液晶显示元件的制作方法

文档序号:2764658阅读:219来源:国知局
专利名称:液晶显示元件的制作方法
技术领域
本发明涉及液晶显示元件,尤其涉及能实现视场角宽且响应速度快的OCB(Optically Compensated Bend光补偿弯曲)模式的液晶显示装置。
背景技术
液晶显示器件具有薄、轻、耗电小等各种特征,用作OA设备、信息终端、时钟和电视等各种用途。尤其是具有薄膜晶体管(下文称为TFT)的液晶显示器件,其响应性高,因而用作便携电视和计算机等那样显示许多信息的监视器。
近年来,随着信息量的增加,对图像高清晰化和显示高速化的要求不断提高。在这些要求中,图像高清晰化可通过例如使上述TFT形成的阵列结构微细化加以实现。
另一方面,关于显示高速化,不断研究例如使用向列型液晶的OCB(OpticallyCompensated Bi-refraction光补偿双折射)模式、VAN(Vertically AlignedNematic垂直排列向列型)模式、HAN(Hybrid Aligned Nematic混合排列向列型)模式、π排列模式、使用片层液晶的界面稳定型强介电性液晶(SSFLCSurface-Stabilized Ferroelectric Liquid Crystal表面稳定铁电液晶)模式和抗强介电性液晶(Anti-Ferroelectric Liquid Crystal抗铁电液晶)模式,以代替已有的显示模式。
在这些显示模式中,作为可改善视场角和响应速度的液晶显示器件,OCB模式的液晶显示器件引人注目。这种OCB模式液晶显示器件是在一对衬底之间夹持具有可弯曲排列的液晶分子的液晶层的。该OCB模式液晶显示器件与TN模式相比,使响应速度提高一个数量级,而且由于能利用液晶分子的排列状态自行补偿通过液晶层的光的双折射的影响,具有视场角宽的优点。
使用这种OCB模式的液晶显示器件显示图像时,考虑控制双折射,并利用与偏振片的组合,在例如施加高压时使光阻断以显示黑,施加低电压时使光透射以显示白。
然而,在显示黑时,大多数的液晶分子因施加高压而沿电场方向排列(即往衬底的法线方向排列),但衬底附近的液晶分子因与取向膜相互作用而不往法线方向排列,使光在规定方向受到相位差的影响。所以,从正面方向(即衬底的法线方向)观察屏幕时,不能使黑显示时的透射率充分减小,导致对比度降低。
因此,已公知通过例如组合-轴性相位差片,补偿黑显示时的液晶层的相位差,使透射率充分减小。又,作为即使从斜方向观察屏幕时也实现透射率充分低的黑显示或补偿对比度特性的方法,例如专利文献1(例如参考日本国专利公开平10-197862号公报)所揭示,已公知将具有混合排列的光学上为负的去皮质(ディスコティック)液晶分子的去皮质液晶层作为相位差片加以组合。
在OCB模式的液晶显示器件中,已有的组成在各自的吸收轴(或透射轴)相互正交配置的2块偏振片之间配置弯曲排列的液晶分子组成的弯曲液晶层,并构成使用2个去皮质液晶层和2个二轴性相位差片,以补偿黑显示时的视场角。
在这种已有的组成中,光学上应补偿的对象有3个。即,弯曲液晶层的法线方向的正相位差、弯曲液晶层的面内方位的残留相位差、以及偏振片的正2色性。
也就是说,总体上看,弯曲液晶层为2轴折射率各向异性体(nz>nx>ny)。因此,弯曲液晶层在其法线方向具有正相位差,同时还在其面内方位具有相位差。法线方向的相位差主要用去皮质液晶层和二轴性相位差片进行补偿。面内方位的残留相位差主要用去皮质液晶层进行补偿。
然而,这些液晶引起的相位差的波长色散性大。反之,补偿法线方向相位差用的二轴性相位差片多数由伸展膜形成,越是包含液晶分子的相位差片,越不能加大波长色散性。因此,即使对特定波长能补偿法线方向的相位差,对其它大部分的波长而言,弯曲液晶层与二轴性相位差片的波长色散性也不一致,不能充分补偿。所以,存在相对于偏离法线方向的倾斜的对比度特性和色再现性(即对比度和色的视场角特性)不充分的问题。
再者,补偿面内方位相位差用的去皮质液晶层与弯曲液晶层相同,波长色散性也大,在可见区的波长范围内能实质上补偿弯曲液晶层的面内方位的相位差。因此,屏幕法线方向的对比度特性和色再现性良好。
偏振片的正2色性,可用在与2色性方位正交的方位具有滞后轴的二轴性相位差片进行补偿。然而,偏振片的2色性,具有与弯曲液晶层的波长色散性极性相反的波长色散性(例如弯曲液晶层的波长色散性为波长越短相位差越大的特性,而偏振片的波长色散性为波长越长相位差越大的特性)。相对于该色散性,二轴性相位差片的波长色散性小。因此,对正2色性而言,即使能对特定波长进行补偿,对其它大部分波长也偏振片与二轴性相位差片的波长色散性不一致,不能补偿。所以,存在对比度和色的视场角特性不充分的问题。
此外,除这种问题外,还存在去皮质液晶层和二轴性相位差片制造成本高,导致液晶显示器件总成本升高的课题。

发明内容
本发明是鉴于上述问题而完成的,其目的在于,提供一种视场角特性和显示质量良好而且能降低成本的液晶显示元件。
本发明实施方式的液晶显示元件,在第1偏振层与第2偏振层之间配置将向列型液晶层夹在一对衬底之间的点矩阵型液晶板,并且为弯曲模式,在不对像素施加电压的状态下,所述液晶层的界面附近的液晶分子对衬底法线方向具有倾斜,而且各衬底附近的液晶分子形成在衬底面内倾斜的面内方位为实质上相同的方位的喷射状和弯曲状的分子排列,对所述像素施加电压,在弯曲状分子排列中控制所述液晶分子的倾斜角,从而使液晶层的相位差受到调制,以控制显示的亮暗,其中,在所述第1偏振层与所述液晶层之间,将在面内方位产生相位差的第1相位差层配置成其滞后轴与所述第1偏振层的吸收轴正交,在所述第2偏振层与所述第1相位差层之间,将在面内方位产生相位差的第2相位差层配置成其滞后轴形成与所述液晶分子的倾斜面内方位正交的方位,而且在所述第2偏振层与所述第1相位差层之间,配置在所述液晶显示元件的法线方向具有光轴同时还在整个层具有负的一轴性的功能的第3相位差层。


图1是概略示出作为一本发明实施方式的OCB型液晶显示器件的组成的剖视图。
图2是概略示出用于OCB型液晶显示器件的光学补偿元件的组成的图。
图3是示出构成图2所示光学补偿元件的各光学构件的光轴方向与液晶取向方向的关系的图。
图4是说明能显示图像的状态下的弯曲液晶层的相位差用的图。
图5是说明第1相位差层和第2相位差层中产生的相位差用的图。
图6是说明第3相位差层中产生的相位差用的图。
图7是说明穿透正交尼科耳偏振片的光的透射率的波长色散性用的图。
图8是说明偏振片的正2色性补偿原理用的图。
图9是说明偏振片的正2色性补偿原理用的图。
图10是说明穿透光学补偿的偏振层和相位差层的光的透射率的波长色散性用的图。
图11是概略示出实施例的OCB型液晶显示器件的组成的图。
图12是说明实施例的OCB型液晶显示器件在黑显示时的视场角依赖关系用的图。
图13是说明实施例的OCB型液晶显示器件的对比度的视场角依赖关系用的图。
图14是对实施例的OCB型液晶显示器件的8灰度级示出往屏幕的左右方向倾斜的角度的亮度测量结果的图。
图15是对实施例的OCB型液晶显示器件的8灰度级示出往屏幕的上下方向倾斜的角度的亮度测量结果的图。
具体实施例方式
下面,参照

一本发明实施方式的液晶显示元件。此实施方式中,具体以OCB(Optical Compensated Bend光补偿弯曲)模式的液晶显示器件为例,对双折射模式的液晶显示元件进行说明。
如图1所示,OCB型液晶显示器件具有构成在一对衬底(即阵列衬底10和对置衬底20)之间保持液晶层(向列型液晶层)30的点矩阵型液晶板1。此液晶板1为例如透射型,构成可将来自配置在阵列衬底10侧的未示出的背后照明单元的背后照明光透射到对置衬底20侧。
用玻璃等绝缘衬底11形成阵列衬底10。此阵列衬底10在绝缘衬底11的一主面具有开关元件12、像素电极13、取向膜14等。由TFT(Thin Film Transistor薄膜晶体管)、MIM(Metal Insulated Metal金属绝缘金属)、TFT(Thin Film Diode薄膜二极管)等构成开关元件12。每一矩阵状像素配置像素电极13,并将其电连接到开关元件12。由例如ITO(Indium Tin Oxide氧化铟铅)、IZO(Indium ZincOxide氧化铟锌)等具有光透射性的导电性构件形成此像素电极13。将取向膜14配置成覆盖绝缘衬底11的整个主面。
用玻璃等绝缘衬底21形成对置衬底20。此对置衬底20在绝缘衬底21的一主面具有对置电极22、取向膜23等。由例如ITO、IZO等基于光透射型的导电型构件形成对置电极22。将取向膜23配置成覆盖绝缘衬底21的整个主面。
此外,在彩色显示型液晶显示器件中,液晶板1具有多种色(例如红(R)、绿(G)、蓝(B))的色像素。即,红色像素具有透射红色波长的光的滤色片,绿色像素具有透射绿色波长的光的滤色片,蓝色像素具有透射蓝色波长的光的滤色片。将这些滤色片配置在阵列衬底10或对置衬底20的主面。
以未示出的间隔件为中介,按相互维持规定间隙的状态,粘合上述组成的阵列衬底10和对置衬底20。将液晶层30封入这些阵列衬底10与对置衬底20之间的间隙。液晶层30包含的液晶分子31可选择具有正介电常数各向异性同时还在光学上具有正的一轴性的材料。
将这种液晶板1配置在一对偏振层(即第1偏振层51和第2偏振层52)之间。把第1偏振层51配置在例如液晶板1的光入射侧,即对置衬底20的外表面侧。而且,在第1偏振层51与液晶板1之间和第2偏振层52与液晶板2之间,配置光学上补偿规定的显示状态的液晶层30的相位差以及第1偏振层51和第2偏振层52的正2色性的光学补偿元件40。
例如,如图2所示,配置在第1偏振层51与液晶板1之间的光学补偿元件40A具有第1相位差层(A片)41。配置在第2偏振层52与液晶板1之间的光学补偿元件40B具有第2相位差层(A片)42和第3相位差层(C片)。只要是第1偏振层51与液晶层30之间,将第1相位差层41配置在何处均可。只要是第2偏振层52与第1相位差层41之间,将第2相位差层42位于何处均可。只要是第2偏振层52与第1相位差层41之间,将第3相位差层43位于何处均可。
现在如图3所示,为了方便,将与阵列衬底10和对置衬底20的主面平行的平面称为衬底面,将该衬底面内的方位称为面内方位。这里,设屏幕的左右方位与用图中的箭头号A所示的0度方位对应,屏幕上下方位与图中箭头号B所示的90度方位对应。
对取向膜14和23进行平行取向处理,从而液晶分子31的光轴的正投影(液晶取向方向)与图中的箭头号B平行。即,液晶分子31在未对像素施加电压的状态下,由于取向膜14和23的影响,在液晶层30的界面附近排列成对衬底面的法线方向(液晶层的厚度方向)具有倾斜,而且在阵列衬底10和对置衬底20的附近倾斜的面内方位在衬底面内为实质上相同的方位,往实质上90度方位倾斜。
这时,液晶分子31在阵列衬底10与对置衬底20之间形成喷射状或弯曲状分子排列。在能显示图像的状态(例如施加规定的偏压的状态)下,箭头号B规定的液晶层30的截面内,在阵列衬底10与对置衬底20之间,将液晶分子31排列成弯曲状。
将第1偏振层51配置成其光轴(即透射轴或吸收轴)朝向图中箭头号C所示的135度方位。将第2偏振层52配置成其光轴(即透射轴或吸收轴)朝向图中箭头号D所示的45度方位。即,第1偏振层51和第2偏振层52各自的光轴对液晶取向方向形成45度,而且相互垂直。
在OCB型液晶显示器件中,通过对像素施加电压,并在弯曲状分子排列中控制液晶分子31的倾斜角,使液晶层30的相位差受到调制,从而控制显示的亮暗。
可是,如上文所述,即使对弯曲液晶层30施加高电压,也不使全部液晶分子31沿衬底31的法线方向排列,液晶层30具有相位差。即,总体上看,如图41所示,弯曲液晶层30为2轴折射率各向异性体(nz>nx>ny)。因此,弯曲液晶层30在其法线方向(z方向)具有正相位差,同时还在其面内方位(x-y平面)具有相位差。这里,x轴与0度方位对应,x轴方向的主折射率为nx,y轴与90度方位对应,y轴方向的主折射率为ny,z轴与衬底面的法线方位对应,z轴方向的主折射率为nz。
为了光学上补偿这种液晶层30的面内方位的相位差,设置第2相位差层42。即,此第2相位差层42具有在施加某特定电压的状态(例如施加高电压以显示黑的状态;暗显示状态)下,抵消液晶层30的面内方位的相位差(从正面方向观察屏幕时产生影响的液晶层30的相位差)的相位差功能。
如图5所示,此第2相位差层42具有1轴折射率各向异性(nx>ny=nz)。这里,将第2相位差层42配置成x轴与0度方位对应,y轴与90度方位对应,z轴与衬底面的法线方向对应。即,这种第2相位差层42的光轴(即滞后轴)的方位(0度方位)A与液晶层30的面内方位上产生相位差的方位(90度方位)(即液晶取向方向)B正交。也就是说,第2相位差层42在方位A具有相位差。
因而,组合液晶层3和第2相位差层42,使液晶层30具有的面内方位上的相位差消除,形成滞后量有效为零的状态,在从屏幕正面方向(衬底面法线方向)观察时能取得充分的对比度。
可由液晶聚合物形成具有这种相位差的第2相位差层42。此液晶聚合物由例如向列型液晶聚合物组成。通过使液晶聚合物分子排列成液晶聚合物的分子长轴与第2相位差层42的滞后轴方位(即0度方位)实质上平行,形成该第2相位差层42。
用这种液晶分子形成的第2相位差层42的波长色散性至少在可见区的波长范围内与同样由液晶分子组成的液晶层30的波长色散性实质上相符。即,把将波长440纳米的值除以波长620纳米的值的比率取为波长色散值时,第2相位差层42的相位差的波长色散值实质上等于形成弯曲状分子排列的液晶层30的折射率各向异性Δnlc的波长色散值。因此,从正面观察屏幕时,能实现良好的对比度特性和彩色再现性。
可通过控制形成相位差层的液晶聚合物的折射率各向异性和相位差层的厚度,调整第2相位差层42的相位差值R2。这里,将第2相位差层42的相位差值R2设定成实质上等于对形成弯曲状分子排列的液晶层30施加规定电压时(例如施加黑显示时的电压时)的面内方位的相位差值R1c。严格而言,相位差值R1与相位差值R1c的绝对值实质上相等,各自的极性(正或负)却不同。因此,具体抵消施加规定电压时的液晶层30的面内方位的相位差,能实现良好的对比度特性。
此外,在波长550纳米上,将第2相位差层42的相位差值R2设定为小于等于100纳米。相位差值R2越小,取得黑显示的液晶层30的液晶分子的平均倾斜角越大。即,成为接近垂直取向的分子排列。因此,相位差值R2越小,为取得黑显示而对像素施加的电压越大。电压值过大时,对驱动加负载,因而成问题,但过小时电光特性太陡峭,未留余量。考虑液晶层厚控制性和开关元件12的特性偏差,最好相位差值R2小于等于100纳米。将相位差值R2取得过小,则如上文所述,驱动电压高,但由于该值依赖于液晶材料的各向异性,不能笼统决定相位差值R2的下限值。
另一方面,为了光学上补偿上述液晶层30的法线方向(厚度方向)的正相位差,设置第3相位差层43。即,此第3相位差层43在其法线方向具有光轴,同时还在施加某规定电压的状态(例如施加高电压以显示黑的状态)下具有整层与液晶分子31相反的光学特性、即负一轴性的相位差功能。即,第3相位差层43产生抵消液晶层30的法线方向的相位差(从斜方向观察屏幕时产生影响的液晶层30的相位差)的相位差。较佳的是第3相位差层43产生配置在第1偏振层51与第2偏振层52之间的除第3相位差层43以外的组成构件的法线方向的相位差之和R(总)在波长550纳米处为实质上零的相位差。
如图6所示,此第3相位差层43具有其厚度方向(法线方向)的主折射率nz相对较小、面内方位的主折射率nx和ny相对较大的1轴折射率各向异性(nx=ny>nz)。这里,将第3相位差层43配置成x轴与0度方位对应,y轴与90度方位对应,z轴与衬底面的法线方向对应。即,这种第3相位差层43的光轴(即滞后轴)的方位与液晶层30的法线方向平行。也就是说,第3相位差层43在法线方向具有相位差。
因而,组合液晶层3和第3相位差层43,使液晶层30具有的法线方向上的相位差消除,形成滞后量有效为零的状态,在从屏幕斜方向观察时能取得充分的对比度。即,能改善对比度的视场角特性。
可用液晶聚合物形成具有这种相位差的第3相位差层43。此液晶聚合物包含例如凯拉尔向列型(カィラルネマティック)液晶聚合物或胆甾型液晶聚合物。将该第3相位差层43形成得液晶聚合物的螺旋轴对第3相位差层43的主面的法线方向(厚度方向)实质上平行,并且使液晶聚合物的螺旋间距为P,波长400纳米的液晶聚合物的平均折射率为n=((ne2+no2)/2)1/2(其中ne为对异常光的主折射率,no为常规光的主折射率)时,n×P的值小于400纳米。也可由去皮质液晶聚合物形成第3相位差层43。这时,通过使液晶聚合物分子排列成液晶聚合物的分子光轴对第3相位差层43的主面法线方向实质上平行,形成第3相位差层43。
用这种液晶分子形成的第3相位差层43的波长色散性,至少在可见区的波长范围与同样由液晶分子组成的液晶层30的波长色散性实质上相符。即,第3相位差层43的相位差的波长色散值实质上等于形成弯曲状分子排列的液晶层30的折射率各向异性Δn1c的波长色散值。较佳的是第3相位差层43的相位差R3的波长色散值实质上等于配置在第1偏振层51与第2偏振层52之间的除第3相位差层43以外的组成构件的法线方向的相位差之和R(总)。因此,从斜方向观察屏幕时,能实现良好的彩色再现。即,能改善彩色再现性的视场角特性。所以,可大视场角化。
如上所述,对弯曲状液晶层30的2个光学补偿对象、即,(1)暗显示时的面内方位的残留相位差、以及(2)法线方向的正相位差可分别利用第2相位差层42和第3相位差层43以包含波长色散性的方式进行补偿。剩下的1个光学补偿对象,即(3)第1偏振层51和第2偏振层52的正2色性,则可利用第1相位差层41以包含波长色散性的方式进行补偿。
也就是说,一般用的偏振片具有正2色性。即,偏振片仅在1个方向具有吸收轴。研究组合2块这种偏振片并配置成各自的吸收轴在衬底面内相互正交时穿透2块偏振片的光的透射率。从对衬底面的法线方向(正面方向)观察时,由于各自的吸收轴相互正交,如图7的A所示,能在可见区的实质上整个区中使透射率为约0%。
与此相反,从对衬底面倾斜的方向观察时,吸收轴相互之间的交叉角不是90度(小于90度或根据观察方法,有时大于90度)。因此,部分光穿透偏振片。从实质上正横向(对衬底面的法线倾斜约89度的方向)观察时,吸收轴之间的交叉角为实质上零。因此,如图7的B所示,穿透2块偏振片的光的透射率与平行偏振片时实质上相等。即,线偏振光穿透2块偏振片。从对衬底面的法线倾斜45度的方向观察时(45度视角),如图7的C所示,形成A和B所示的透射率的中间的透射率。即,穿透2块偏振片的光为圆偏振光。
为了对其进行补偿,如图8所示,可供给在偏振片的透射轴方位具有滞后轴(具有各向异性)的相位差片。这里,设偏振片在x轴方向具有吸收轴,同时还在y轴方向具有透射轴(nx>ny=nz)。为了供给这种偏振片的透射轴各向异性,组合y轴方向具有滞后轴(ny>nx=nz)的相位差片。可使它们的组合作为具有负2色性的偏振片起作用。
此原理如图9所示。即,从对衬底面的法线方向(正面方向)观察时,偏振片的透射轴与相位差片的滞后轴相互正交(轴的交叉角为90度)。因此,穿透一偏振片的线偏振光的相位无偏移,出射线偏振光。
与此相反,从对衬底面倾斜的方向观察时,例如从对衬底面的法线方向倾斜60度的方向观察时(60度视角),偏振片的透射轴与相位差片的滞后轴的交叉角为30度。这时,将偏振片出射光的椭圆性置换成相位差时,形成n×λ/4×视角角度。其中,n=1、2、3、……。即,这里所示的例子中,穿透偏振片和相位差片的光为供给相当于n×λ/4×60度的椭圆性的椭圆偏振光。为了将这种椭圆偏振光作为线偏振光输出,可供给椭圆偏振光(90度-视角)×n/m×λ的相位差。其中,n=1、2、3、……,m=2、4、6、……。这里所示的例子中,上述椭圆偏振光通过供给30度×n/m×λ的相位差,变成线偏振光。即,最好补偿偏振片的2色性用的相位差片的相位差具有反波长色散性。然而,具有反波长色散性的相位差片,其材料难以精制,制造成本高。
因此,本实施方式中,在第1偏振层51与液晶层30之间,将面内方位上产生相位差的第1相位差层41配置成其滞后轴与第1偏振层51的吸收轴正交。即,此第1相位差层41产生补偿第1偏振层51和第2偏振层52的正2色性的相位差。
如图5所示,该第1相位差层41具有1轴折射率各向异性(nx>ny=nz)。这里,取第1偏振层51的吸收轴在衬底面内与135度方位对应,第2偏振层52的吸收轴在衬底面内与45度方位对应时,将第1相位差层41配置成x轴与45度方位对应,y轴与135度方位对应,z轴与衬底面的法线方向对应。即,这样的第1相位差层41的滞后轴的方位(45度方位)与第1偏振层51的吸收轴方位(135度方位)正交。换言之,第1相位差层41的滞后轴方位(45度方位)与第1偏振层51的透射轴方位(45度方位)平行。
具有这种相位差的第1相位差层41,有效利用波长色散性大的特征,可由液晶元件聚合物形成。此液晶聚合物包含例如向列型液晶聚合物。通过使液晶聚合物分子排列成液晶聚合物的分子长轴与第1相位差层41的滞后轴方位(即45度方位)实质上平行,形成此液晶聚合物。
用这种液晶分子形成的第1相位差层41的波长色散性,至少在可见区的波长范围内,与补偿第1偏振层51和第2偏振层52的2色性所需的波长色散性实质上相符。可通过控制形成相位差的液晶聚合物的折射率各向异性Δn1和相位差层的厚度t1,调整这种第1相位差层41的相位差R1。即,以将折射率各向异性与厚度相乘的值(即Δn1×t1)给出第1相位差层41的相位差值R1。
也就是说,由具有将分别乘以液晶聚合物层的液晶分子的补偿440纳米和620纳米的折射率各向异性Δn1(440)和Δn1(620)后得到的值Δn1(440)×t1和Δn1(620)×t1设定成对入射光波长λ为实质上mλ/8(m=1、2、3、4、……)的厚度t1和折射率各向异性的液晶聚合物形成第1相位差层41。
这里,将第1相位差层41形成得具有对蓝波长和红波长分别给出λ/2和λ/4的相位差的波长色散性。因而,如图10所示,即使从对衬底面倾斜的方向(例如从对衬底面法线倾斜45度的方位)观察时(视角45度),也能补偿第1偏振层51和第2偏振层52的2色性的影响,能在可见区的实质上整个区域使透射率为约0%。用这种液晶聚合物形成的第1相位差层41具有优于延展相位差板片(例如ARTON)的补偿性能,而且能压低制造成本。可通过将液晶聚合物涂覆几微米厚,形成第1相位差层41,与延展相位差片相比,能减小厚度,对薄化有利。
实施例如图11所示,通过将液晶板中包含的弯曲液晶层30配置在第1偏振层51与第2偏振层52之间,构成OCB型液晶显示器件。将弯曲液晶层30包含的液晶分子取向为90方位。此液晶层30如上文参照图4所说明,在能显示图像的状态下,将x轴方向的主折射率取为nx,y轴方向的主折射率取为ny,z轴方向的主折射率取为nz时,具有nz>nx>ny的关系。使x轴与0度方位对应,y轴与90度方位对应,z轴与衬底面法线方向对应。此实施例中,液晶层30由向列型液晶层构成,黑显示时对550纳米波长在法线方向具有440纳米的相位差,同时还在面内方位具有42纳米的相位差。
将第1偏振层51配置成其吸收轴与135度方位对应。将第2偏振层52配置成其吸收轴与45度方位对应。利用例如包含碘的聚乙烯醇(PVA)形成第1偏振层51和第2偏振层52。将这些偏振层51和偏振层52配置在一对基底膜之间。利用例如三乙酰纤维素(TAC)形成这些基底膜。该基底膜例如每一片具有40微米的厚度,并且在法线方向具有-40纳米的相位差。由于考虑配置在第1偏振层51与液晶层30之间的1片基底膜B51和配置在第2偏振层52与液晶层30之间的1片基底膜B52即可,在法线方向实质上具有-80纳米的相位差。
现在,液晶层30在法线方向具有440纳米的相位差,基底膜B51和基底膜B52分别具有-40纳米的相位差,因而剩下的-360nm相位差可由第3相位差层43补偿。
在本实施例中,在基底膜B52的液晶层30侧的主面(表面)形成第3相位差层43。即,对基底膜B52的表面往规定方向作摩擦处理后涂覆18微米厚的凯拉尔向列型液晶聚合物。通过对钠谱线波长具有0.116折射率各向异性Δn的向列型液晶聚合物(德国BASF公司制)中添加凯拉尔材料S811(英国MERK公司制),取得该凯拉尔向列型液晶材料。进而,对这种凯拉尔向列型液晶材料照射紫外线。由此,使凯拉尔向列型液晶材料硬化。
如上文参照图6所说明,这样取得的第3相位差层43具有nx=ny>nz的关系。而且,使x轴与0度方位对应,y轴与90度方位对应,z轴与衬底面的法线方向对应。平均折射率n为1.55,螺旋间距P为约206纳米,n×P的值为约320纳米,小于400纳米。
在第3相位差层43的液晶层30侧的主面(表面)形成第2相位差层42。即,对第3相位差层43的表面往0度方位(与第2偏振层52的吸收轴形成45度角)作摩擦处理后,涂覆0.4纳米厚的向列型液晶材料。此向列型液晶材料是例如对钠谱线的波长具有0.116折射率各向异性Δn的向列型液晶聚合物(德国BASF公司制)。进而,对这种凯拉尔向列型液晶材料照射紫外线。由此,使涂覆的液晶材料硬化。
如上文参照图5所说明,这样取得的第2相位差层42具有nx>ny=nz的关系。而且,使x轴与0度方位对应,y轴与90度方位对应,z轴与衬底面的法线方向对应。
将这样在基底膜B52的以主面具有第2偏振层52而且在基底膜B52的另一主面具有第3相位差层43和第2相位差层42的叠层体,设置在液晶板1的对置衬底20侧。即,将例如丙烯类粘接剂按约20微米厚涂敷在第2相位差层42的表面。通过粘接剂,将所述叠层体直接安装在构成对置衬底20的绝缘衬底21上。
另一方面,在基底膜B51的液晶层30侧主面(表面)形成第1相位差层41。即,对基底膜B51的表面往45度方位(与第1偏振片51的吸收轴形成90度角的方位)作摩擦处理后,涂覆规定厚度的向列型液晶材料。此向列型液晶材料是例如对钠谱线的波长具有0.116折射率各向异性Δn的向列型液晶聚合物(德国BASF公司制)。这时,将涂覆向列型液晶材料的厚度设定成对蓝波长给出λ/2的相位差,对红波长给出λ/4的相位差,并且在本实施例中设定为约1.6微米的厚度。进而,对这种向列型液晶材料照射紫外线。由此,使涂覆的液晶材料硬化。
如上文参照图5所说明,这样取得的第1相位差层41具有nx>ny=nz的关系。而且,使x轴与45度方位对应,y轴与135度方位对应,z轴与衬底面的法线方向对应。
将这样在基底膜B51的一主面具有第1偏振层51而且在基底膜B51的另一主面具有第3相位差层43和第1相位差层41的叠层体设置在液晶板1的阵列衬底10侧。即,将例如丙烯类粘接剂按约20微米厚涂敷在第1相位差层41的表面。通过粘接剂,将所述叠层体直接安装在构成阵列衬底10的绝缘衬底11上。
根据本实施例的OCB型液晶显示器件,利用优化第1相位差层41和第2相位差层42,能取得图12所示黑显示时的色度的视场角依赖关系。即,图中的P1表示从衬底面的法线方向观察时的色度坐标,P2表示从往屏幕右侧(0度方位)倾斜80度的方位观察时的色度坐标,P3表示从往屏幕左侧(180度方位)倾斜80度的方位观察时的色度坐标。可确认P1至P3的3个点均为实质上相等的坐标值(与视场角无关,仅彩色状态变化),能改善彩色再现性的视场角特性。
如图13所示,利用优化第3相位差层43,能取得对比度的视场角依赖关系。可确认例如能遍及上下左右全部方向扩大对比度比C(R、G、B)=500∶1和100∶1的视场角,能改善对比度的视场角特性。
再者,根据本实施例的OCB型液晶显示器件,就8级灰度对相对于法线往屏幕的左右方向倾斜的角度(视角)测量各自的亮度时,取得图14所示的结果。即,对任一角度都不能确认低灰度的亮度超过高厚度的亮度的“翻转现象”。同样,就8级灰度对相对于法线往屏幕的上下方向倾斜的角度(视角)测量各自的亮度时,取得图15所示的结果。即,对任一角度都不能确认低灰度的亮度超过高厚度的亮度的“翻转现象”。
本发明并不受限于上述实施方式而保持不变,其实施阶段可在不脱离其要旨的范围变换组成要素,并加以实施。利用适当组合上述实施方式揭示的多个组成要素,能形成各种发明。例如,可从实施方式所示的全部组成要素删除若干组成要素。也可适当组合涉及不同实施方式的组成要素。
例如,可用大于等于2片的相位差膜形成第1相位差层41。此第1相位差膜41主要补偿第1偏振层51和第2偏振层52的正2色性,可设在第1偏振层51与液晶层30之间靠近第1偏振层51的位置和第2偏振层52与液晶层30之间靠近第2偏振层52的位置的至少一方。
可用大于等于2片的相位差膜形成第2相位差层42。此第2相位差膜42主要补偿液晶层30的面内方位的相位差,可设在第1相位差层41与第1偏振层51或第2偏振层52之间。
同样,可用大于等于2片的相位差膜形成第3相位差层43。此第3相位差膜42主要补偿液晶层30的法线方向的相位差,可设在第1相位差层41与第1偏振层51或第2偏振层52之间。
工业上的实用性根据本发明,能提供视场角特性和显示质量优良而且可降低成本的液晶显示元件。
权利要求
1.一种液晶显示元件,具有在一对衬底之间保持液晶层的液晶板、配置在所述液晶板的光入射侧的第1偏振层、以及配置在所述液晶板的光出射侧的第2偏振层,并且为双折射模式,所述液晶显示元件显示暗时所述液晶层在面内方向具有残留相位差,而且所述液晶层在厚度方向具有正相位差,其特征在于,在所述第1偏振层与所述液晶层之间,配置作为对经过所述第1偏振层的光补偿视场角特性的正1轴相位差层的第1相位差层,在所述第2偏振层与所述第1相位差层之间,具有补偿所述液晶层的残留相位的第2相位差功能和补偿所述液晶层厚度方向的正相位差的第3相位差功能。
2.如权利要求1中所述的液晶显示元件,其特征在于,由液晶聚合物形成具有所述第3相位差功能的第3相位差层。
3.如权利要求2中所述的液晶显示元件,其特征在于,所述液晶聚合物包含凯拉尔向列型液晶聚合物或胆甾型液晶聚合物,其旋转轴对所述第3相位差层的主面法线方向实质上平行,将螺旋间距取为P、波长400纳米的所述液晶聚合物的平均折射率取为n时,n×P的值小于400纳米。
4.如权利要求2中所述的液晶显示元件,其特征在于,所述液晶聚合物包含去皮质液晶聚合物,其分子光轴对所述第3相位差层的主面法线方向实质上平行。
5.如权利要求2中所述的液晶显示元件,其特征在于,把将波长440纳米的值除以波长620纳米的值所得的比率作为波长色散值时,所述第3相位差层的相位差的波长色散值实质上等于形成所述弯曲状分子排列的所述液晶层的折射率各向异性Δnlc的波长色散值。
6.如权利要求1中所述的液晶显示元件,其特征在于,由所述液晶聚合物形成所述第1相位差层。
7.如权利要求6中所述的液晶显示元件,其特征在于,所述液晶聚合物包含向列型液晶聚合物,其分子长轴与所述第1相位差层的滞后轴方位实质上平行。
8.如权利要求1中所述的液晶显示元件,其特征在于,构成所述第1相位差层的所述液晶聚合物的厚度t1分别乘以所述液晶聚合物层的所述液晶分子的波长440纳米和620纳米的折射率各向异性Δn1(440)和Δn1(620)后得到的值Δn1(440)×t1和Δn1(620)×t1,对波长λ而言为实质上mλ/8,其中(m=1、2、3、4、…。
9.如权利要求1中所述的液晶元件,其特征在于,由液晶聚合物形成具有所述第2相位差功能的第2相位差层。
10.如权利要求9中所述的液晶元件,其特征在于,所述液晶聚合物包含向列型液晶聚合物,其分子长轴与所述第2相位差层的滞后轴方位实质上平行。
11.如权利要求9中所述的液晶元件,其特征在于,把将波长440纳米的值除以波长620纳米的值所得的比率作为波长色散值时,所述第2相位差层的相位差的波长色散值实质上等于形成所述弯曲状分子排列的所述液晶层的折射率各向异性Δnlc的波长色散值。
12.如权利要求11中所述的液晶元件,其特征在于,所述第2相位差层的相位差值R2实质上等于对形成所述弯曲状分子排列的所述液晶层施加规定电压时的面内方位的相位差值Rlc。
13.如权利要求1中所述的液晶元件,其特征在于,具有所述第2相位差功能的第2相位差层的相位差值R2,在波长550纳米中小于等于100纳米。
14.如权利要求1中所述的液晶元件,其特征在于,具有所述第3相位差功能的第3相位差层的法线方向相位差R3与配置在所述第1偏振层与第2偏振层之间的所述第3相位差层以外的组成构件的法线方向相位差之和R(总),在波长550纳米中为实质上零。
15.如权利要求14中所述的液晶元件,其特征在于,把将波长440纳米的值除以波长620纳米的值所得的比率作为波长色散值时,所述相位差R3的波长色散值实质上等于所述相位差之和R(总)的波长色散值。
16.如权利要求1中所述的液晶元件,其特征在于,由大于等于2片的相位差膜形成所述第1相位差层。
17.如权利要求1中所述的液晶元件,其特征在于,由大于等于2片的相位差膜,形成具有所述第2相位差功能的第2相位差层。
18.如权利要求1中所述的液晶元件,其特征在于,由大于等于2片的相位差膜,形成具有所述第3相位差功能的第3相位差层。
19.一种液晶显示元件,在第1偏振层与第2偏振层之间配置将向列型液晶层夹在一对衬底之间的点矩阵型液晶板,并且为弯曲模式,在不对像素施加电压的状态下,所述液晶层的界面附近的液晶分子对衬底法线方向具有倾斜,而且各衬底附近的液晶分子形成在衬底面内倾斜的面内方位为实质上相同的方位的喷射状和弯曲状的分子排列,对所述像素施加电压,在弯曲状分子排列中控制所述液晶分子的倾斜角,从而使液晶层的相位差受到调制,以控制显示的亮暗,其特征在于,在所述第1偏振层与所述液晶层之间,将在面内方位产生相位差的第1相位差层配置成其滞后轴与所述第1偏振层的吸收轴正交,在所述第2偏振层与所述第1相位差层之间,将在面内方位产生相位差的第2相位差层配置成其滞后轴形成与所述液晶分子的倾斜面内方位正交的方位,而且在所述第2偏振层与所述第1相位差层之间,配置在所述液晶显示元件的法线方向具有光轴同时还在整个层具有负的一轴性的功能的第3相位差层。
全文摘要
一种OCB模式的液晶显示元件,在第1偏振层(51)与液晶层(30)之间,将在面内方位产生相位差的第1相位差层(41)配置成其滞后轴与第1偏振层(51)的吸收轴正交,在第2偏振层(52)与第1相位差层(41)之间,将在面内方位产生相位差的第2相位差层(42)配置成其滞后轴形成与液晶分子的倾斜面内方位正交的方位,而且在第2偏振层(52)与所述第1相位差层(41)之间配置在液晶显示元件的法线方向具有光轴同时还在整个层具有负的一轴性的功能的第3相位差层(43)。
文档编号G02F1/1335GK1918508SQ200580004909
公开日2007年2月21日 申请日期2005年2月7日 优先权日2004年2月13日
发明者久武雄三 申请人:东芝松下显示技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1