一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法与流程

文档序号:19287981发布日期:2019-11-30 00:48阅读:692来源:国知局
一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法与流程

技术领域:

本发明属于纺织材料技术领域,具体涉及ag沉积pan@sio2纳米纤维制备核壳结构的导电复合膜的制备方法。



背景技术:

电磁辐射污染不仅经常会对附近的电子设备造成干扰而且严重威胁人们的健康,因此迫切需要开发高性能的电磁屏蔽材料。传统的金属屏蔽材料密度大、易腐蚀而且屏蔽电磁波主要以反射为主,固有的金属属性限制其在恶劣环境下应用。最近,报道了许多碳基材料如石墨烯,碳纳米管等,由于它们低密度低和耐腐蚀而被广泛应用,但是碳基材料与聚合物溶解或熔融混合来制备导电聚合物时,为构建导电网络,需要高浓度的纳米填料,这些纳米填料倾向于聚集形成大的聚集体,这会降低导电聚合物的性能而且成本很高。

电导率和聚合物的形态对高性能电磁屏蔽非常重要,高电导率,逐层结构和类似单元的配置可以提高电磁屏蔽。而且最近研究发现银纳米颗粒填充的聚合物复合材料效地改善了导电性和电磁屏蔽,原因是银纳米颗粒和聚合物基体之间的电导率不匹配在界面处极大地增强了极化和电荷积累,提高复合材料的吸收能力。如何将高导电性的ag颗粒和纳米结构的纺丝薄膜结合,制备出柔软轻质的电磁屏蔽材料,并且可以应用在各种酸碱盐等复杂环境中是一个很大挑战。



技术实现要素:

本发明解决其技术问题是,一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法。本文利用传统静电纺丝制备pan@sio2film,然后通过湿化学沉积的方法在pan纳米纤维膜上沉积ag纳米颗粒,通过控制pan@sio2film在多伦试剂中的时间控制ag颗粒的沉积量,最终制备出具有核-壳结构的柔性,超疏水的高性能的电磁屏蔽材料。

本发明的进一步技术方案是pan@sio2纳米纤维膜厚度控制为40um,sio2添加量为0.15g,纤维平均直径为250±50nm。

本发明的进一步技术方案是pan@sio2纳米纤维膜在多伦试剂中浸渍时间分别为30min、2h、4h、8h和12h,然后被还原的薄膜室温下干燥后经过pfdt疏水剂疏水处理。疏水剂的浓度为0.02-0.1wt%。

本发明解决所述材料的技术问题的技术方案是,提供一种根据所述方法得到的pan@sio2纳米纤维膜,该薄膜纤维直径为250nm左右,具有较大的比表面积,而且内部含有的亲水性二氧化硅颗粒为后期ag颗粒的沉积提供附着位点,使得ag颗粒可以较为均匀的沉积到pan纤维上。

与现有制备方法相比,本发明有益效果在于:

(1)本发明利用静电纺丝方法可以制备出超柔软的电纺膜,而且该膜的比表面积大,内部含有的二氧化硅颗粒可以为ag颗粒的沉积提供附着位点,使得ag颗粒与pan纳米纤维结合牢固。

(2)纳米纤维膜特有的层状结构以及无序排列有益于形成导电网络而且还可以使屏蔽过程中内部反射增加。

(3)引入疏水剂对其疏水处理,从而制备的导电薄膜可以应用于酸碱等复杂环境中,从而避免材料被氧化腐蚀,扩大其应用范围。

(4)本发明证明了纳米结构在emi屏蔽方面的优势并且我们相信这种湿式无电沉积策略在可穿戴材料和柔性传感器方面中具有潜在的应用。

附图说明

图1为本发明制备轻质柔软超疏水导电薄膜流程示意图

图2为本发明制备的超疏水薄膜的自清洁功能示意图,疏水处理后的薄膜依然可以用作导电连接器点亮小灯泡;其中(a)导电薄膜作为导电连接器点亮灯泡;(b)疏水处理的导电薄膜sem图;(c)不同酸碱的水滴可以立在薄膜表面;(d)超声处理2h后样品的情况,其中1#是未经过疏水处理的导电膜,2#是经过疏水处理的导电膜,3#是ph=2的溶液,4#是ph=7的溶液,5#是ph=12的溶液;

图3为本发明制备的不同ag颗粒沉积在pan纳米纤维上,从而薄膜力学性能影响的分析模拟图

图4为本发明制备的导电薄膜的电磁屏蔽性能和屏蔽电磁波的机理示意图;其中(a)是导电织物的核壳结构示意图;(b)是导电织物的电磁屏蔽效果;(c)为导电织物屏蔽电磁波的示意图;

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。

具体实施例

本发明所要解决的技术问题是,发明一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法。

步骤1、制备柔性静电纺丝膜。将0.2gsio2加入20mldmf溶液中,磁力搅拌30分钟后,然后超声2小时,得到均匀分散的混合溶液。最后,将2.4gpan粉末加入到混合溶液中并在室温下搅拌10小时得到纺丝溶液。采用传统静电纺丝方法制备pan@sio2纳米纤维膜。纺丝过程中,纺丝施加的电压,溶液的流速和静电纺丝距离分别控制在20kv,0.8ml/h和15cm。通过静电纺丝时间控制纤维膜的厚度。

步骤2、制备导电薄膜。制备的pan@sio2纳米纤维薄膜进入到多伦试剂中,通过控制浸渍时间来控制ag颗粒的沉积量,浸渍时间分别控制为30min,4h,8h,12h,然后由还原溶液将ag+还原成ag纳米颗粒。其中在搅拌下将过量的氨水加入到4.0wt%agno3溶液中直至沉淀物沉降来制备多伦试剂。还原溶液由10g酒石酸钾钠(nakc4h4o6·4h2o),1gnaoh,1.4g葡萄糖(c6h12o6)和100ml去离子水组成。

步骤3、将步骤2得到的导电薄膜进行疏水处理,疏水剂为全氟癸基硫醇(pfdt)。具体方法是先制备不同pfdt含量的乙醇溶液(0.02-0.1wt%),然后将导电薄膜浸渍在pfdt溶液中,最后用去离子水冲洗导电薄膜并在室温下干燥。通过改变浸渍时间和改变pfdt含量,可以探究其对复合薄膜疏水性的影响。最终制备出可以应用于复杂环境的疏水导电薄膜。



技术特征:

1.一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特点在于该方法包括如下步骤:

步骤1、制备柔性静电纺丝膜。利用传统纺丝方法制备出纳米纤维中含有二氧化硅的纳米纤维膜,通过静电纺丝时间控制纤维膜的厚度。

步骤2、对步骤1得到的纳米纤维膜进行后处理,使得银纳米颗粒逐渐沉积到纳米纤维上,随着沉积量的增加逐渐形成具有核壳结构的导电纤维膜。

步骤3、引入疏水剂对步骤2得到的产品疏水处理,得到复合导电薄膜。

2.根据权利要求1所述的一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特征在于步骤1中,二氧化硅的添加量为0.15g,聚丙烯腈为2.4g,n-n二甲基甲酰胺为20ml。

3.根据权利要求1所述的一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特征在于步骤1中,制备的纳米纤维膜横截面是类似贝壳的层层结构,有利于后期导电薄膜屏蔽电磁波过程中的多重反射。

4.根据权利要求1所述的一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特征在于步骤1中,所添加的二氧化硅颗粒可以为后处理过程中ag颗粒的沉积提供附着位点,使得ag更加均匀的沉积到纳米纤维上。

5.根据权利要求1所述的一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特征在于步骤2中,浸渍时间分别控制为30min、2h、4h、8h和12h,通过控制浸渍时间可以控制ag颗粒的沉积量,当浸渍时间为12h时,可以得到具有核壳结构的导电复合材料。

6.根据权利要求1所述的一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特征在于步骤3中,疏水剂的浓度为0.02-0.1wt%,在疏水剂中浸渍时间为30min。

7.根据权利要求1所述的一种基于贝壳结构启发的柔性,超疏水,超高电磁屏蔽复合薄膜的制备方法,其特征在于本发明将纳米纤维与银沉积结合。

8.一种根据权利要求1-7任一所述方法得到复合导电材料,其特征在于该制备方法受益于贝壳的层状结构,制备的纳米纤维膜柔软且比表面积大,经过两次后处理,最终制备的导电薄膜具有非常好的电磁屏蔽效果,而且可以应用于各种复杂环境下。


技术总结
本发明提供一种基于贝壳结构启发的制备柔性,超疏水,超高电磁屏蔽复合薄膜的方法。利用传统静电纺丝方法制备PAN@SiO2纳米纤维膜,然后通过Ag湿化学沉积方法制备导电复合材料。纳米纤维内部含有的SiO2颗粒可以提供附着位点,有利于Ag纳米颗粒均匀的沉积到纤维表面。最后引入低表面能的全氟癸基硫醇(PFDT)对其疏水处理,从而有效地防止Ag层被氧化和腐蚀。该方法可以通过控制PAN@SiO2纤维膜在含Ag+溶液中的浸渍时间控制Ag颗粒的沉积量,而且经过疏水处理的导电复合材料在酸碱盐等环境中可以长期使用。这项工作证明了纳米结构在电磁屏蔽方面的优势而且证明了由其制备的导电材料在可穿戴材料和柔性传感器方面中具有很高的潜在应用价值。

技术研发人员:李婷婷;王艳婷;林佳弘;楼静文
受保护的技术使用者:天津工业大学
技术研发日:2019.08.26
技术公布日:2019.11.29
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1