夹层玻璃及其制造方法

文档序号:2429103阅读:330来源:国知局
专利名称:夹层玻璃及其制造方法
技术领域
本发明涉及一种平板玻璃与平板玻璃之间配有中间膜构造的夹层玻璃及其制造方法。
背景技术
目前,防盗玻璃用于住宅的窗玻璃、贵重金属的陈列架、汽车的浮法玻璃等。这种防盗玻璃现知有以下(1)~(4)4种。
(1)加网单层平板玻璃平板玻璃(2)由强化玻璃制成的单层平板玻璃平板玻璃(3)由2块单层平板玻璃平板玻璃重叠形成的复层玻璃(4)夹层玻璃2004年3月“开发·普及高防范性能建筑物品的官民合作会议”提出的报告等中指出,近年来在侵入住宅等建筑物(空宅)中实施犯罪的案件中,其手段常常是破坏玻璃窗、玻璃门等。具体如,用螺丝刀等钻孔开锁(撬门而入、用铁撬等打破玻璃(破门而入)、甚至利用高火焰温度的高热型气体燃烧器的火焰破坏窗玻璃使玻璃遇热破裂等手段烧穿。为防止这些情况的发生,需开发出不易破裂且对热稳定的防盗玻璃。对于防范性能的大致标准、确定为“目前为,破坏所需时间应超过5分钟”。
上述防盗玻璃中,(1)的加网单层平板玻璃抗冲击能力弱,因此铁撬等可轻易将其破坏,将网切断可在短时间内开锁而入。(2)的由强化玻璃形成的单层平板玻璃,对球棒这类无角物等的敲击是比较耐受的,但对于尖端锋利的物品如冰镐等金属物敲击,瞬间就会被破坏成粉末。(3)的2块单层平板玻璃平板玻璃重叠形成的多层玻璃,要破坏其时间相对较长,另外由于2块单层平板玻璃周围相互粘结,破坏后,周边玻璃飞散,要处理这些玻璃片要花费一定的时间。因此可以说其防盗性能比较高。但是不能说其较难破碎,还是有改良的余地的。
与此相对,上述(4)中的夹层玻璃,可以通过加厚2块玻璃之间中间膜的厚度,或者使用3块以上的单层平板玻璃形成多层,使玻璃对抗破坏、抗穿透的能力增强。因此这种玻璃比上述(1)~(3)种防盗玻璃的防范性能更高。具体已有以下的玻璃申请专利。
对比例1,日本专利特开2003-252658号公报中公开了,用玻璃/热交联乙烯-乙酸乙烯共聚物树脂片材(以下记为架桥EVA)/聚碳酸酯(以下记为PC)/交联EVA/PC/交联EVA/玻璃这种构造方式。虽然这种玻璃的防盗性能很高,但是在中间膜中使用的PC价格高,而且PC的软化点仅为135℃,耐热性不好,在火焰燃烧器短时间加热下就容易熔融。
对比例2,日本专利特开2002-321948号公报中公开了,在一对玻璃之间的中间层用交联EVA树脂将厚度在110μm到400μm之间的双轴拉伸聚对苯二甲酸乙二醇酯薄板粘结形成夹层玻璃。这种玻璃的中间膜中使用了强韧的双轴拉伸PET(熔点为245℃),因此其具有高耐火性和优良的抗破坏穿透性能。
但是,PET薄板是通过双轴拉伸制造的,较厚的板制造困难,板子越厚薄膜面内的厚度标准离差越大,因此现市售的透明品在约400μm以下。例如制造1m见方以上的大夹层玻璃,使用400μm以上厚度的PET时,因为PET的厚度不均的程度大,不能得到均一透明感,存在透过玻璃看到的景象失真的缺点。因此在夹层玻璃中使用的双轴拉伸PET薄膜的厚度,实用上不超过250μm。
对比例3,日本专利特开2002-12457号公报中公开了一种玻璃,为增强抗破坏性能提高防范性能,将中间膜中粘结玻璃与PET的EVA或者PVB层的厚度加厚至1.2~2.0mm。
这种夹层玻璃可发挥双轴拉伸PET的优良强韧性和耐热性,具有较好的防盗性能。但是中间膜中的EVA、PVB较PET价格昂贵,将大大提高防盗玻璃价格。为得到价格便宜,且具有高强度和高耐热性能的防盗玻璃,较好是尽量薄化中间膜中的EVA以及PVB,同时相应地使双轴拉伸PET加厚。但实际情况是,无厚度不均,且不存在透过玻璃所见景象失真的问题的,可用于防盗玻璃的双轴拉伸PET薄膜,其厚度如前所述不能超过250μm。
为改善这种情况,如使用厚度较薄的双轴拉伸PET薄膜较好。例如,公知厚度为100μm程度的无厚度不均现象。若能够将例如5片无厚度不均的100μm PET层叠在一起,用于夹层玻璃的中间膜中,则可能得到极强韧,且无景象失真的透明防盗玻璃。但是,由于双轴拉伸PET薄膜相互间无热封性,因此目前没有按此法制得的产品。

发明内容
本发明的目的是提供一种高强度、耐热、廉价、具有优良防盗性能的夹层玻璃,以及适合于制造这种夹层玻璃的夹层玻璃制造方法。
目前,双轴拉伸饱和聚酯类薄膜因为在拉伸时分子存在定向结晶化,因此在熔点以下温度,同种薄膜之间或与金属箔或者与异种薄膜不能直接热熔接。对此,本发明者发现,通过对原本无热熔接性的双轴拉伸饱和聚酯类薄膜表面进行低温等离子体处理实施表面改质,可使其在熔点以下较低的温度下具有热熔接性。本发明者推测这是因为经低温等离子体处理,在薄膜表面加入氧原子,具体为COOH基、OH基加入薄膜表面。由此使原本无热熔接性的双轴拉伸饱和聚酯类薄膜,在熔点以下较低的温度(加热温度100℃至200℃)具有热熔接性。
确认通过如上所述将多片双轴拉伸饱和聚酯类薄膜热熔接后,用于夹层玻璃中间膜中,可得到在防盗性能以及价格上均优于目前产品的夹层玻璃。于是完成了本发明。
本发明的夹层玻璃是,在平板玻璃与平板玻璃之间配有中间膜的夹层玻璃,其特征是,中间膜中有由至少2片以上双轴拉伸饱和聚酯类薄膜经热熔接后形成的层,而且这些双轴拉伸的饱和聚酯类薄膜之间的热熔接面,均经过低温等离子体处理。
本发明的夹层玻璃,在平板玻璃之间的中间膜中可配有厚度较大的双轴拉伸饱和聚酯类薄膜层,因此可发挥双轴拉伸饱和聚酯类薄膜所具有的优良强韧性和耐热性能,可成为对破坏穿透具有良好防范性的夹层玻璃。本发明中,通过将多片无厚度不均而且透明性高,厚度薄(例如厚度在250μm以下)的双轴拉伸饱和聚酯类薄膜热熔接,能够不使用粘结剂,形成一个厚的层。结果可得到极强韧且无景象失真的透明防盗玻璃。
而且由于在主要使用价格较低廉的双轴拉伸饱和聚酯类薄膜的同时,也可减小构成中间膜的其他树脂层的厚度,因此价格也相应降低。当然更不会发生使用粘合剂所产生的不良影响。
本发明中的双轴拉伸饱和聚酯类薄膜,主要是指具有酯键的直链状热塑性聚合物经双轴拉伸后形成的薄膜。代表物例如聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二酯(PEN)、聚对苯二甲酸丁二醇酯(PBT)等。在薄膜中,可含有共聚成分、用于例如改良性质的添加剂(有机或无机填料)、可塑剂等,或者当然也可以是不含上述物质的纯品。
本发明中用到的平板玻璃没有特殊限定,较好使用市售的浮法玻璃等。平板玻璃既可以是着色的,也可以是透明的,根据使用目的适当选择。另外,为了节省能源,对平板玻璃实施金属层加工也是可以的。
上述低温等离子体处理是指,对双轴拉伸饱和聚酯类薄膜表面(热熔着面)实施,用电极间附加直流或交流高压电,保持持续放电所形成的处理。处理压力无特殊限制,可根据处理装置和放电形式等选择适宜的。处理气氛一般充有Ar、He、氮气、氧气、空气、二氧化碳、水蒸气等,从改善粘结性效果来看以含有水蒸气的气氛为宜。用Ar、He、氮气、氧气、空气、二氧化碳等将水蒸气稀释也是可以的。
本发明中,构成中间膜的双轴拉伸饱和聚酯类薄膜的热熔接面中,氧原子(O)与碳原子(C)的组成比(O/C)比理论值大2.5%~20%,由此可得到良好的热熔接性。这里的组成比是指在薄膜表面用XPS(X射线电子光分光法)测得的碳原子数(C)与氧原子数(O)的比值(O/C)。理论值是指根据构成薄膜的树脂的组成所求出的理论值。例如PET,是(C10O4H8)n,其组成比的理论值为4/10=0.4000,如是PEN,则理论值为0.2857。通常这种薄膜表面上附着有极微量的烃类物质,因此实测值要比理论值小。
根据本发明者的研究,上述组成比(O/C)如果比理论值大2.5%~20%,即为理论值的102.5%~120%范围内,将得到良好的热熔接性。更好是在105%以上,115%以下。若组成比未满理论值的102.5%,则不能得到良好的热熔接性,另外,如超过理论值的120%,也不能得到良好的热熔接性。
本发明中,中间膜的双轴拉伸饱和聚酯类薄膜的层积厚度是,2层以上总厚度以在400μm以上为宜,这样可以得到具有优良强度的产品。
中间膜中,在双轴拉伸饱和聚酯类薄膜经热熔接形成的层上还可通过热熔接再设置异种树脂薄膜层。这样,中间膜可以由双轴拉伸饱和聚酯类薄膜层和其它具有如增强与平板玻璃的粘结性,阻挡紫外线、提高绝热性等各种功能的其他树脂薄膜层组合而成,形成具有复合功能的产品。
上述异种树脂层,具体是指采用由聚乙烯醇缩丁醛类树脂(PVB),或者乙烯-乙酸乙烯酯类树脂(EVA)形成的树脂薄膜层,将这些配置在与平板玻璃的粘结面上。PVB、EVA与玻璃的粘结性很高,可提高中间膜与平板玻璃的粘结性,因此可在玻璃破坏时,提高其防止玻璃片飞散效果。
由PVB或者EVA形成的树脂薄膜层的厚度,从经济方面考虑,以较薄者为宜,较好是在500μm以下。更好是300μm以下。另外,异种树脂层与双轴拉伸饱和聚酯类薄膜经热熔接形成的层之间,也是通过热熔接粘结在一起的,这种情况下最好是将树脂薄膜与双轴拉伸饱和聚酯类薄膜两者的粘结面都经低温等离子体处理。至少应将双轴拉伸饱和聚酯类薄膜侧的粘结面经低温等离子体处理,这样可能得到良好的热熔接性。
本发明的夹层玻璃的制造方法,是用于制造上述夹层玻璃的方法,其特征为,在平板玻璃之间,层叠配置构成中间膜的多片薄膜,经热压或者热滚压形成整体热熔接。这样在构成中间膜的多片薄膜之间以及平板玻璃与中间膜之间可以不通过粘结剂,直接一齐进行热熔接,经过简单的工序就可得到夹层玻璃。这种情况下,热压或者热滚压的层积条件,依据所要形成的夹层玻璃的层构成,中间膜的粘结温度、平板玻璃的厚度等,选择合适条件,一般温度在100℃至150℃的范围内。


图1表示本发明的实施方式,为实施例1~3夹层玻璃构成的纵剖面简图。
图2是实施例4夹层玻璃构成的纵剖面简图。
图3是夹层玻璃防范性能检测的试验结果图。
具体实施例方式
对本发明的实施方式,参照附图作以下说明。
如图3所示,实施例1~4是本发明的夹层玻璃,其具有权利要求范围内记载的构成,并且是用在权利要求范围记载的制造方法制得的。即,实施例1~4的夹层玻璃是在平板玻璃与平板玻璃之间配置中间膜构成的。上述中间膜由,至少2片双轴拉伸饱和聚酯类薄膜,这些实施例中为双轴拉伸PET薄膜经热熔接后形成的层(称为PET层),以及异种树脂薄膜层,这些实施例中为乙烯-乙酸乙烯酯类树脂(EVA)形成的树脂薄膜层构成。
图1大致显示了实施例1~3的夹层玻璃11的剖面构成。图2大致显示了实施例4的夹层玻璃13的剖面构成。为了方便起见图1和图2各层的厚度比例与实际不相同,另外为了便于参看,异种树脂薄膜层(EVA薄膜)用影线表示。
图1中所示夹层玻璃11是由2块平板玻璃1、2以及在其中间的中间膜12构成。中间膜12由PET层6以及其两侧的树脂薄膜层3、4构成。图2所示的夹层玻璃13是由2块平板玻璃1、2以及其中间的中间膜14构成,中间膜14是由3层树脂薄膜层3、4、5和2层PET层6、7交替层积(共5层)形成的。
上述平板玻璃1、2由浮法玻璃构成,厚度为2.7mm,纵横尺寸为900mm×1100mm。另外,如图3中所示,上述树脂薄膜层3、4、5由厚度为150μm(实施例1、3、4)以及250μm(实施例2)的EVA薄膜(例如東ソ一株式会社制“メルセン”(注册商标)G薄膜)构成。另外,这些树脂薄膜层3、4、5的两面均用内部电极方式的低温等离子体处理机进行低温等离子体处理。若未经低温等离子体处理也可同样进行本发明的实施。
上述PET层6、7均由2片以上的双轴拉伸PET薄膜热熔接而成。使用的PET薄膜厚度无特定限制,将市售品按其所需厚度重叠使用即可。例如若为400μm,则可采用4片100μm的,或8片50μm的,或2片100μm的,和4片50μm的,可以任意组合。另外,以市售PET薄膜为例,可使用的有東レ株式会社制“ルミラ一(注册商标)”的T60、HT10、HT50、S10等型号。
实施例1中,使用了東レ株式会社制“ルミラ一(注册商标)”的HT10型号,厚度为100μm的产品。实施例2~4中使用了T60型号,厚度为100μm的产品。如表1所示,实施例1中PET层6由5片,实施例2中PET层6由4片,实施例3中PET层6由7片层积热熔接。因此实施例1~3中的PET层6的厚度分别为500μm、400μm、700μm。另外实施例4中PET层6、7分别由2片PET薄膜层积热熔接。因此,实施例4的PET层6、7的厚度均为200μm(两者合计为400μm)。
实施例中各PET薄膜均经内部电极方式的低温等离子体处理机对其热熔接面(两面)进行低温等离子体处理。这样在熔点以下的低温(加热温度为100℃至200℃)也可热熔接。另外经该低温等离子体处理后,薄膜表面氧原子数和碳原子数的组成比X比理论值大2.5%~20%。具体为比理论值大7%。
上述实施例1~实施例4的夹层玻璃11,13是按照以下方法制造的。即,对构成树脂薄膜层3、4、5的EVA薄膜和构成PET层6、7的多片PET薄膜的表面进行上述低温等离子体处理工序。然后,实施在平板玻璃1、2之间,将构成树脂薄膜层3、4、5的EVA薄膜以及构成PET层6、7的多片PET薄膜按照上述组合进行层积配制的工序。在此基础上,实施使用热压机,将叠层物夹在上下热板间,在PET熔点以下较低温度下(例如100~150℃)进行加热加压,使整体一齐热熔接的工序。
实施例中,EVA薄膜以及各PET薄膜的粘结面,由于预先实施低温等离子体工序,具有可在熔点以下较低温度(加热温度为100℃至200℃)下热熔接的性质。因此,PET薄膜之间,PET薄膜同EVA薄膜之间可进行良好的热熔接。EVA薄膜(树脂层3、4)和平板玻璃1、2之间也可进行良好的粘结。
考察上述实施例1~4夹层玻璃11、13防范性能的试验,是按照CEN标准《TC129N222E》进行的。为了达到比较的效果,对图3所示的比较例1、2的夹层玻璃也进行了同样的试验。比较例1、2夹层玻璃的中间膜构成与上述实施例1~4中的不同,由厚度为250μm的1片PET薄膜形成PET层。此外,为使夹层玻璃整体厚度与实施例1~4相当,略加厚了由EVA薄膜构成的树脂薄膜层。
在试验中,受试样品的尺寸为1100mm×900mm,选择近中央的三个地方使重为4.11kg(直径为100mm)的钢球从9m高处自由落下三次,根据有无穿透现象判断其防范性能。3次均未穿透者为上述标准中的P4A合格,如被穿透判为不合格。此外,CEN标准《TC129N222E》中,按照预想的破坏方法将防范规格分为9级,P4A是用于防范使用“中型工具(小型铁撬等)”造成手可伸入程度的“小开口”开启,打开窗户月牙锁侵入手段的防范玻璃。试验结果用图3表示。
如图3所示结果可知,实施例1~实施例4的夹层玻璃11、13为P4A合格。与此对应,比较例1,2夹层玻璃与实施例1~4的总厚度相当,却P4A不合格。这是因为,实施例1~4的PET层6、7是由多片PET薄膜层积热熔接构成,因此其具有高强度。实施例4与比较例1的比较表明,对于PET层,由PET薄膜层积所得的层的强度更高。也就是说,与由1片厚度为250μm的PET薄膜构成的相比,由2片厚度为100μm的PET薄膜热熔接所得的层具有更高的强度。
另外有些内容未在图3中显示,即实施例1~4的夹层玻璃,通过将耐热性高的PET层6、7厚化设计,可以比采用聚碳酸酯纤维具有更高的耐热性。例如可采用燃烧器等将中间膜熔融的耗时加长。因此由实施例1~4的夹层玻璃,可得到对破坏穿透有优良防范性能的产品。
由于构成PET层6、7的各PET薄膜使用厚度较薄的(100μm)即可,因此与使用1片厚的(400μm以上)PET薄膜相比,可采用无厚度不均性,而且透明度较高的PET薄膜,从而得到无景象失真的透明夹层玻璃。
由于中间膜,以使用PET薄膜为主的同时,可减小由EVA薄膜形成的树脂薄膜层厚度,这样可相应减少材料成本。而且,在平板玻璃之间,构成中间膜的多片薄膜层积配置,经热压整体一齐热熔接,因此经简单的工序便可得到夹层玻璃,制造成本降低。
另外,本发明并不限于在上述以及图中所示的各实施例中,只要在未脱离本发明的技术原理范围内,可有各种变形。
即,夹层玻璃的整体构造不限于2块平板玻璃之间夹有中间膜的构造,也可使用3块或者3块以上的平板玻璃。3块的情况时,为平板玻璃/中间膜/平板玻璃/中间膜/平板玻璃的叠层构造。此时,中间膜按照上述实施方式中同样的构成实施,可得到所希望的目的。平板玻璃的厚度以及整体的厚度可有各种变化。
另外,虽然上述实施方式中,中间膜为3层或5层的构造,但2层、4层、6层以上的构造也是可以的。这种情况下,也可通过配制由2片以上双轴拉伸饱和聚酯类薄膜热熔接形成的层,得到防范性能高的夹层玻璃。中间膜也可只由由2片以上双轴拉伸饱和聚酯类薄膜热熔接形成的层(单层)构成。这种情况下也确认,表面经过低温等离子体处理,可与平板玻璃直接热熔接。双轴拉伸饱和聚酯类薄膜不限于PET薄膜,也可使用如双轴拉伸PEN薄膜、双轴拉伸PBT薄膜等。以使用1片薄膜的厚度在250μm以下的薄膜为宜,层整体厚度以在400μm以上为宜。
在中间膜配置的异种树脂薄膜层,可采用具有各种功能的薄膜。例如,上述实施方式的夹层玻璃13中(见图2),中间膜14中间位置的树脂薄膜层5中,可使用着色和有花纹的薄膜,使其提高装饰效果。或者,使用高效防紫外线薄膜、反射红外线薄膜提高其绝热性能(节能性能)。在与平板玻璃的粘结面侧,较好是使用适合作为粘结层且在玻璃破碎时防止飞散效果高的EVA以及PVB薄膜。EVA或者PVB薄膜的厚度,较好为在500μm以下,更好为在300μm以下。
上述实施方式中,夹层玻璃的制造是用热压机将整体一齐热熔接,但也可使用热滚压进行热熔接。此时的加热温度,例如可在100℃~200℃的范围内选择合适的温度。另外,例如可先将2片以上PET薄膜热熔接制成较厚的PET薄膜,然后再将其与平板玻璃、EVA薄膜等一起热熔接。
权利要求
1.夹层玻璃,它是在平板玻璃与平板玻璃之间配有中间膜的结构的夹层玻璃,其特征在于,上述中间膜具有由至少2片以上的双轴拉伸饱和聚酯类薄膜热熔接形成的层,且上述双轴拉伸饱和聚酯类薄膜间的热熔接面经低温等离子体处理。
2.如权利要求1所述的夹层玻璃,其特征还在于,上述双轴拉伸饱和聚酯类薄膜的热熔接面中的氧原子(O)与碳原子(C)的组成比(O/C)比理论值大2.5%~20%。
3.如权利要求1所述的夹层玻璃,其特征还在于,上述中间膜中的由双轴拉伸饱和聚酯类薄膜热熔接形成的层的厚度在400μm以上。
4.如权利要求2所述的夹层玻璃,其特征还在于,上述中间膜中的由双轴拉伸饱和聚酯类薄膜热熔接形成的层的厚度在400μm以上。
5.如权利要求1所述的夹层玻璃,其特征还在于,上述中间膜中还具有与前述双轴拉伸饱和聚酯类薄膜热熔接形成的层热熔接的不同种类的树脂薄膜层。
6.如权利要求2所述的夹层玻璃,其特征还在于,上述中间膜中还具有与前述双轴拉伸饱和聚酯类薄膜热熔接形成的层热熔接的不同种类的树脂薄膜层。
7.如权利要求3所述的夹层玻璃,其特征还在于,上述中间膜中还具有与前述双轴拉伸饱和聚酯类薄膜热熔接形成的层热熔接的不同种类的树脂薄膜层。
8.如权利要求4所述的夹层玻璃,其特征在还于,上述中间膜中还具有与前述双轴拉伸饱和聚酯类薄膜热熔接形成的层热熔接的不同种类的树脂薄膜层。
9.如权利要求5所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层由聚乙烯醇缩丁醛类树脂或乙烯-乙酸乙烯酯类树脂形成,被配置在与上述平板玻璃的粘合面上。
10.如权利要求6所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层由聚乙烯醇缩丁醛类树脂或乙烯-乙酸乙烯酯类树脂形成,被配置在与上述平板玻璃的粘合面上。
11.如权利要求7所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层由聚乙烯醇缩丁醛类树脂或乙烯-乙酸乙烯酯类树脂形成,被配置在与上述平板玻璃的粘合面上。
12.如权利要求8所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层由聚乙烯醇缩丁醛类树脂或乙烯-乙酸乙烯酯类树脂形成,被配置在与上述平板玻璃的粘合面上。
13.如权利要求9所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层的厚度在500μm以下。
14.如权利要求10所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层的厚度在500μm以下。
15.如权利要求11所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层的厚度在500μm以下。
16.如权利要求12所述的夹层玻璃,其特征还在于,上述不同种类的树脂薄膜层的厚度在500μm以下。
17.夹层玻璃的制造方法,它是在平板玻璃与平板玻璃之间配有具有由至少2片以上的双轴拉伸饱和聚酯类薄膜经热熔接形成的层的中间膜而构成的夹层玻璃的制造方法,其特征在于,包括以下工序,通过对构成上述中间膜的多片双轴拉伸饱和聚酯类薄膜的表面进行低温等离子体处理,使其具有在加热温度100℃至200℃时可热熔接的性质的工序;在上述平板玻璃之间,将构成上述中间膜的多片薄膜层积配置的工序;将该叠层物整体用热压或者热滚压一齐进行热熔接的工序。
全文摘要
本发明的夹层玻璃11,是在平板玻璃1与平板玻璃2之间配有中间膜12的构造,中间膜12,具有拥有由至少2片以上双轴拉伸饱和聚酯类薄膜热熔接形成的PET层6,并对双轴拉伸饱和聚酯类薄膜之间的热熔接面,进行低温等离子体处理。
文档编号B32B17/06GK1762874SQ2005100998
公开日2006年4月26日 申请日期2005年9月2日 优先权日2004年9月2日
发明者与仓三好 申请人:河村产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1