良好导电性金刚石烧结体及其制备方法

文档序号:1967506阅读:787来源:国知局

专利名称::良好导电性金刚石烧结体及其制备方法
技术领域
:本发明涉及通过简易的步骤可以高效地制备具有良好导电性的金刚石烧结体的制备方法,且涉及具有优异的耐热性的硼掺杂金刚石烧结体及其制备方法。
背景技术
:以往,金刚石的硬度、导热性、耐热性高,化学稳定性优异等,因此可应用于耐磨损材料、电子装置/传感材料、生物相关材料、光学相关材料等广泛领域中,作为金刚石的制备方法,大多采用CVD法的气相合成法、使用超高压高温装置的合成法。通常已知金刚石本身为非导电性,近年来,在金刚石中掺杂硼的硼掺杂金刚石由于其半导体的特性而受到关注,该制备方法例如已知在合成金刚石时向反应气体中添加微量硼成分的气相合成法;将石墨粉末与硼粉末作为原料粉末,将其在5~10GPa且1300~2000°C的条件下合成的超高压高温合成法。着眼于金刚石本身所具有的硬度、耐磨损性等特性,金刚石烧结体可用作切削工具材料等,但通常金刚石烧结体是在超高压高温的条件下烧结制备,例如有以下方法以金刚石粉末和Co粉末作为原料粉末,在超高压高温装置内、在5.5GPa的压力下、在1500。C的条件下烧结,获得金刚石-Co系烧结体的方法;将含有金刚石粉末和Ti、Zr、Cr等粉末的原料粉末在超高压高温装置内加压至6.5GPa或以上,在1700~1900。C的条件下烧结,然后再以2000。C或以上的温度加热,由此获得金刚石-陶资系烧结体的方法;以金刚石粉末和碳酸盐粉末作为原料粉末,在超高压高温装置内、在6~12GPa的压力下、在17002500。C的条件下烧结,获得金刚石-碳酸盐系烧结体的方法等。专利文献1:日本特开2004-193522号公报专利文献2:日本特开平4-312982号公报专利文献3:日本特表2006-502955号公报专利文献4:日本特开平5-194031号公报专利文献5:日本特许第2795738号说明书
发明内容发明要解决的技术问题金刚石烧结体因其独特的性能而被应用在众多领域。例如在上述现有技术得到的金刚石-Co系烧结体中,结合相由金属Co构成,因此具备导电性,因此具有可通过放电加工等进行烧结体的加工的优点,但是,正由于结合相为金属Co,因此有耐热性低的弱点。而上述现有技术所得到的金刚石-碳酸盐系烧结体中,其耐热性非常优异,但是不具有导电性,因此无法进行放电加工,只好采用激光加工,这是加工上的难点。如上所述,现有技术非常难以获得具备良好导电性、同时也具备可与金刚石匹敌的其它特性(硬度、导热性、耐热性、化学稳定性等)的金刚石烧结体,因此这成为妨碍金刚石烧结体在广范围领域内应用的一个因素。因此,本发明的目的在于获得具有良好导电性、同时对于硬度、导热性、耐热性、化学稳定性等也具备与天然金刚石匹敌的特性的金刚石烧结体;以及通过简单的步骤、高效地制备该金刚石烧结体。解决技术问题的方法
技术领域
:本发明人为解决上述技术问题,对制备金刚石烧结体时的原料粉末和烧结方法进行了深入的研究,获得了下述(a)~(d)的认识(a)用于获得烧结体的粉末是使用在金刚石中掺杂微量硼的硼掺杂金刚石粉末,形成烧结体的结合相的成分是使用Mg、Ca、Sr、Ba的碳酸盐以及它们的2种或以上的复合碳酸盐中的1种或2种或以上的碳酸盐(以下将其总称为"碱土类碳酸盐")粉末作为原料粉末,在各粉末形成层压的状态、或者在各粉末混合的状态下,将原料粉末在超高压高温条件进行烧结,则碱土类碳酸盐粉末在约2300。C的温度下熔融,熔浸并填充到硼掺杂金刚石粉末颗粒间隙,得到硼掺杂金刚石烧结体。(b)使用金刚石粉末、硼粉末、以及作为形成烧结体的结合相的成分的Mg、Ca、Sr、Ba的碳酸盐以及它们的2种或以上复合碳酸盐中的1种或2种或以上的碳酸盐(以下将其总称为"碱土类碳酸盐,,)粉末作为用于获得烧结体的原料粉末,将各粉末以规定量配合,将其混合,准备为原料粉末,将原料粉末在超高压高温条件下进行烧结时,首先第l阶段是进行在规定压力规定温度下使混合粉末中的硼扩散到金刚石中的扩散处理,接着,第2阶段是在更高压高温条件下,使作为结合相成分的碱土类碳酸盐粉末熔融,将熔融的结合相成分熔浸并填充到扩散有硼的金刚石粉末的颗粒间隙,这样可获得具备良好导电性的金刚石烧结体。(c)天然金刚石本身的电导率为1(^S/cm或以下,非常低。而硼掺杂金刚石粉末的电导率非常高,约为1.5S/cm。上述现有技术的金刚石-碳酸盐系烧结体的电导率为约l(T5S/cm左右,为较小的值,而上述(a)的硼掺杂金刚石烧结体和上述(b)的制备方法得到的金刚石烧结体中,具有约l.Oxl(T2S/cm的电导率,金刚石-Co系烧结体的电导率约为2xl(T2S/cm,具备与其大致相等的良好导电性,因此具备在通过放电加工进行加工时所必须的足够的良好导电性。(d)如金刚石-Co系烧结体所示,相对于在烧结体中因含有金属成分的结合相使其仅具备70(TC左右的耐热性,而上述(a)的硼掺杂金刚石烧结体和由上述(b)的制备方法得到的金刚石烧结体中约为1200°C,与以天然金刚石作为原料的碳酸盐系金刚石烧结体同样具有非常优异的耐热性,并且硬度、导热性、化学稳定性也显示非常优异的特性值。本发明基于上述认识完成,具有以下特征(1)硼掺杂金刚石烧结体,其特征在于将90~99.9wt。/。硼掺杂量为1~10wtQ/o的硼掺杂金刚石粉末、和0.1~10wt。/o作为结合相成分的Mg、Ca、Sr、Ba的碳酸盐以及包含它们的2种或以上的复合碳酸盐中的l种或2种或以上的碳酸盐粉末在超高压高温下烧结,上述结合相成分熔浸并填充到上述硼掺杂金刚石粉末颗粒间隙。(2)硼掺杂金刚石烧结体的制备方法,其特征在于以90~99.9wt%硼掺杂量为1~10wt。/。的硼掺杂金刚石粉末、和0.1~10wt。/。作为结合相成分的Mg、Ca、Sr、Ba的碳酸盐以及包含它们的2种或以上的复合碳酸盐中的l种或2种或以上的碳酸盐粉末作为原料粉末,将该原料粉末装入到超高压高温发生装置中,在该超高压高温发生装置内、在6.0~9.0GPa的加压条件下加热至1600250(TC的温度,使上述结合相成分熔融,熔浸并填充到上述硼掺杂金刚石粉末颗粒间隙。(3)良好导电性金刚石烧结体的制备方法,其特征在于将80~99.4wto/。金刚石粉末、0.5~15wt。/。硼粉末、0.1~10wt。/o作为结合相成分的Mg、Ca、Sr、Ba的碳酸盐以及包含它们的2种或以上的复合碳酸盐中的l种或2种或以上的碳酸盐粉末混合,将所得原料粉末装入到超高压高温发生装置中,在该超高压高温发生装置内,第1阶段是在5.0~8.0GPa的加压条件下加热至1300~1800。C的温度,向金刚石粉末中进行硼的扩散,第2阶段是在6.0~9.0GPa的加压条件下加热至1600~2500。C的温度,使上述结合相成分熔融,使熔融的结合相成分熔浸并填充到扩散有硼的金刚石粉末颗粒间隙。以下更具体说明本发明。首先,对于第一方案的硼掺杂金刚石粉末及其制备方法进行说明。(1)硼掺杂金刚石粉末硼掺杂金刚石粉末可以使用通过气相合成法、超高压高温合成法等目前已知的制备方法获得的硼掺杂金刚石粉末。硼的掺杂量没有特别限定,从实用的角度考虑,硼的掺杂量优选使用1~10wt。/。[即,(硼重量)/(硼重量+金刚石重量)xlOO-l~10],更优选硼的掺杂量为2~7wt%。(2)碱土类碳酸盐粉末以硼掺杂金刚石粉末和碱土类碳酸盐粉末作为原料粉末,在超高压高温条件下进行烧结,则Mg、Ca、Sr、Ba的碳酸盐以及包含这些2种或以上的复合碳酸盐中的1种或2种或以上的碱土类碳酸盐粉末在约230CTC的温度下熔融,熔浸到金刚石粉末的颗粒间隙,促进相邻的金刚石颗粒的接合,同时填充颗粒间隙,以使烧结体密度提高了的结合相的形式存在。(3)原料粉末的配合比例本发明中,从不丧失金刚石本来所具有的硬度、导热性、化学稳定性等优异特性、且也保持良好导电性的角度考虑,硼掺杂金刚石烧结体中,将原料粉末中的硼掺杂金刚石粉末的配合比例规定为90~99.9wt%,而从提高硼掺杂金刚石烧结体的耐热性、保持规定的良好导电性、保持规定的烧结体密度的角度考虑,将碱土类碳酸盐粉末的配合比例规定为0.1~10wt%。即,硼掺杂金刚石粉末的配合比例低于90wt%、或者碱土类碳酸盐粉末的配合比例超过10wtQ/o时,不仅无法使硼掺杂金刚石烧结体具有规定的良好导电性,并且作为烧结体的密度、硬度、导热性、化学稳定性也降低,而碱土类碳酸盐粉末的配合比例低于0.1wt%、或硼掺杂金刚石粉末的配合比例超过99.9wt%,则结合相成分的减少导致烧结性降低,烧结体强度降低,耐热性也降低。(4)超高压高温装置的烧结条件超高压高温装置内的加压压力低于6.0GPa,则无法充分进行烧结体的致密化,不过该效果为9.0GPa或以下即足够,超过该值,则装置成本升高,因此加压压力规定为6.0~9.0GPa。另夕卜,在超高压高温装置内的加热温度低于1600°C,则碳酸盐的熔融、熔浸、填充不充分,同时烧结反应也不充分,因此无法实现烧结体的高密度化,而烧结加热温度超过2500。C则形成过烧结,发生金刚石发生逆变换为石墨的现象,因此将加热温度规定为1600~2500°C。将原料粉末装入超高压高温装置内时,硼掺杂金刚石粉末和碱土类碳酸盐粉末分别形成粉末层,优选在该粉末层层压的状态下装入超高压高温发生装置中,当然也可以将硼掺杂金刚石粉末和碱土类碳酸盐粉末混合,以该混合粉末作为原料粉末装入到超高压高温发生装置内。接着,对第二方案的金刚石烧结体的制备方法进行说明。(1)金刚石粉末、硼粉末金刚石粉末不限于气相合成法,可以使用目前已知的方法制备的金刚石4分末。硼粉末优选结晶性硼粉末或非晶硼粉末,可根据情况使用硼含量高的碳化硼粉末。硼粉末中的硼成分在超高压高温条件下烧结的第一阶段、即,在5.0-8.0GPa的力口压条件下、在1300~1800。C的温度范围内,硼扩散到金刚石粉末的表面。这样得到的金刚石粉末具有使最终得到的金刚石烧结体具有导电性的作用。(2)碱土类碳酸盐粉末将金刚石粉末和硼粉末和碱土类碳酸盐粉末混合,将其作为原料粉末,在超高压高温条件下进行烧结时,第一阶段是在5.08.0GPa的加压条件下、在1300~1800。C温度范围内烧结,由此发生硼成分向金刚石的扩散,接着在第二阶段、即,在6.0~9.0GPa的加压条件下、在1600~250(TC温度范围内烧结,由此,上述结合相成分熔融,熔融的结合相成分熔浸并填充到掺杂有硼的金刚石粉末颗粒间隙,以使烧结体的密度提高的结合相的形式存在。C3)原料粉末的配合比例在该发明中,从不失去金刚石本身所具有的硬度、导热性、化学稳定性等优异的特性、并且也保持良好导电性的角度考虑,金刚石烧结体中,将原料粉末中金刚石粉末的配合比例规定为80~99.4wt%,将硼粉末的配合比例规定为0.5~15wt%,而从使金刚石烧结体具有良好导电性、同时提高耐热性、并且保持规定烧结体密度的角度考虑,将碱土类碳酸盐粉末的配合比例规定为0.1-10wt°/o。即,金刚石粉末的配合比例低于80wt°/o、硼粉末的配合比例低于0.5wt%、或碱土类碳酸盐粉末的配合比例超过10wt。/Q时,不仅无法使金刚石烧结体具有规定的良好导电性,并且作为烧结体的硬度、导热性、化学稳定性、致密度也降低,而碱土类碳酸盐粉末的配合比例低于0.1wt%、或金刚石粉末的配合比例超过99.4wt°/o,以及硼粉末的配合比例超过15wt。/。时,结合相成分的减少导致烧结性降低,烧结体强度降低、同时耐热性也降低。原料粉末配合时,不是将金刚石粉末、硼粉末、碱土类碳酸盐粉末的各粉末直接配合,而是考虑将按照现有技术所示的方法制备的(预先掺杂硼)硼掺杂金刚石与碱土类碳酸盐粉末配合,将其作为原料粉末进行烧结,不过,在硼掺杂金刚石颗粒内,合成时使用的金属催化剂等的一部分以杂质的形式残留,这种情况对烧结体的特性(例如耐热性)产生不良影响,另外,合成得到的硼掺杂金刚石为块状,因此必须将其破碎、通过化学处理进行金属杂质等的除去,然后分级,之后的步骤较为麻烦。因此,原料粉末必须使用将金刚石粉末、硼粉末和碱土类碳酸盐粉末分别以规定的比例配合后所得。如果以将金刚石粉末、硼粉末、碱土类碳酸盐粉末分别以规定的比例配合所得作为原料粉末,则不仅可以防止杂质向金刚石颗粒内混入,也不需要硼掺杂金刚石合成后的步骤,并且可以通过配合比的调节,更确实且容易地设定烧结体中金刚石与硼的含有比例。(4)超高压高温装置的烧结条件在超高压高温装置的烧结中,第一阶段是在5.0~8.0GPa的加压条件下、在1300~1800。C的温度范围内发生硼向金刚石粉末的扩散,由此可使烧结体具有导电性,如果加压条件、加热温度条件低于上述范围,则硼扩散不充分,无法使烧结体具有另人满意的导电性,另外,加压条件、加热温度条件超过上述范围,则碳酸盐开始熔融,在硼扩散相尚未充分形成时即进行了金刚石的烧结,因此将烧结第一阶段的加压条件、加热温度分别规定为5.0~8.0GPa、1300~1800°C。第二阶^L的烧结中,加压压力低于6.0GPa时无法实现充分的致密化,其效果为9.0GPa以下即足够,超过该值则装置成本增高,因此加压压力规定为6.0~9.0GPa。并且加热温度低于160(TC时,碱土类碳酸盐的熔融、熔浸、填充不充分,同时烧结反应也不充分,因此无法实现烧结体的致密化,而加热温度超过2500。C,则形成过烧结状态,金刚石颗粒发生石墨化现象,因此将加热温度规定为1600~2500°C。应说明的是,将原料粉末装入超高压高温发生装置时,本发明是将金刚石粉末、硼粉末和碱土类碳酸盐粉末混合,以该混合粉末作为原料粉末装入到超高压高温发生装置内,当然也可以不将原料粉末制成混合粉末,而是使金刚石粉末、硼粉末、碱土类碳酸盐粉末分别形成粉末层,将该粉末层层压而成的状态的原料粉末装入到超高压高温发生装置内,在该状态下进行烧结。发明效果根据本发明的硼掺杂金刚石烧结体及其制备方法,将硼掺杂金刚石粉末和形成烧结体的结合相的碱土类碳酸盐粉末在超高压高温条件下加热,使结合相成分熔融,使结合相成分熔浸并填充到硼掺杂金刚石颗粒间隙,获得烧结体,由此得到的硼掺杂金刚石烧结体不仅具备硬度、导热性、化学稳定性,并且具有良好导电性和优异的耐热性。将金刚石粉末、硼粉末、形成烧结体的结合相的碱土类碳酸盐粉末在超高压高温条件下、在第一阶段将硼扩散到金刚石中,使其具有导电性,在第二阶段将结合相成分熔融,熔浸并填充到颗粒间隙,通过上述具体实施例方式表l给出本发明的实施例1中使用的硼掺杂金刚石粉末和碱土类碳酸盐粉末的具体例子。实施例1将表1所示的各种硼掺杂金刚石粉末和碱土类碳酸盐粉末如表2所示进行配合,准备原料粉末1~13。将这些原料粉末1~13形成将碱土类碳酸盐粉末配置在下方、将硼掺杂金刚石粉末层压配置在上方的层压配置状态,装入到通常的带式超高压高温装置中,以表3所示的超高压高温条件进行烧结,制备表4所示的本发明的硼掺杂金刚石烧结体1~15(以下称为本发明烧结体1~15)。测定本发明的烧结体1~15的各特性(电导率(电阻值)、耐热性、硬度、导热系数、化学稳定性等),其测定值如表4所示。比举交例1为了进行比较,准备含有表5所示金刚石粉末和结合相成分的原料粉末21~24,对于原料粉末21、23,是在下方配置结合相成分粉末层、上方配置金刚石粉末层的层压状态,原料粉末22、24是将金刚石粉末与结合相成分粉末制成混合粉末的状态,以这些状态装入到通常的带式超高压高温装置中,同样以表6所示的条件进行烧结,制备比较金刚石烧结体21~24(以下称为比较烧结体21~24)。对于比较烧结体2124测定的各特性的测定值如表7所示。上述实施例1、比较例1中,进行如下电导率(电阻值)、耐热性和化学稳定性的评价。'电导率评价试^r:通过四端子法测定电阻。耐热性评价试-睑在真空炉中、分别在温度800。C和1200。C下以保持时间30分钟的条件进行热处理,由此进行耐热试验,然后通过XRD(X射线)进行分析确认是否有热处理后的石墨化(金刚石的逆变换)。化学稳定性评价试验将烧结体在150。C的热氢氟酸中浸泡2小时,调查烧结体的形状是否有变化。[表l]<table>tableseeoriginaldocumentpage11</column></row><table>(注)BD(l)~BD(3)的硼掺杂量分别为2wt%、4wt%、7wt%。[表2]<table>tableseeoriginaldocumentpage12</column></row><table>[表3]<table>tableseeoriginaldocumentpage13</column></row><table>(注)加热保持时间是保持在加热温度下的时间(分钟)。<table>tableseeoriginaldocumentpage14</column></row><table><table>tableseeoriginaldocumentpage15</column></row><table><table>tableseeoriginaldocumentpage16</column></row><table>(注)加热保持时间是保持在加热温度下的时间(分钟)。<table>tableseeoriginaldocumentpage17</column></row><table>(注1)化学稳定性一栏的O表示在化学稳定性评价试验中,试验后的烧结体未发生形状变化,x表示由于Co相的溶出,烧结体形成粉末化。(注2)"无法测定"是指电阻值为与天然金刚石相同程度大的值(电导率为10-Ss/cm或以下)。由表4所示的本发明的烧结体1~15的特性值可知,本发明烧结体1~15具有电阻值为70Q.cm或以下的良好导电性,且在耐热性评价试验中未发生石墨化,显示优异的耐热性,在化学稳定性评价试验中,试验后的烧结体没有形状变化,显示优异的化学稳定性,并且硬度、导热性也具备与金刚石匹敌的特性。由表7所示的比较烧结体21~24的特性值可知,比较烧结体21、22具有良好导电性,但耐热性差(在耐热性评价试验中发生石墨化),在化学稳定性评价试验中,由于作为结合相的Co相的溶出,烧结体形成粉末化,化学稳定性差。并且比较烧结体23、24的电阻值为无法测定的高值(与天然金刚石相同),完全不显示导电性。如上所述,根据本发明,可得到兼具良好导电性和耐热性的硼掺杂金刚石烧结体,通过放电加工可以进行硼4参杂金刚石烧结体的加工,因此扩大了硼掺杂金刚石烧结体的应用领域,实际应用效果极大。实施例2将表8所示的各种金刚石粉末、硼粉末和碱土类碳酸盐粉末按照表9所示的配比混合,准备原料粉末31~45。将这些原料粉末31~45装入通常的带式超高压高温装置中,本发明方法的31~45是在表10所示的条件下进行第一阶段、第二阶段的烧结,制备表11所示的金刚石烧结体31~45(以下称为本发明烧结体31~45)。测定由本发明方法31~45制备的本发明烧结体31~45的各特性(电导率(电阻值)、耐热性、硬度、导热系数、化学稳定性等),其测定值如表ll所示。比專交例2为了进行比较,使用原料粉末31、35、40,比较方法31、35、40是按照表12所示条件进行烧结,制备比较烧结体31、35、40。各特性如表13所示。为了参考,对按照现有的方法1(日本特表2006-502955号公^J斤述方法)制备的硼掺杂金刚石烧结体(称为现有烧结体1)、和按照现有方法2(日本特许第2795"8号说明书)制备的金刚石-碳酸盐系烧结体(称为现有烧结体2),也同样在表13中表示各特性。上述实施例2、比较例2中,电导率(电阻值)、耐热性和化学稳定电导率评价试验通过四端子法测定电阻。耐热性评价试验在真空炉中,分别在温度800。C和1200。C下以保持时间30分钟的条件进行热处理,由此进行耐热试马全,然后通过XRD(X射线)进行分析确认是否有热处理后的石墨化(金刚石的逆变换)。化学稳定性评价试验将烧结体在15(TC的热氢氟酸中浸泡2小时,调查烧结体的形状是否有变化。<table>tableseeoriginaldocumentpage19</column></row><table>[表9]<table>tableseeoriginaldocumentpage20</column></row><table><table>tableseeoriginaldocumentpage21</column></row><table><table>tableseeoriginaldocumentpage22</column></row><table>(注)化学稳定性一栏的o表示在化学稳定性评价试验中。试验后的烧结体未发生形状变化。<table>tableseeoriginaldocumentpage23</column></row><table>[表13]<table>tableseeoriginaldocumentpage24</column></row><table>(注1)化学稳定性一栏的O表示在化学稳定性评价试验中,试验后的烧结体未发生形状变化,x表示由于结合相弱,发生脱落,A表示部分脱落。S(注2)"无法测定"是指电阻值为与天然金刚石相同程度大的值(电导率为10-Ss/cm或以下)。由表ll、表13所示的本发明烧结体31~45、比较烧结体31、35、40以及现有烧结体1、2的特性比较可知,本发明方法31-45所制备的本发明烧结体31~45兼具良好导电性和优异的耐热性,并且硬度、导热性、化学稳定性也具备与天然金刚石匹敌的特性,而制备条件偏离本发明方法的比较方法31、35、40所制备的比较烧结体31、35、40或现有的方法l、2制备的现有烧结体1、2,其导电性、导热性、耐热性、硬度、化学稳定性均比本发明烧结体31~45差。如上所述,本发明可以以简易的步骤高效地制备具有良好导电性的通过放电加工进行加工的导电性,因此扩大了金刚石烧结体的应用领域,实际应用效果才及大。产业实用性根据本发明的第一方案的硼掺杂金刚石烧结体及其制备方法,将硼掺杂金刚石粉末、形成烧结体的结合相的碱土类碳酸盐粉末在超高压高温条件下加热,使结合相成分熔融,使结合相成分熔浸并填充到硼掺杂金刚石颗粒间隙,获得烧结体,由此得到的硼掺杂金刚石烧结体不仅具备硬度、导热性、化学稳定性,也具备良好导电性和优异的耐热性,因此具备与天然金刚石匹敌的特性,同时具备可通过放电加工可容易地加工的优异的加工性,多方面的应用广泛,实际应用的效果非常大。根据本发明的笫二方案的金刚石烧结体的制备方法,将金刚石粉末、硼粉末、形成烧结体的结合相的碱土类碳酸盐粉末在超高压高温条件下、通过上述简易且高效的两步步骤即可获得具有良好导电性的金刚石烧结体,其中,第一阶段是使硼扩散到金刚石中,使金刚石具有导电性;第二阶段是使结合相成分熔融,熔浸并填充到颗粒间隙。根据本发明的第二方案制备的金刚石烧结体不仅具有良好导电性,同时还具有优异的耐热性,并且硬度、导热性、化学稳定性也具备与天然金刚石所匹敌的特性,由此可以发挥通过放电加工即可容易地进行加工的优异的加工性,有望在多方面应用,因此实际应用效果非常大。权利要求1.硼掺杂金刚石烧结体,其特征在于将90~99.9wt%硼掺杂量为1~10wt%的硼掺杂金刚石粉末、和0.1~10wt%作为结合相成分的Mg、Ca、Sr、Ba的碳酸盐以及包含它们的2种或以上的复合碳酸盐中的1种或2种或以上的碳酸盐粉末在超高压高温下烧结,上述结合相成分熔浸并填充到上述硼掺杂金刚石粉末颗粒间隙。2.硼掺杂金刚石烧结体的制备方法,其特征在于以9099.9wt0/0硼掺杂量为1~10wt。/。的硼掺杂金刚石粉末、和0.1~10wt。/。作为结合相成分的Mg、Ca、Sr、Ba的碳酸盐以及包含它们的2种或以上的复合碳酸盐中的1种或2种或以上的碳酸盐粉末作为原料粉末,将该原料粉末装入到超高压高温发生装置中,在该超高压高温发生装置内、在6.0~9.0GPa的加压条件下加热至16002500。C的温度,使上述结合相成分熔融,熔浸并填充到上述硼掺杂金刚石粉末颗粒间隙。3.良好导电性金刚石烧结体的制备方法,其特征在于将80~99.4wto/。金刚石粉末、0.5~15wt。/o硼粉末、0.1~10wt。/。作为结合相成分的Mg、Ca、Sr、Ba的碳酸盐以及包含它们的2种或以上的复合碳酸盐中的1种或2种或以上的碳酸盐粉末混合,将所得原料粉末装入到超高压高温发生装置中,在该超高压高温发生装置内,第1阶段是在5.0-8.0GPa的加压条件下加热至1300-180(TC的温度,向金刚石粉末中进行硼的扩散,之后第2阶段是在6.0~9.0GPa的加压条件下加热至1600~250(TC的温度,使上述结合相成分熔融,使熔融的结合相成分熔浸并填充到扩散有硼的金刚石粉末颗粒间隙。全文摘要本发明提供具有良好导电性、同时硬度、导热性、耐热性、化学稳定性等也具备与天然金刚石匹敌的特性的金刚石烧结体及其制备方法。以90~99.9wt%硼的掺杂量为1~10wt%的硼掺杂金刚石粉末、作为结合相成分的0.1~10wt%含有Mg、Ca、Sr、Ba等碳酸盐以及它们的2种或以上的复合碳酸盐中的1种或2种以上的碳酸盐粉末作为原料粉末,将该原料粉末在超高压高温下烧结,使结合相成分熔融,熔浸并填充到硼掺杂金刚石粉末颗粒间隙,由此获得具有良好导电性和耐热性的硼掺杂金刚石烧结体。文档编号C04B35/52GK101528634SQ20078003857公开日2009年9月9日申请日期2007年10月26日优先权日2006年10月31日发明者A·E·沃多约,田岛逸郎,福长脩申请人:三菱综合材料株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1