的尺寸稳定效果。为了将PPS纤维结晶度控制在特定范围,可以通过在纺丝工序中以适当的条件使PPS纤维延伸而完成,可利用简便的装置获得优良的效果,在制造方面极为经济。并且,在本发明中,通过将由PPS纤维构成的无纺布的构造做成多层构造,可以进一步提高过滤性能。例如,可以应用纺粘型(S)/熔喷型(M)/、或者纺粘型(S)/熔喷型(M)/纺粘型(S)的SMS层叠无纺布等的多层构造,通过使多层构造进行各种变化,可以除了过滤性能之外,改变抗拉强度、阻隔性等。图l是表示PPS纤维的沸水收缩率与结晶度的关系的图。具体实施例方式下面,列举实施例进一步说明本发明,〗旦本发明并不被它们有任何的限定。另外,测定方法、评价方法等如下。(1)熔融流量(MFR)在负载5kg、负载315.6。C的条件下,按照ASTM-D1238-82法进行测定。单位是g/10min。(2)纤维直径以显微镜的倍率2500倍拍摄试验材料的任意10处,测定50点的纤维直径,求出它们的平均值。(3)单丝强度使用拉伸试验机,以试验材料长度100mm、拉伸速度200mm/min的条件求出应力、伸长率曲线,将以最大应力除以试验材料的细度而得到的值作为单丝的强度(cN/dtex)。(4)结晶度使用差热分析计(TA仪器(INSTRUMENT)公司DSC2920),以下述条件测定5.0mg的试验材料,算出结晶度(%)。另外,使完全结晶的熔化热量为146.2J/g。测定环境氮气150ml/min,升温速度2CTC/min;测定范围30~350°C;结晶度={[(熔化部的热量[J/g])-(冷结晶部的热量[J/g])]/146.2}x100(5)熔化峰值使用差热分析计(TA仪器公司DSC2920),以下述条件测定5.0mg的试验材料,求出熔化峰值。测定环境氮气150ml/min,升温速度20°C/min;测定范围30~350°C。(6)沸水收缩率将施加相当于0.05cN/dtex的负载而测定的长度Lo的实验材料以无张力状态在沸水中浸渍3分钟之后,将其从沸水中取出,使用下式,由再次施加上述负载而测定的长度I^算出沸15水收缩率(%)。沸水收缩率={(Lo-/LQ}xi00(7)无纺布的单位面积重量(g/m2)按照JISL-1906进行测定。(8)无纺布的抗拉强度按照JISL-1906进行测定,将MD方向和CD方向的平均值作为无纺布的抗拉强度,以换算成每单位面积重量的数值(N/mm)/(g/m2)表示。(9)无纺布的干热收缩率使用热风烘箱(塔巴依爱斯佩克有限公司(TABAIESPEC,Corp.):HIGH-TEMPOVENPHH-300),在热风空气环境下,以18(TCx30分钟的条件使10cm的角试验材料3点暴露,测定无纺布的面积收缩率(%)。实施例1以320。C将熔融流量(MFR)为70g/10min的线状PPS聚合物(Polyplastics公司制FORTRON)熔融,自喷嘴直径为0.25mm的喷丝头将其挤出,一边用喷射器吸引,一边以纺丝速度7000m/min使其延伸,将其捕捉、堆积在移动的多孔质带状体上而做成PPS长纤维网。在加热为250。C的网紋花紋印花(压4妄面积比率14.4%)辊与平辊之间,以线压300N/cm将获得的网局部热压接,做成耐热性无纺布。将构成该无纺布的纤维及无纺布的特性表示于表1中。另外,PPS纤维的熔化峰值不存在于8524(TC的范围内。实施例2及3在实施例l中,除了使纺丝速度为8000m/min(实施例2)、11000m/min(实施例3)之外,与实施例l同样地做成耐热性l中。另夕卜,PPS纤维的熔化峰值不存在于85~240°C的范围内。实施例4以320。C将熔融流量(MFR)为70g/10min的线状PPS聚合物(Polyplastics公司制FORTRON)熔融,自喷嘴直径为0.25mm的喷丝头将其挤出,一边用喷射器吸引,一边以纺丝速度8000m/min使其延伸,将其捕捉、堆积在移动的多孔质带状体上而做成单位面积重量为30g/n^的PPS长纤维网。接着,在纺丝温度为340。C、加热空气温度为390。C的条件下,通过熔喷法将熔融流量(MFR)为670g/lOmin的线状PPS聚合物(Polyplastics公司制FORTRON)纺丝,将平均纤维直径为0.7iam的^效细纤维啦文成单位面积重量为10g/1112的无规则网,使其朝向上述做成的PPS长纤维网垂直地喷出,获得由微细纤维层及长纤维层构成的层叠网。另外,从熔喷喷嘴到长纤维网的上表面的距离为100mm。在获得的层叠网的微细纤维层上,与上述同样地将PPS长纤维网开纤,调制出由长纤维层/微细纤维层/长纤维层构成的三层层叠网。在加热为250。C的网紋花紋印花(压4妄面积比率14.4%)辊与平辊之间,以线压300N/cm将该三层层叠网局部热压4^,做成多层构造的耐热性无纺布。将构成该无纺布的纤维及无纺布的特性表示于表l中。另外,PPS长纤维的熔化峰值不存在于85~24(TC的范围内。比專交例1除了使纺丝速度为5000m/min之外,在与实施例l相同的条件下做成PPS长纤维网。在加热为260。C的网紋花紋印花(压接面积比率14.4%)辊与平辊之间,以线压300N/cm将该网局17表1<table>tableseeoriginaldocumentpage18</column></row><table>7工业实用性本发明的耐热性无纺布的尺寸稳定性、耐热性、耐药性、难燃性、强度等物理特性优良,因此,不仅可以用于一般工业用材料、难燃性包覆材料等,也可用于不可使用以往的聚酯系、聚酰胺系、聚烯烃系的层叠无纺布的用途。特别适合要求耐药性、耐热性的过滤器相关用途、电池隔板等用途。另外,通过做成多层构造,可以进一步提高抗拉强度、过滤性能、阻隔性能。权利要求1.一种耐热性无纺布,其特征在于,由聚苯硫醚纤维构成,该聚苯硫醚纤维的30wt%以上的结晶度为25~50%。2.根据权利要求l所述的耐热性无纺布,其特征在于,上述聚苯硫醚纤维在85240。C的范围内不具有在利用差热分析计以1分钟20。C的升温速度测定时求出的熔化峰值。3.根据权利要求1或2所述的耐热性无纺布,其特征在于,上述聚苯硫醚纤维是纤维直径为1~50(xm的长纤维。4.根据权利要求l~3中任一项所述的耐热性无纺布,其特征在于,上述无纺布是利用热粘接一体化接合而成的纺粘型无纺布。5.根据权利要求1或2所述的耐热性无纺布,其特征在于,上述无纺布是将至少l层以上的由纤维直径为3~50(im且结晶度为25~50%的聚苯硫醚长纤维构成的层、与至少l层以上的由纤维直径为O.l~3pm且结晶度为10~50%的聚苯硫醚微细纤维构成的层进行层叠一体化而成的。6.根据权利要求1或2所述的耐热性无纺布,其特征在于,在上述无纺布中,具有由纤维直径为350^m且结晶度为25~50%的聚苯硫醚长纤维构成的层作为上下层,具有由纤维直径为0.1~3jim且结晶度为1050%的聚苯硫醚微细纤维构成的层作为中间层,而且,上下层与中间层被层叠一体化。7.根据权利要求l~6中任一项所述的耐热性无纺布,其特征在于,在上述耐热性无纺布中,180"条件下的收缩率为3%以下,单位面积重量的抗拉强度为0.2(N/cm)/(g/m2)以上。全文摘要本发明提供一种耐热性无纺布。该耐热性无纺布的特征在于,由聚苯硫醚纤维构成,该聚苯硫醚纤维的30wt%以上的结晶度为25~50%。并且,通过做成将由聚苯硫醚长纤维构成的层、和由聚苯硫醚微细纤维构成的层进行层叠一体化而成的多层构造,可以谋求进一步提高性能。文档编号D04H1/42GK101512057SQ20078003192公开日2009年8月19日申请日期2007年9月21日优先权日2006年9月21日发明者前田昌彦,清水俊行申请人:旭化成纤维株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1