一种窄视角显示的垂直取向液晶显示器的制作方法

文档序号:12257630阅读:404来源:国知局
一种窄视角显示的垂直取向液晶显示器的制作方法与工艺

本实用新型设计的是一种液晶显示技术领域的装置,具体是一种窄视角显示的垂直取向液晶显示器装置。



背景技术:

21世纪,随着现代科学技术的迅速发展,手机,平板电脑等电子产品已经成为人们日常生活、学习、办公不可或缺的一部分。如何在公共场所下保护私人信息以及防止私人信息的泄露已经成为信息时代的一个热点话题和紧迫任务。所以,在信息时代,研发一款窄视角显示模式的液晶显示器对于私人信息的保护显得尤为重要,尤其对于在旅途中办公的人们以及在银行的自动取款机等应用上,窄视角显示器更是最佳的选择。

近些年来,人们提出了多种可以实现窄视角显示模式的方案。例如,在三层电极结构的上电极板上加偏置电压,来实现液晶显示器的窄视角显示模式。这种方案虽然能够实现窄视角显示模式,但是由于补偿膜数量较多,而且窄视区内对比度不高等缺点,不适合在工业上规模化生产;蓝相液晶显示器的子像素法虽然能够实现较高的对比度和对称的视角,但是该方案需要将像素电极分为主像素与子像素两部分,其中主像素用于显示功能,子像素用于实现窄视角功能,所以,此方案的电极结构过于复杂。此外,蓝相液晶显示器还面临着驱动电压过高、透过率较低等技术挑战。所以,在工业生产上也不具备可行性。



技术实现要素:

本实用新型的目的在于克服现有窄视角液晶显示器技术中存在的缺点,提供一种窄视角显示的垂直取向液晶显示器。在以往的窄视角显示器中,都是在宽视角液晶显示器的基础上,增加特别的驱动电极和驱动方式,从而获得视角控制或者实现窄视角显示。在视角可控的液晶显示器中,不管是增加视角控制液晶盒,还是设置视角控制子像素,亦或是设置视角控制电极,都增加液晶显示器的制造工艺的难度;在纯窄视角向列相液晶显示器中,因为使用了特殊的液晶排列结构,液晶显示器的对比度低,视角不对称;在视角可控的蓝相液晶显示器中,在窄视角显示时,对比度低,液晶器件结构复杂,驱动也比较复杂。本实用新型利用垂直取向液晶显示器来实现低电压驱动和高透过率,在上玻璃基板上贴附一个﹢a膜,在下玻璃基板上贴附一个﹣a膜,来实现窄视角显示模式并且达到简化补偿方案的目的。此外,本实用新型提出的窄视角显示模式具有高对比度和对称视角等优点。

本实用新型的技术方案为:

一种窄视角显示的垂直取向液晶显示器,该显示器的组成自上而下依次包括:上偏光片、﹢a膜、上玻璃基板、公共电极、上取向层、液晶层、下取向层、像素电极、下玻璃基板、﹣a膜和下偏光片;

在上玻璃基板上贴附的﹢a膜为四分之一波片,其典型延迟量为0.1375μm,慢轴方向为0°,在下玻璃基板上贴附的﹣a膜为四分之一波片,其典型延迟量为0.1375μm,快轴方向为0°。

所述的上偏光片的厚度为230μm,透光轴方向为﹢45°,下偏光片的厚度为230μm,透光轴方向为﹣45°。

所述的公共电极与像素电极均为透明的氧化铟锡(ITO)材料,宽度均为像素宽度,长度为像素长度,其俯视图为长方形,所述的所有电极厚度为0.1~0.2μm,电极间隙为5~10μm;公共电极与像素电极的电极间隙交错分布,即公共电极的间隙位置正对像素电极的中间位置,像素电极的间隙位置正对公共电极的中间位置;公共电极上施加正性电压,像素电极上不施加电压。

所述的上取向层、下取向层均为聚酰亚胺,厚度为0.05~0.15μm,上取向层覆盖在公共电极、下取向层覆盖在像素电极上;

所述的液晶层6中的液晶材料的平行介电常数为3.6,垂直介电常数为7.8,寻常光的折射率为1.4788,非寻常光的折射率为1.5788;液晶层厚度为3~4微米。

上述未涉及内容均为公知内容。在这里不再一一复述。

与现有技术对比,本实用新型的有益效果是:利用垂直取向液晶显示器来实现透过率变化,在上玻璃基板上贴附的﹢a膜与下玻璃基板上贴附的﹣a膜,用以实现垂直取向液晶显示器的窄视角显示模式。更为有效的是,本实用新型提出的技术方案解决了传统窄视角液晶显示器电极结构复杂、补偿设计繁琐、对比度不高、视角不对称以及驱动电压过高、透过率较低等技术难题。

通过以下参考附图的详细说明,本实用新型的其它方面和特征变得明显。但是应该知道,该附图仅仅是为了解释的目的设计,而不是作为本实用新型涉及范围的设定,这是因为其是作为参考而给出的。

附图说明

下面将结合附图,对本实用新型的具体实施方式进行详细的说明,其中:

图1是实施例提出的窄视角显示模式的垂直取向液晶显示器的结构原理图;

图2是实施例提出的窄视角显示模式的垂直取向液晶显示器的最优电光曲线图;

图3是实施例提出的相位延迟对本实施提出的窄视角显示模式的垂直取向液晶显示器电压和透过率的影响图。图3(a)为相位延迟对驱动电压的影响图;图3(b)为相位延迟对透过率的影响图。

图4是实施例提出的垂直取向液晶显示器在窄视角显示模式下的暗态透过率视角图。

图5是实施例提出的垂直取向液晶显示器在窄视角显示模式下的亮态透过率视角图。

图6是实施例提出的垂直取向液晶显示器在窄视角显示模式下的等对比度视角图。

图7是实施例提出的垂直取向液晶显示器在窄视角显示模式下,对比度随极角和方位角的变化关系图;图7(a)为对比度随极角的变化关系图。图7(b)为对比度随方位角的变化关系图。

具体实施方式

以下结合附图对本实用新型的实施进一步描述:本实施例在以本实用新型技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但并不意味着保护范围仅限于此。

实施例

本实用新型所述的窄视角显示模式的垂直取向液晶显示器装置如图1所示,该装置由上到下依次包括:上偏光片1、﹢a膜2、上玻璃基板3、公共电极4、上取向层5a、液晶层6、下取向层5b、像素电极7、下玻璃基板8、﹣a膜9和下偏光片10。

所述的﹢a膜2、﹣a膜9,能够使暗态产生倾斜角度的较大漏光,实现垂直取向液晶显示器的窄视角显示模式。

所述的﹢a膜2为四分之一波片,其典型延迟量为0.1375μm,慢轴方向为0°,﹣a膜9为四分之一波片,其典型延迟量为0.1375μm,快轴方向为0°。

所述的上偏光片1的厚度为230μm,透光轴方向为﹢45°,下偏光片10的厚度为230μm,透光轴方向为﹣45°。

所述的公共电极4与像素电极7,用于实现垂直取向液晶显示器的低电压驱动。其中,公共电极4上施加正性电压,像素电极7上不施加电压。

所述的公共电极4与像素电极7均为透明的氧化铟锡(ITO)材料,宽度均为20μm,长度为像素长度,其俯视图为长方形,所述的所有电极厚度为0.1μm,电极间隙为5μm;公共电极4与像素电极7的电极间隙交错分布,即公共电极4的间隙位置正对像素电极7的中间位置,像素电极7的间隙位置正对公共电极4的中间位置。电极宽度与电极间隙可以根据需要做出随意的调整。

所述的上取向层5a、下取向层5b相同,材料为聚酰亚胺,其介电常数为3.8,厚度为0.1μm,分别覆盖在公共电极4、像素电极7上;

所述液晶层中使用的液晶为介电各向异性为负的液晶材料,初始排列为垂直于玻璃基板排列,在像素电极和公共电极的作用下倒向平行于玻璃基板的平面;

所述的所有电极结构可以等同于传统的多畴垂面排列液晶显示器件,像素电极和公共电极之间的电场可以控制液晶分子的倒下方向为四个不同的方向,形成四畴结构。

所述的液晶层6中的液晶材料的平行介电常数为3.6,垂直介电常数为7.8,寻常光的折射率为1.4788,非寻常光的折射率为1.5788;液晶层厚度为3~4微米。

所述的液晶层为多畴垂面排列结构,液晶的倒下方向为四个方位角度,分别为0度、90度、180度和270度。

图2给出了本实用新型提出的窄视角显示模式的垂直取向液晶显示器的最优电光曲线图。从图中可以看出:本实用新型提出的窄视角显示模式的垂直取向液晶显示器的驱动电压为5V,满足了当前主流非晶硅薄膜晶体管的驱动需求,相应的最大光透过率为27.8%,提高了显示器背光源的光利用率。

图3给出了相位延迟对本实用新型提出的窄视角显示模式的垂直取向液晶显示器驱动电压和透过率的影响图。图3(a)为相位延迟对驱动电压的影响图;图3(b)为相位延迟对透过率的影响图。从图3(a)中可以看出:相位延迟越大,驱动电压越低,当相位延迟量达到4μm时,驱动电压不再降低;从图3(b)中可以看出:相位延迟对于垂直透过率几乎不产生影响。所以,一个合理的相位延迟量有利于降低本实用新型提出的窄视角显示模式的垂直取向液晶显示器的驱动电压并且维持一个较高的透过率,这有利于液晶显示器最大限度的利用背光源和降低驱动电路的功耗。

图4是实施例提出的垂直取向液晶显示器在窄视角显示模式下的暗态透过率视角图。在窄视角显示模式下,当极角小于30°时,暗态透过率非常小,当极角从30°增加时,暗态透过率相对变大。

图5是实施例提出的垂直取向液晶显示器在窄视角显示模式下的亮态透过率视角图。在窄视角显示模式下,亮态的透过率均随着极角的增大而减小。

图6是实施例提出的垂直取向液晶显示器在窄视角显示模式下的等对比度视角图。通过使用两个简单的单轴膜,就可以实现垂直取向液晶显示器的窄视角显示模式。例如,对比度大于10的区域在30°极角内,对比度大于100的区域在20°极角内,对比度大于1000的区域在10°极角内。即,窄视角显示模式的垂直取向液晶显示器能够在小的极角范围内形成非常高的对比度,达到极佳的窄视角效果。

图7是实施例提出的垂直取向液晶显示器在窄视角显示模式下,对比度随极角和方位角的变化关系图;图7(a)为对比度随极角的变化关系图。图7(b)为对比度随方位角的变化关系图。图7(a)直观、定性地给出了在窄视角显示模式下,对比度随极角的变化关系。当极角大于30°时,低于人眼可以接受的对比度10;当极角大于50°时,对比小于2,则完全不能看清楚显示内容;在30°极角范围内,随着极角的减小,对比度迅速提高,即,能够形成高对比度。图7(b)直观、定性地给出了对于特定的极角值,对比度随方位角的变化关系图。从图中可以看出:对于特定的极角值,对比度随着方位角的变化在小范围内波动。这说明在任意方位角上的对比度相差不大,这就是为什么在窄视角显示模式下,能够形成均匀且对称的等对比度视角图。这能够很好地消除在窄视角显示模式下,由于观看方位角不同带来的视觉影响。

其它基于实施例进行的整体方位角度旋转,均可得到实施例的显示效果。

本实用新型未尽事宜为公知技术。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1