电子元器件封装材料用陶瓷粉及其生产方法

文档序号:1988085阅读:383来源:国知局
专利名称:电子元器件封装材料用陶瓷粉及其生产方法
技术领域
本发明属于电子陶瓷材料技术领域中用于生产电子元器件封装材料的陶瓷粉及该陶瓷粉的生产方法;特别是一种可用于生产热膨胀系数(TCE)为10_20X10_6/°C的电子封装材料的陶瓷粉及生产方法。该陶瓷粉不但可生产用于集成电路芯片、特别是球栅阵列(BGA)等电子元器件的封装材料,还可用于制作芯片基板。
背景技术
随着电子设备不断的轻薄小型化、多功能化、高性能低成本化,其核心的集成电路(IC)在芯片尺寸、集成规模、封装密度、信号频率等方面不断提高,对微电子封装技术这一关键环节提出了更高的要求。大规模集成电路(LSI)的飞速发展促使阵列式的芯片封装形式出现并逐渐成为主流,其典型如球栅阵列(BGA)、栅格阵列(LGA)。封装材料作为是封装技术的重要组成,为芯片提供电连接、保护、支撑、散热、组装等功效。其中的陶瓷封装材料 以其优良的电学、机械、热学及工艺特性,满足高频、数字、射频和微波器件的单芯片封装或多芯片组装的技术要求,在各类电子设备中得到了广泛应用。传统的氧化铝陶瓷材料存在烧结温度高1500-1900°C,Mo、W金属布线电阻大,介电常数偏大等缺点,尤其是热膨胀系数(TCE) 6-8X10—6/°C与印制电路板(PCB)的11-18X 10_6/°C存在严重不匹配,在使用过程中易断裂失效,因而BGA封装芯片存在可靠性等弊病。近年来,迅速发展的低温共烧陶瓷(LTCC)具有低介电常数,且能够在900°C左右与低电阻率金属Au、Ag、Cu等共烧,解决了高频高速化、布线微细化等问题。但是,现有的低温共烧陶瓷材料产品,仍存在热膨胀系数普遍较低的弊端、如Feiro公司A6型TCE ^ 7. OXlO-6/ °C, DuPont 公司 951 型 TCE ^ 5· 8X 1(T6/ °C,Heraeus 公司 CT700 型TCE ^ 6. 7X1(T6/°C。为克服低温共烧陶瓷(LTCC)存在的热膨胀系数普遍较低的弊端,在专利号为CN03130760. 4、发明名称为“高热膨胀玻璃和带子组合物”的专利文件中公开一种含碱金属的硼硅酸镁玻璃,该硼硅酸镁玻璃包括10-25% SiO2,10-25% B203>5-10% BaO,40-65% MgO,O. 5-3% Zr02、0. 3-3% P2O5和O. 2-5% M2O,其中M选自碱金属Li、Na和K及其混合物(以摩尔百分比计);陶瓷填料为A1203、ZrO2、TiO2、BaTiO3及其混合物;着色剂选自Cu20、Fe2O3及其混合物;可流延介电组合物,包括50-90%玻璃、10-50%陶瓷填料和O. 2-3%着色剂(以重量百分比计)分散在有机聚合物粘合剂和挥发性有机溶剂组成的溶液中。上述玻璃由传统玻璃工艺制备,先称量配料、按比例混合,在熔炉中加热到1400-1600°C、在钼金坩埚中形成熔体并完全成为均匀的液体,然后将玻璃熔体淬冷轧制成玻璃板、再经研磨得到1-5 μ m的玻璃粉。该玻璃的TCE > 9X10_7°C(25-300°C)。上述流延带子组合物可用来制作BGA用途的多层电路;类似的专利还有美国的US 6835682。此类硼硅酸镁玻璃虽然具有较高的热膨胀系数(TCE),但却存在组分中采用价格昂贵的Li2O不但提高了成本、且Li属稀有物质,碱金属氧化物的存在使微电子器件在长期使用、尤其是高温环境下使用一价碱金属离子会产生电迁移、增加封装介质的电导,降低产品的可靠性;而采用传统玻璃工艺在1400-1600°C温度下长达5小时的熔融,不但能耗高、且对耐火材料性能的要求也高,成分中的易挥发物质在熔融过程中的损耗也难以控制,此外采用玻璃熔体淬冷轧制成玻璃板,玻璃的硬度高、研磨难度大。因而,上述硼硅酸镁玻璃存在熔制温度及对熔制设备的性能要求高、能耗高,生产工艺复杂,生产成本高,而所得制品性能的稳定性差、其热膨胀系数(TCE)仍难与印制电路板(PCB)的11-18X 10_6/°C匹配,且不适合工业化大批量生产等弊病。在公告号为CN101421199B、发明名称为“高热膨胀环硅酸盐玻璃一陶瓷”的专利文件中公开一种其组份包含 30-55% SiO2,5-40% CaO,0-50% BaO,O. 1-10% Al2O3 和 0-40%SrO (CaO+BaO+SrO = 35-65%), >0-15% MgO 和 >0-10% ZnO 中至少一种,>0-10% 的至少一种过渡金属或稀土金属的氧化物(以重量百分比计)的硅酸盐玻璃一陶瓷。该玻璃陶瓷也是采用传统玻璃工艺制备,采用钼坩埚在1450-1650°C温度下熔制2-5小时,其主晶相具有环硅酸盐结构,TCE = 8. 5-11. 5X10_6/°C,该高热膨胀环硅酸盐玻璃一陶瓷仅用作金属对金属、金属对陶瓷和陶瓷对陶瓷的密封剂,以及金属和陶瓷的高性能涂层,而不宜用作电子元器件的封装及基板材料;而且该硅酸盐玻璃一陶瓷采用采用传统玻璃工艺、熔制温度高达1450-1650°C,且以杂质含量较高原矿粉及稀土金属氧化物作为一部分原料,因而仍存在能耗高、生产成本高,制品性能差,且不适合工业化大批量生产等弊病。·

发明内容
本发明的目的是针对背景技术存在的弊病,研究一种电子元器件封装材料用陶瓷粉及其生产方法,在简化生产工艺的基础上,降低烧结温度、能耗及生产成本,提高陶瓷粉的性能及粉体形貌的均匀性;以达到生产工艺简单、效率高,能耗及生产成本低,可进行工业化大批量生产,以及为后续生产综合性能优良的电子封装及基板用热膨胀系数(TCE)为10-20X 10_6/°C的陶瓷粉原料等目的。本发明的解决方案是针对背景技术存在的缺陷,采用含BaO、B2O3> SiO2, Al2O3或BaO, B2O3> SiO2, Al2O3以及MgO、CaO、SrO, ZnO, ZrO2, TiO2中部份或全部成份按比例湿磨混合、烧结、研磨制成复合氧化物,然后再将该复合氧化物与石英粉按比例湿磨混合、干燥及筛分处理,即得封装材料用陶瓷粉(白色);当需生产带色陶瓷粉时,再以复合氧化物原料的总重量为准按比例加入着色剂后再经湿磨混合、烧结、研磨制成相应颜色的复合氧化物,或以复合氧化物与石英粉的总重量为准按比例加入着色剂后、再经湿磨混合、干燥及过筛处理直接制成相应颜色的陶瓷粉;本发明采用复合氧化物作主成份,可使制得的陶瓷粉在后续生产电子封装材料及芯片用基板中既可降低其烧结温度并促进石英晶相生长、又可提高其抗弯强度;在主成份中加入石英粉既可提高材料的热膨胀系数、以解决BGA封装芯片与PCB板热膨胀系数相匹配的问题,还可通过石英诱导玻璃相析晶而有利于烧结成瓷,此外、调节石英粉的用量还可调节材料高热膨胀系数,扩大其适用范围;本发明即以此实现其发明目的。因此,本发电子元器件封装材料用陶瓷粉中包括重量百分比为35-85wt%的含BaO、B203、Si02、Al2O3在内的复合氧化物及15_65wt%的石英粉;复合氧化物以重量百分计BaO 为 15-65wt%、B203 为 5_25wt%、SiO2 为 20_65wt%、Al2O3 为 l_15wt%。上述复合氧化物中还含有不超过所配(制)复合氧化物总量25wt%的包括MgO、CaO、SrO, ZnO, ZrO2, TiO2在内的全部或其中的一种、几种氧化物。而所述MgO、CaO、SrO,ZnO, ZrO2, TiO2中各成份的含量以加入后的复合氧化物总量计Mg0为0. 5_20wt%、CaO为O. 5-20wt%、Sr0 为 O. 3_18wt%、ZnO 为 0. 3_18wt%、Zr02 为 O. 2_16wt%、Ti02 为 O. 2_16wt%,无论是加入其中的一种、几种还是全部氧化物,其加入量均不超过该复合氧化物总量的25wt%。为了满足封装材料对颜色的要求,在陶瓷粉中还添加有其总量O. l-2wt%的着色剂,着色剂为Cr2O3、Co2O3、Fe2O3及Cu2O中一种或几种金属氧化物。所述电子元器件封装材料用陶瓷粉的生产方法,包括步骤I.复合氧化物的制备Ia.复合氧化物原料的配制将BaO、B203、SiO2, Al2O3按比例湿磨混合或将BaO、B2O3> SiO2^Al2O3及不超过复合氧化物总量25wt%的包括MgO、CaO、SrO, ZnO, Zr02、TiO2中的一种、几种、或全部氧化物按比例湿磨混合2-10小时至平均粒度为1-10 μ m止,干燥、过筛除杂得复合氧化物原料粉;Ib.制备复合氧化物粉将步骤Ia所得复合氧化物原料粉置于烧结炉内、在500-800°C温度下烧结1-4小时,冷却后经研磨、过筛,即得复合氧化物粉,待用; 步骤2.配制陶瓷粉原料、球磨混合及干燥处理将工业纯、平均粒度15-150 μ m的石英粉及步骤I所得复合氧化物粉按比例置于球磨机内湿磨混合3-12小时至平均粒度为l-5μm止,在60-ll(rC温度下干燥至含水率彡 I. 0%后、过筛即得电子元器件封装材料用陶瓷粉。所述球磨混合其磨球为锆球,球磨剂为乙醇、去离子水或两者的混合物。当需生产带色陶瓷粉时,在步骤Ia以复合氧化物原料的总重量为准,加入其重量O. 2-6wt%的Cr203、Co2O3^Fe2O3及Cu2O中一种或几种作为着色剂后,再经湿磨混合、烧结、研磨及过筛处理制得相应颜色的复合氧化物,或在步骤2配制陶瓷粉原料时加入其总重量O. l-2wt%的Cr203、Co2O3^Fe2O3及Cu2O中一种或几种作为着色剂后,再经湿磨混合、烧结、研磨及过筛处理直接制成相应颜色的陶瓷粉。本发明在配方中采用复合氧化物+石英或复合氧化物+石英+着色剂,并采用对复合氧化物混合料进行烧结处理后、再与石英粉混合等工艺方法,制成电子元器件封装材料生产用陶瓷粉;在陶瓷粉中不带一价的碱金属离子、又杜绝了此后作为电子元器件封装材料易产生的电迁移。因而本发明具有工艺简单、效率高,能耗及生产成本低,可进行工业化大批量生产等特点;采用本发明制得的陶瓷粉采用常规方法、在800-1000°C温度下烧结即可生产出热膨胀系数(TCE)为10-20X10_6/°C,综合性能优良、可靠的电子元器件封装材料及芯片用基板。


图I为采用实例I所得陶瓷粉制得的电子元器件封装用陶瓷材料断面的电子显微镜照片;图2为采用实例2所得陶瓷粉制得的电子元器件封装用陶瓷材料断面的电子显微镜照片;图3为采用实例3所得陶瓷粉制得的电子元器件封装用陶瓷材料断面的电子显微镜照片;图4为采用实例4所得陶瓷粉制得的电子元器件封装用陶瓷材料断面的电子显微镜照片;
图5为采用实例5所得陶瓷粉制得的电子元器件封装用陶瓷材料断面的电子显微镜照片;图6为实采用例1-5所得陶瓷粉制得的电子元器件封装用陶瓷材料的热膨胀曲线。
具体实施例方式实施例I :称量 60kg BaO,9kg B 203、23kg SiO2,3kg Al2O3,5kg TiO2,一并置于球磨机内,以乙醇为球磨剂、锆球为磨球,经过3小时球磨,在70°C温度下烘干、过筛得到平均粒度4. 3 μ m的粉体;在750°C温度下烧结并保温I. 5小时后,再经过研磨、过筛后的粉体即为复合氧化物;然后称量45kg复合氧化物、55kg石英(125 μ m)仍置于球磨机内湿磨11小时后,在70°C温度下烘干至含水率< O. 5%,过筛得到平均粒度3. O μ m的白色粉体即为电子封装材料用陶瓷粉。采用上述陶瓷粉经20MPa压制成型后,在空气及970°C温度下烧结并保温I小时、即得到热膨胀系数为18. 3X 10-6/oC (25 - 400°C)的电子元器件封装用陶瓷材料,该陶瓷材料的介电常数6. 2 (IMHz )、介电损耗3 X Kr4 (1MHz)、绝缘电阻率4. OX IO13 Ω .cm、抗弯强度153MPa ;附图I即为该陶瓷材料结构的电镜照片,附图6中的曲线SI即为其热膨胀曲线图。实施例2 :称量 52kg BaOUOkg B203、30kg SiO2,5kg Al203、3kg ZrO2 和 Ikg Co2O3一并置于球磨机内,以去离子水为球磨剂、锆球为磨球,经过5小时球磨,在100°C温度下烘干,过筛得到平均粒度3. 5 μ m的粉体,然后在750°C温度下烧结并保温2小时,再经过研磨、过筛后的粉体即为复合氧化物;然后称量57kg该复合氧化物、43kg石英(105 μ m),仍置于球磨机内湿磨9小时后、在100°C温度下烘干至含水率< 1%,过筛所得平均粒度2. 5 μ m的蓝色粉体即为电子封装材料用陶瓷粉。采用上述陶瓷粉经20MPa压制成型后,在还原气氛N2+H2中及950°C温度下烧结并保温I. 5小时得到热膨胀系数14. 2 X IO-6/0C(25 一 400°C )的电子元器件封装用陶瓷材料,该陶瓷材料的介电常数6. 5( 1MHz)、介电损耗4X 1(Γ4( 1MHz)、绝缘电阻率3.9Χ1013Ω .cm、抗弯强度171MPa ;附图2即为该陶瓷材料结构的电镜照片,附图6中的曲线S2即为其热膨胀曲线图。实施例3 :称量 16kg BaO,5kg B203、52kg SiO2,5kg Al203、15kg MgO,7kg ZrO2 —并置于球磨机内,以乙醇与去离子水按7:3的混合液为球磨剂、锆球为磨球,经过7小时球磨,在80°C温度下烘干,过筛得到平均粒度2. 8 μ m的粉体;然后在750°C温度下烧结并保温2. 5小时,再经过研磨、过筛,即复合氧化物粉体;然后称量73kg复合氧化物、27kg石英(74μπι)和O. 5kg Cr2O3以乙醇和去离子水按7:3混合液为球磨剂、以锆球为磨球,经过7小时球磨,在80°C温度下烘干至含水率< 1%,过筛得到平均粒度2. Iym的绿色粉体即为电子封装材料用陶瓷粉。采用上述陶瓷粉经20MPa压制成型后,在还原气氛Ν2+Η20中及930°C温度下烧结并保温2小时得到热膨胀系数11. 0X10_6/°C (25 - 400°C)的电子元器件封装用陶瓷材料,其介电常数5. 9 (IMHz)、介电损耗4X Kr4 (1MHz)、绝缘电阻率3. 6X IO13 Ω · cm、抗弯强度155MPa;附图3即为该陶瓷材料结构的电镜照片,附图6中的曲线S3即为其热膨胀曲线图。
实施例4:称量 22kg BaO,8kg B2O3>44kg SiO2,7kg Al203、9kg CaOUOkg ZrO2 和IkgCo2O3 一并置于球磨机内,以乙醇与去离子水按5:5的混合液为球磨剂、锆球为磨球,经过8小时球磨,在85°C烘干,过筛得到平均粒度2. 4 μ m的粉体,在600°C温度下烧结并保温3小时,再经过研磨、过筛后的粉体即为复合氧化物;然后称量70kg复合氧化物、30kg石英(53 μ m)和O. 5kg Cu2O,以乙醇和去离子水按5:5混合液为球磨剂、锆球为磨球,经过5小时球磨,在85°C温度下烘干至含水率< 1%,过筛得到平均粒度1.7μπι的黑色粉体,该黑色粉体即为电子封装材料用陶瓷粉。采用所得陶瓷粉经20MPa压制成型后,在还原气氛Ν2+Η2+Η20中及900°C温度下烧结并保温2. 5小时得热膨胀系数11. 5X 10-6/oC (25 一 400°C )的电子元器件封装用陶瓷材料,其介电常数6. 2 (IMHz )、介电损耗5 X Kr4 (1MHz)、绝缘电阻率4. O X IO13 Ω · cm、抗弯强度166MPa ;附图4即为该陶瓷材料结构的电镜照片,附图6中的曲线S4即为其热膨胀曲线图。实施例5:称量 27kg Ba0、12kg B203、39kg SiO2UOkg Al203、5kg SrOUkg ZnO, 6kgZr02 一并置于球磨机内,以乙醇与去离子水按3:7的混合液为球磨剂、锆球为磨球,经过9小时球磨,在90°C温度下烘干,过筛得到平均粒度2. I μ m的粉体,在550°C温度下烧结并保温3. 5小时后,再经过研磨、过筛后的粉体即为复合氧化物;然后称量64kg复合氧化物、36kg石英(37 μ m)>0. 5kg Fe2O3,混料均勻后,以乙醇和去离子水按3:7混合液作为球磨剂、锆球为磨球,经过5小时球磨,在90°C温度下烘干至含水率< 1%,过筛得到平均粒度1.5μπι的红色粉体即为电子封装材料用陶瓷粉。该粉体材料经20MPa压制成型后,在氮气N2中及850°C温度下烧结并保温4小时得到热膨胀系数12. 7X 10-6/oC (25 - 4000C)的电子元器件封装用陶瓷材料,该陶瓷材料介电常数5. 7 (IMHz)、介电损耗5 X Kr4 (1MHz)、绝缘电阻率3. 4X IO13 Ω · cm、抗弯强度151MPa;附图5即为该陶瓷材料结构的电镜照片,附图6中的曲线S5即为其热膨胀曲线图。
权利要求
1.一种电子元器件封装材料用陶瓷粉,其特征在于陶瓷粉中包括重量百分比为35-85wt%的含BaO、B2O3> SiO2, Al2O3在内的复合氧化物及15_65wt%的石英粉;复合氧化物以重量百分计=BaO 为 15-65wt%、B203 为 5_25wt%、SiO2 为 20_65wt%、Al2O3 为 l_15wt%。
2.按权利要求I所述电子元器件封装材料用陶瓷粉,其特征在于所述复合氧化物中还可含有加入不超过所配复合氧化物总量25wt%的包括Mg0、Ca0、Sr0、Zn0、ZrO2、TiO2在内的全部或其中的一种、几种氧化物。
3.按权利要求2所述电子元器件封装材料用陶瓷粉,其特征在于所述MgO、CaO、SrO、ZnO, ZrO2, TiO2中各成份的含量以加入后的复合氧化物总量计MgO为O. 5_20wt%、CaO为O.5-20wt%、Sr0 为 O. 3_18wt%、Zn0 为 O. 3_18wt%、Zr02 为 O. 2_16wt%、Ti02 为 O. 2_16wt%,无论是加入其中的一种、几种还是全部氧化物,其加入量均不超过该复合氧化物总量的25wt%。
4.按权利要求I所述电子元器件封装材料用陶瓷粉,其特征在于在陶瓷粉中还含有总量为陶瓷粉O. l-2wt%的着色剂,着色剂为Cr203、Co2O3> Fe2O3及Cu2O中一种或几种金属氧化物。
5.按权利要求I所述电子元器件封装材料用陶瓷粉的生产方法,包括 步骤I.复合氧化物的制备 Ia.复合氧化物原料的配制将BaO、B203、SiO2, Al2O3按比例湿磨混合或将BaO、B203、SiO2^Al2O3及不超过复合氧化物总量25wt%的包括]\%0、0&0、510、2110、2102、1102中的一种、几种、或全部氧化物按比例湿磨混合2-10小时至平均粒度为1-10 μ m止,干燥、过筛除杂得复合氧化物原料粉; Ib.制备复合氧化物粉将步骤Ia所得复合氧化物原料粉置于烧结炉内、在500-800°C温度下烧结1-4小时,冷却后经研磨、过筛,即得复合氧化物粉,待用; 步骤2.配制陶瓷粉原料、球磨混合及干燥处理将工业纯、平均粒度15-150 μ m的石英粉及步骤I所得复合氧化物粉按比例置于球磨机内湿磨混合3-12小时至平均粒度为l-5μm止,在60-ll(rC温度下干燥至含水率彡 I. 0%后、过筛即得电子元器件封装材料用陶瓷粉。
6.按权利要求5所述陶瓷粉的生产方法,其特征在于所述球磨混合其磨球为锆球,球磨剂为乙醇、去离子水或两者的混合物。
7.按权利要求5所述陶瓷粉的生产方法,其特征在于当生产带色陶瓷粉时,在步骤Ia中以复合氧化物原料的总重量为准,加入其重量0. 2-6wt%的Cr203、Co2O3> Fe2O3及Cu2O中一种或几种作为着色剂后,再经湿磨混合、烧结、研磨及过筛处理制得相应颜色的复合氧化物;或在步骤2配制陶瓷粉原料时加入其总重量0. l-2wt%的Cr203、Co203、Fe2O3及Cu2O中一种或几种作为着色剂后,再经湿磨混合、烧结、研磨及过筛处理直接制成相应颜色的陶瓷粉。
全文摘要
该发明属于电子元器件封装材料生产用陶瓷粉及其生产方法。陶瓷粉中包括35-85wt%的含BaO、B2O3、SiO2、Al2O3以及MgO、CaO、SrO、ZnO、ZrO2、TiO2中部分氧化物在内的复合氧化物和15-65wt%的石英粉、着色剂;其生产方法包括复合氧化物的制备,配制陶瓷粉原料、球磨混合及干燥处理。该发明采用复合氧化物+石英或复合氧化物+石英+着色剂,并对复合氧化物进行烧结后再与石英粉混合、制得封装材料用陶瓷粉;因而具有工艺简单、效率高,能耗及生产成本低,可进行工业化大批量生产等特点。采用该发明制得的陶瓷粉通过常规方法在800-1000℃温度下烧结即可生产出热膨胀系数为10-20×10-6/℃,综合性能优良、可靠的电子元器件封装材料及芯片用基板。
文档编号C04B35/626GK102898027SQ201210396718
公开日2013年1月30日 申请日期2012年10月17日 优先权日2012年10月17日
发明者李波, 张树人 申请人:电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1