用于木制构件的并排纤维加强板的制作方法

文档序号:1819383阅读:127来源:国知局
专利名称:用于木制构件的并排纤维加强板的制作方法
技术领域
本发明涉及对木制结构进行加强的技术,例如对梁、柱和构架进行加强的技术。本发明特别涉及用单向纤维作为木制结构件的加强物,以提高木制结构的抗拉伸和抗压缩承载能力。
为了保持木制产品的竞争力,木制产品工程师必须在考虑可选用的材料的同时采用新的设计,以便提高工程木制品的结构强度极限和成本效益。典型的工程木制品包括胶合叠层木梁,叠层木柱,木制工字梁,以及木制构架等。现有技术已广泛地应用在这些工程木制品上。
O’Brien的美国专利No.5,026,593公开了用平薄的铝带对叠层梁进行加强的技术。根据O’Brien的描述,铝带必须连续地覆盖梁的宽度和长度,并且加强带可以用粘结的方法固定到梁的最下层,以提高梁的抗拉强度,或者固定到梁的在最上层,以提高梁的抗压强度。因此,尽管O’Brien讲述了为了提高梁的抗拉强度(或抗压强度),如何确定加强带在木制叠层梁上的位置的工程原理,并因此提高了梁的总体承载能力,但O’Brien只描述了铝制加强带的使用。虽然O’Brien说到加强带可以是任何具有“高拉伸强度”的材料,但O’Brien既没有涉及优化加强带的方法,也没有就此提出建议,同时也没有解决使用非铝制的加强带所带来的问题。
在1988年的国际木材会议上,Dan A.Tingley提交了一篇题为“加强的胶合叠层木梁”的论文(以后称之为Tingley论文),该论文介绍了在胶合叠层木梁(glulams)上使用加强塑料(RP)的技术。Tingley的论文中公开了在胶合叠层木梁的高应力区中布置“KEVLAR”加强塑料板的实验结果。结果表明,使用“KEVLAR”加强板的梁与未经过加强的梁相比,梁的极限破坏载荷提高了19%。虽然论文中没有提到为什么需要纵向排列纤维或怎样实现纵向排列纤维,但论文中说到,制造者可以实现100%的纤维纵向排列。Tingley论文还指出,相对胶合叠层木梁的长度来说,缩短RP的长度具有经济上的益处,同时不会明显降低对木梁强度的加强效果。Tingley的论文没有涉及任何关于制造RP加强板的方法,也没有提到为了降低初始应变,在纤维受到张力作用的同时对板进行固化所带来的好处。Tingley论文也没有提到将最外面的某些纤维露出所带来的益处,其中,将某些纤维露出是为了使RP的表面“起毛”,以便产生一个便于使用商品级粘结剂(例如间苯二酚粘结剂)的表面。相反,Tingley论文提到使用环氧树脂胶,而不是使用间苯二酚粘结剂,将RP与相邻的木板层粘结起来,尽管其它木板层之间使用的是较便宜的商品级粘结剂(间苯二酚粘结剂)。
本发明涉及的另一领域是连续塑型(pultrusion)加工方法。连续塑型是一种连续制造方法,用于制造各种长度的纤维加强塑料部件。连续塑型包括牵引若干柔性的加强纤维,使其经过一个液体树脂槽,然后再经过一个加热的模具,此模具能够使RP成型,并使树脂固化。连续塑型因能够制造出连续的RP,并且允许根据用户需要布置纤维的位置和方向而广为人知,其中的后一特点使人们可以对连续塑型部件的机械特性进行设计,以适应特殊的应用。连续塑型部件中具有沿纵向布置、用于提高轴向强度的纤维,以及倾斜布置、用于提高横向强度的纤维。
本发明对现有技术中使用加强塑料板作为叠层木梁和其它木制结构件的加强物的技术进行了改进。本发明提供了一种加强板,这种板由大量的高强度纤维组成,所有纤维都彼此基本平行地布置,并且与加强板的纵向轴线并排。为了使板的表面“起毛”,对最靠近表面的纤维进行打磨,使得能够用商品级的粘结剂(例如间苯二酚粘结剂)将RP板与木制结构粘结起来。
本发明也包括混合纤维RP板,在这种板中,有一个由大量连续的和并排的纤维构成的芯部,以及一个(或多个)由非连续纤维组成的外层,为了便于板和木制结构的粘结,其中的非连续纤维经过打磨,使得RP板具有起毛的表面。在设计上不允许纤维起毛的场合中,混合纤维RP板是十分重要的。例如,为了制造高抗压强度板,在“KEVLAR”中应布置碳素纤维,因为碳素纤维比其它大多数商品纤维具有更大的压缩弹性模量,而“KEVLAR”可以起毛,以作为粘结表面使用,在另一方面,为了将板与相邻的木板层粘结起来,只由碳素纤维组成的板将需要环氧树脂基的粘结剂。
本发明也包括制造这种板的加工方法,在这种加工方法中,当树脂在加热的模具中固化时,几乎全部纤维都处于平行和并排布置的状态,并同时受到张力的作用。
通过参考附图,以及通过下面对本发明的详细描述,本发明的上述及其它目的、特点和优点将很容易得到理解。


图1是现有技术中连续塑型加工方法的透视图。
图2是本发明连续塑型加工方法的透视图,利用这种方法能够制造出长形的加强板,加强板中的全部纤维均彼此平行,并与一纵向轴线并排。
图3a-图3c是本发明纤维板的局部断面透视图,其中,剖视的部分表示了构成纤维板的纤维排列和布置情况。
图4是一具有本发明加强板的木制叠层梁的正视图,其中,加强板位于叠层之间。
图5是一具有本发明加强板的木制叠层梁的正视图,其中,加强板位于叠层梁的外表面。
图6是一木制工字梁的正视图,图中表示了为提高工字梁的承载能力,本发明的加强板所应在的优选位置。
图7是一木制构架的正视图,图中表示了为提高构架的承载能力,本发明的加强板所应在的优选位置。
通过对本发明用途的描述,本发明将很容易得到理解。参考图4和图5,图中表示了由多层层压板12组成的粘结木制叠层梁10。每块层压板12最好是长形的木板。
叠层梁的主要建筑用途是跨越空间,例如跨越支承座14之间的空间,以及支撑由箭头1 6所表示的载荷。当叠层梁按图中的布置方式工作时,最下面的层压板18一般承受着纯拉伸应力。与此相反,最上面的层压板20一般承受着纯挤压应力。科学家发现,通过在最大应力区中布置加强板22或23,即分别在最靠近最下面板18或最靠近最上面板20的区域中布置加强板22或23,一般能够提高叠层梁的承载能力。因为板22用在高拉伸应力区中,而板23用在高挤压应力区中,因此加强板22与加强板23有所不同。在图4中,加强板22位于最下面层压板18和相邻层压板之间的位置,而加强板23位于最上面层压板20和相邻层压板之间的位置。
在图4和图5中,加强板的长度大约是梁长度的五分之三。实验结果以及现有技术表明,覆盖在梁的中部、长度为五分之二~五分之三梁长的加强板一般能够提供全长度加强板所能提供的全部优点,而且能够降低每根梁的造价。如图4所示,加强板安装在层压板之间,并且长度大约是梁长的五分之三,因此,在靠近加强板22端部的地方需要布置衬板24。衬板24可以用木材制造。如图5所示,当加强板布置在梁的最外侧时,不需要衬板。
在本发明的优选实施例中,以及在上述条件下,即对于具有集中载荷或均匀载荷的简支梁来说,最下面的加强板22将由具有高抗拉强度的材料制造,而最上面的加强板23将由具有高抗压强度的材料制造。应当理解,图4和图5所示的加强板布置形式只适合于图中所示的载荷条件。如果叠层梁承受不同类型的载荷,加强板的最佳布置形式也将有所不同。例如,如果叠层梁是悬臂的,则在设计时应考虑将具有高抗拉强度的加强板布置在梁的上部,而将具有高抗压强度的加强板布置在梁的下部。同样,在悬臂载荷的情况下,加强板不应布置在梁长度的中部,而应沿着梁的最大应变区布置。
图6~7表示了不同的木制结构件形式,并表示了能够最大限度地增加结构件承载能力的加强板安装位置。图6表示了一根木制工字梁,加强板沿着梁的顶部和底部布置,并且也布置在端部处的腹板上。图7表示了一个木制构架,在构架的最大拉伸应力区中布置有加强板。在这里,图4~7只是用于表明本发明加强板的一些应用情况,而无法列出本发明加强板所适用的全部木制结构类型的各种应用情况。应当认识到,本发明的加强板也同样适用于整体梁和整体柱,以及其它工程木制结构,例如平行和叠层胶合板。
本发明加强板的一个优选实施例如图3a所示。板22由许多彼此平行,并与板的纵向并排的合成纤维24组成。树脂外壳26包围着纤维,并充满纤维之间的间隙,通过树脂外壳26的作用,纤维24将保持其平行和并排布置状态。如下面所述,板22已经过处理,使得将与木制结构相粘结的表面区域30上具有露出的纤维28,以便进行粘结。
纤维24的这种平行布置和纵向并排布置提供了这样一种板,因为强度取决于纤维(不取决于树脂),因此这种板具有最大的强度,而且本发明中的纤维布置方式使纤维的密度能够达到最大。通常,加强塑料部件中的纤维与树脂的体积比为40/60。然而,当使用连续塑型方法制造时,本发明中的纤维布置方式使纤维与树脂的体积比能高达60/40。此外,本发明中的纤维布置方式也便于树脂对纤维的湿化。在制造加强塑料部件的过程中,树脂对加强纤维进行充分浸润(通常称为湿化)是十分重要的。当纤维的布置形式是复杂的编织形式时,很难达到1%的湿化。通过提供平行布置的纤维布置形式,即使在高的纤维/树脂比的情况下,本发明也能够实现100%的湿化。
在本发明之前,加强塑料板只能通过环氧树脂粘结剂与木制梁和木制结构进行粘结,而环氧树脂粘结剂比通常在制作木制叠层制品时所使用的粘结剂贵得多。在制作叠层木制品中经常使用的商品级粘结剂是间苯二酚,其价格低于环氧树脂粘结剂的价格。通过对加强板22的表面进行处理,使该表面起毛,也就是说,使靠近表面30的纤维断裂,并且使断头28从树脂外壳中露出,这样便提供了一种能够用非环氧树脂粘结剂将加强塑料板与木制结构粘结起来的未知方法。
用于使加强板22的表面起毛的优选方法是在与板的纵向相垂直的方向上,利用粒度为60的磨料对板的表面进行打磨。这种打磨将磨掉一小部分树脂外壳,并使最靠近表面的纤维露出。进一步的打磨将会使单个纤维断裂,使得纤维的一端仍保持在树脂外壳中,而树脂的另一端则从树脂外壳中露出,从而制备出了起毛表面。
对于加强塑料制造领域的一般技术人员来说,用于使加强板22的表面起毛的可选方法是显而易见的,并且这些方法包括在固化树脂外壳之前,对板的表面进行化学处理,以便在从固化模中排出时,使板的表面出现空隙,从而去除部分树脂,并使下面的纤维露出。用于使板的表面起毛的其它可选方法是使用断裂的粗纱。正如下面将要描述的,这里所涉及的纤维都是合成纤维,并且纤维的制造过程是这样的首先生产细丝,细丝组合在一起而形成单纱或纤维,单纱或纤维的进一步组合将形成绞合线(又称纱线),或者非绞合线(又称粗纱)。通常,粗纱或纱线可编织成一种在生产中使用的织物。现有的一种粗纱称为断裂粗纱,这种粗纱承受过拉力的作用,使得粗纱中的一些纤维发生了断裂。通过将这种断裂粗纱作为并排布置和封装在树脂外壳中的纤维,所生产出的板将具有起毛的表面。
图3a中所示的板是一种板的优选实施例,这种板可用于增加木制梁上高拉伸应力区域的强度。纤维24最好是芳族聚酰胺(aramid)纤维或碳素纤维。芳族聚酰胺纤维在市场上称为“KEVLAR”,并且对本发明来说,这种纤维的等级最好是“KEVLAR49”。作为一种选择,纤维可以是具有高模量的聚乙烯纤维,它在市场上称为“SPECTRA”。
图3b表示了加强板的另一优选实施例,这种板具有两种类型的纤维。第一种纤维30彼此平行布置,并且如前所述,纤维30与板22的纵向相并排,而第二种纤维31布置在第一种纤维和将与木制结构相粘结的表面32之间的位置。这一实施例特别适合于需要不起毛的第一种纤维(例如碳素纤维或“SPECTRA”)的场合。碳素纤维本身在结构上适合于用作木制梁的加强板。然而,实验表明,用间苯二酚粘结剂不可能将碳素纤维板与木制梁粘结起来,并且已经证明,对碳素纤维板的表面进行起毛处理是没有作用的。因此,在需要将碳素纤维或“SPECTRA”作为第一种纤维30的场合中,将也封装在树脂外壳26中的芳族聚酰胺纤维作为第二种纤维31覆盖在板的主要表面上是十分有益的。芳族聚酰胺纤维的使用使得可以按照上述方法对板进行起毛处理,以便能够用非环氧树脂粘结剂(例如间苯二酚)将板与木制结构粘结起来。
图3c表示了加强板的另一优选实施例,这种板具有第一纤维34和纤维织物35,第一纤维34和纤维织物35都封装在树脂外壳26中。此实施例最适合用于由非环氧树脂制成的树脂外壳。对非环氧树脂外壳的实验结果表明,在加强板22中出现了层间的剪切失效。因此,虽然在加强板中能够获得最大强度的最佳纤维布置形式是平行和纵向并排布置,但是通过提供与板的纵向相倾斜、并因此能够承受层间应变的纤维,纤维织物能够提高加强板22中的层间剪切强度。
在板的制造过程中所使用的树脂26最好是环氧树脂。然而,在可选的实施例中也可以使用其它树脂,例如聚酯,乙烯基酯(vinylester),酚醛树脂,聚酰亚胺,或聚苯乙烯吡啶(polystyrylpyridine)(PSP)。在本发明的其它可选实施例中还可以使用热塑树脂,例如聚对苯二甲酸乙二醇酯(PET),以及尼龙-66。
本发明的加强板22提供了这样一种板,这种板具有极高的拉伸或压缩弹性模量。然而,因为几乎全部纤维都是平行和纵向并排布置的,因此本发明的加强板的横向强度很低。加强板的横向强度低到具有一般力气的人就能沿着加强板的纵向轴线使加强板弯曲到其断裂极限的地步。本发明的加强板只适用于加强这样的结构,在这种结构中,载荷是单向的,并且载荷具有可确定和可控制的方向。
正如对现有技术所作的讨论一样,连续塑型加工是一种加工方法,在这种加工方法中,合成纤维浸润在树脂中,并在牵引力的作用下经过一个加热的模具,以便使包围合成纤维的树脂固化。现有技术中的各种连续塑型加工方法都使用了一定量的、与牵引方向的纵向相倾斜的纤维,以便使连续塑型制品具有横向强度。此外,应该对现有技术中的连续塑型加工方法进行严格控制,以保证制品中具有充足的树脂,从而防止纤维外露。同样,现有技术中的连续塑型加工方法不能象其它方法那样使连续塑型制品中的纤维露出,因为加强塑料工业中的技术人员都知道,外露的纤维会削弱制品的强度,并且不能用在暴露于周围环境或暴露于人的场合。
下面将参考图1对现有技术中的连续塑型加工方法进行描述。如图1所示的连续塑型加工方法能够用于制造中空的矩形断面构件,因此在连续塑型加工中需要型芯40来确定中空的芯部。为了制造实心构件,应通过取消型芯40来改变现有技术中的连续塑型方法。现有技术中的连续塑型加工分别包括上部和下部织物44和45,织物44和45通常是粗纱织物或纤维织物。也包括许多粗纱46,它们可以沿所形成结构件的纵向排列,并夹在编织物之间。在整个加工过程中,牵引器48对纤维提供牵引力。因此,从下部织物44开始,织物44在牵引力的作用下经过树脂槽50,并且在成型模具52的作用下围绕型芯40成型。同样,粗纱46在树脂槽54中湿化,并在成型模具56的作用下围绕型芯/织物的组合物成型。之后,上部织物45在树脂槽58中湿化,并在成型模具60的作用下围绕型芯40、下部织物44和粗纱46的组合物成型。然后,在牵引力的作用下,整个组合物经过加热的模具42,加热模具42将使树脂固化,使得结构件38从模具中出来后变成为一个刚性件38。
为了制造本发明的加强板22(或23),本发明改进了现有技术中的连续塑型加工方法。从多个绕有合成纤维粗纱72的绕线轴70开始,粗纱72在牵引力的作用下经过孔板74,以便使粗纱排列整齐,并防止粗纱缠绕。孔板74上具有多个用于穿过粗纱72的孔76。孔76通常衬有低摩擦材料,例如陶瓷或塑料,以防粗纱72受到孔边的磨损或阻力。在粗纱72经过孔板74之后,粗纱在第一梳轮78的作用下集中在一起,并彼此平行排列。在第一梳轮之后,粗纱从上方越过张紧心轴80,并从下方经过第二梳轮82,其中,第二梳轮82进一步使粗纱72保持平行。之后,粗纱在树脂槽84中湿化,在进入加热的模具88之前,在成型模具86的作用下汇集在一起,模具88上有一个使板22(或23)成型的开口90。来自模具88的热量使树脂固化,以便使出来的板成为基本为刚性的部件。
现有技术中的连续塑型加工方法过去被认为是加工连续的加强塑料的理想方法。然而,因为能够将纤维彼此平行布置,并能将纤维沿加强板的纵向布置,因此,通过对本发明的加强板进行连续塑型,获得了意想不到的益处。本发明中改进的连续塑型加工方法的另一个意想不到的益处是在树脂固化时,纤维中具有张力,这种张力带来了两个好处。首先,纤维中的张力有助于使纤维在板中保持平行和并排布置状态。其次,可以发现,在纤维受到张力作用的同时,通过对树脂进行固化,所得到的加强板具有更大的刚性,并且当本发明的加强板用于对木制梁进行加强时,在初始载荷的作用下,梁的变形更小。在纤维受到张力作用的同时,通过对树脂进行固化,使得纤维的初始应变在加工过程中得到保持,因此,当把加强板粘结到木制梁上,并且该梁承受载荷作用时,与使用了树脂固化时纤维不受张力作用的纤维加强板的木制梁相比,这种板使梁的变形更小。
实验表明,树脂固化时,纤维中的最佳张力约为8磅。纤维中的张力是通过作用在粗纱上的反向拉力产生的,这种反向拉力可由张紧心轴80配合梳轮78,82来实现,或通过使用摩擦绕线轴70来实现,在后一种方法中,绕线轴的滚动摩擦力是可调的,以便对粗纱提供所需的反向拉力。
在上述说明中所使用的词汇和表达方法只是作为描述词汇来使用的,而不具有限制意义,并且在使用这些词汇和表达方法时,并非不包括所描述零部件的等同物,应该理解,本发明的范围只由权利要求书中的权利要求所确定和限制。
权利要求
1.一种粘结到长形木制结构件上、用于提高此结构件承载能力的板,上述板包括(a)大量的纤维,绝大部分上述纤维在上述板的长度方向上是连续的,上述纤维彼此平行布置,并且当上述板粘结到上述结构件上时,上述纤维与上述结构件的纵向基本是并排的;(b)包围着上述大量纤维的树脂外壳,上述树脂外壳用于使上述纤维保持上述平行布置和上述并排布置状态,并且(c)其中,上述纤维中的一些纤维在上述板的长度方向上具有端头,并且上述端头从上述树脂外壳中露出,以便上述板和上述结构件的粘结。
2.根据权利要求1的板,其特征在于,上述纤维是聚合纤维。
3.根据权利要求2的板,其特征在于,上述聚合纤维是芳族聚酰胺纤维。
4.根据权利要求1的板,其特征在于,上述纤维是聚乙烯纤维。
5.根据权利要求1的板,其特征在于,上述纤维是碳素纤维。
6.根据权利要求1的板,其特征在于,上述树脂外壳是热凝树脂。
7.根据权利要求1的板,其特征在于,上述树脂外壳是热塑树脂。
8.一种粘结到长形木制结构件上、用于提高此结构件承载能力的板,上述板包括(a)大量连续纤维,上述纤维在上述结构件的长度方向上是连续的,上述纤维彼此基本平行,并且当上述板粘结到上述结构件上时,上述纤维与上述结构件的纵向基本是并排的;(b)大量非连续纤维,上述纤维中的每根纤维在上述板的长度方向上至少有一个端头;以及(c)包围了全部上述连续纤维的树脂外壳,并且为了便于上述板和上述结构件的粘结,上述树脂外壳只包围了每根上述非连续纤维的一部分。
9.根据权利要求8的板,其特征在于,上述大量的连续纤维是碳素纤维,而上述大量的非连续纤维是聚合纤维。
10.根据权利要求8的板,其特征在于,上述大量的连续纤维是聚乙烯纤维,而上述大量的非连续纤维是聚合纤维。
11.根据权利要求8的板,其特征在于,上述大量的连续纤维是聚乙烯纤维。
12.根据权利要求8的板,其特征在于,上述大量的非连续纤维包括一种织物,上述织物包括许多相对上述纵向倾斜布置的纤维。
13.根据权利要求8的板,其特征在于,上述树脂外壳是热凝塑料。
14.根据权利要求8的板,其特征在于,上述树脂外壳是热塑塑料。
15.一种粘结到长形木制结构件上、用于提高此结构件承载能力的板,上述板包括(a)树脂外壳;以及(b)大量的纤维,上述纤维彼此基本平行,并与板的长度方向一致,使得当上述板粘结到上述结构件上时,上述纤维与上述结构件的纵向基本是并排的,在上述纤维处于张紧状态下,上述纤维被封装在上述树脂中。
16.根据权利要求15的板,其特征在于,上述纤维中的一些纤维在上述板的长度方向上具有端头,并且上述端头从上述树脂外壳中露出。
17.根据权利要求15的板,其特征在于,上述纤维是碳素纤维。
18.根据权利要求15的板,其特征在于,上述纤维是聚合纤维。
19.根据权利要求15的板,其特征在于,上述聚合纤维是聚乙烯纤维。
20.根据权利要求15的板,其特征在于,上述树脂外壳是热凝树脂。
21.根据权利要求15的板,其特征在于,上述树脂外壳是热塑树脂。
22.根据权利要求15的板,其特征在于,它进一步包括一种织物,上述织物包括许多相对上述纵向倾斜布置的纤维,上述织物位于上述大量纤维与上述结构件表面之间的位置。
23.一种用于制造粘结到长形木制结构件上、用于提高此结构件承载能力的板的加工方法,上述加工方法包括下列步骤(a)对几乎全部的大量纤维进行布置,让它们彼此平行,使得几乎没有不平行的纤维;(b)将上述大量的纤维与一个能够使上述板成型的模具对齐,使得当上述板粘结到上述结构件上时,上述大量的纤维能够与上述结构件的纵向并排;(c)用可固化的树脂浸润上述纤维;(d)张紧上述纤维;以及(e)在上述纤维处于张紧状态的同时,利用上述模具使上述树脂固化。
24.根据权利要求23的加工方法,其特征在于,在上述固化步骤之后,它进一步包括打磨上述板的步骤,以便使上述纤维的某些部分从上述树脂外壳中露出。
25.根据权利要求23的加工方法,其特征在于,它进一步包括利用化学方法去除上述树脂的某些部分的步骤,从而使上述纤维的一些部分从上述树脂外壳中露出。
26.根据权利要求23的加工方法,其特征在于,上述大量的纤维由断裂粗纱构成。
27.根据权利要求23的加工方法,其特征在于,在湿化之前,它进一步包括利用一种织物覆盖上述大量纤维的步骤,并且上述湿化步骤中也包括对上述织物的湿化。
28.根据权利要求27的加工方法,其特征在于,上述大量的纤维是碳素纤维,以及上述织物是聚合织物。
29.一种根据权利要求23中的加工方法制造的板。
全文摘要
一种粘结到长形木制结构件上、用于提高此结构件承载能力的板(22)以及这种板的制造方法。加强板包括大量彼此平行、并与板的纵向并排的合成纤维(24)。板中几乎没有横向纤维。包围纤维的树脂外壳(26)使纤维将保持上述状态。最靠近表面处的纤维没有被树脂外壳所包围。通过对板的表面进行处理,使最靠近表面处的纤维“起毛”,以便使用非环氧树脂粘结剂。本发明的加强板是通过改进的连续塑型加工方法制造的,这种方法不使用型芯或编织物,并且在树脂固化时可以调整纤维的张力,因而能使纤维保持平行和并排状态,并使纤维具有初始应变,从而使得本发明的加强板能够减小木制结构的初始变形。
文档编号E04C3/17GK1119881SQ94191571
公开日1996年4月3日 申请日期1994年3月17日 优先权日1993年3月24日
发明者丹尼尔·A·廷格利 申请人:丹尼尔·A·廷格利
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1