集成微光学系统的制作方法

文档序号:2771572阅读:225来源:国知局
专利名称:集成微光学系统的制作方法
技术领域
本发明针对在具有有源元件的晶片级上集成光学元件,特别是和磁光头一起使用。
现有技术磁光头用于读取目前的高密度磁光存储介质。具体而言,一个磁线圈对存储介质施加磁场,然后用光照射存储介质来写入数据到存储介质中。根据存储介质对于施加磁场和光束而产生的交变特征,光束也可用来从存储介质读取存储数据。
本结构的一个例子表示在

图1中。在图1中,光纤8输出光束到磁光头。磁光头包括一个滑块10,在滑块10的一侧安装着物镜12。在滑块10的侧面还安装有反射镜9,它引导光纤8发出的光束照射到物镜12上。与透镜12对准的磁线圈14也安装在滑块10的侧面。磁光头位于磁光头和存储介质18之间的空气轴承夹层16上部。滑块10允许磁光头滑过存储介质18而从介质18读取或写入数据。
滑块10的高度受到限制,通常在500-1500微米之间,并要求尽可能小。这样,能安装到滑块上的透镜数目也受到限制。此外,使滑块上的多于一个的透镜对中也是困难的。并且,由于要求小的光斑,磁光头的光学器件或整体光学系统需要具有高的数值孔径,最好大于0.6。由于伴随大的下凹,难于在单个物镜中实现。这样,整个磁光头难于装配且不适合大批量制造。
发明概述因此,本发明的一个目的是提供一种在其上面集成着有源元件的滑块,该元件具有根据施加磁场而变化的特性,基本上克服了由于现有技术的限制和缺点造成的一个或多个问题。这些元件包括线圈、光源和检测器等。
本发明的另一个目的是将多个光学元件和其上集成着有源元件的滑块集成在一起。本发明还有一个目的是在晶片级上制造这些元件,将一些晶片粘结在一起并在底部晶片的底面上提供有源元件。
至少上述和其他优点之一可以通过集成微光学系统实现,该系统包括由多个粘结在一起的晶片形成的小块,每个晶片具有顶表面和底表面,粘结晶片经切割产生多个小块和一个具有根据施加磁场对应变化特性的、集成于小块底面上的有源元件,以及形成在小块多于一个表面上的光学元件。
有源元件可以是薄膜导体,当向其施加电流时,其磁特性变化。可以在切割粘结晶片之前将有源元件集成为在底部晶片上的有源元件阵列。小块可以由两个晶片形成,光学元件形成于顶部晶片的顶面和底面上以及底部晶片的顶面上。小块可以包括一个高数值孔径光学系统。
多个晶片中的底部晶片可具有高于其它晶片的折射率。在小块的底部晶片上可以没有光学元件。小块的底面还可以包括利于在上面蚀刻的集成微光学系统滑动的元件。小块的底部晶片可以具有用高数值孔径材料形成的折射元件。作为孔径的金属部分也可以集成在小块的至少一个表面上。
在有源元件集成在底部晶片的底表面上之前,在其上沉积一层材料。可以在底部晶片的底表面上形成光学元件,其中这层材料的折射率不同于底部晶片的折射率。这层材料可以根据希望厚度和测量厚度的差而沉积。
可以在包含光学元件的晶片的每个表面上形成监控光学系统。晶片的间隙可以根据希望的晶片厚度和晶片测量厚度的差而变化。
小块的顶表面可以进行蚀刻和涂敷反射涂层,从而引导光束到光学元件上。在其中具有微电子-机械系统(MEMS)反射镜的小块的项部上,可安装另一个基板。在小块上可以安装用于容纳光纤的嵌入点。嵌入点可以在小块的一侧,系统还包括用于改变光纤输出的光束方向的反射器。
在小块内的折射元件可以是一个球面透镜,小块还包括一个用于补偿球面透镜表现出的像差的补偿元件。补偿元件可以位于紧邻球面透镜的表面上。补偿元件可以是衍射元件。折射元件可以是非球面透镜。小块可以包括至少一个附加的折射元件,小块的所有折射元件用具有高数值孔径的材料形成。
至少上述和其它优点之一可以通过提供一个集成微光学装置实现,本装置包括由多个粘结在一起的晶片形成的小块,每个晶片具有顶表面和底表面,粘结晶片经切割产生多个小块,在每个小块的各自表面上至少形成两个光学元件,上述两个光学元件中的至少一个元件为折射元件,每个小块所得到的光学系统具有高数值孔径。
折射元件可以是一个球面透镜,小块还包括一个用于补偿球面透镜表现出的像差的补偿元件。补偿元件可以位于紧邻球面透镜的表面上。补偿元件可以是衍射元件。折射元件可以是非球面透镜。
小块可以包括至少一个附加的折射元件,小块的所有折射元件用具有高数值孔径的材料形成。折射元件可以位于底部晶片上,并用反射率高于底部晶片反射率的材料制造。
从下文的详细说明可发现,本发明的进一步应用范围会变得显而易见。可是,应该理解详细说明和特定的例子,尽管表明本发明的优选实施例,但只是为了解释。这是因为根据本发明的详细说明,对本领域的技术人员而言,在本发明的精神和范围之内进行各种改变和改进是显而易见的。
附图简要说明根据下文详细描述和仅作为说明给出的附图,本发明可得到更充分的理解。这些并非限制本发明。这些附图包括图1表示高密度浮动磁头磁光读/写装置的构造;图2A表示用于形成滑块的光学系统的一种构造;图2B表示图2A的光学系统的扩展函数图3A表示用于本发明滑块的光学系统的第二实施例;图3B表示图3A的光学系统的扩展函数;图4A表示用于本发明滑块的光学系统的的第三实施例;图4B表示图4A的光学系统的扩展函数;图5表示按照本发明的滑块的一个实施例的侧视图;图6表示按照本发明的滑块的另一个实施例的侧视图;图7表示按照本发明的滑块的又一个实施例的侧视图;图8A表示按照本发明的滑块的再一个实施例的侧视图;图8B是图8A所示实施例的底视图。
优选实施例详述图2A到图4B的所有光学系统提供了满意的结果,即具有良好光学特性的高数值孔径。这些光学系统的关键要素是在多个有效表面上的光学能量的分布。最好,这种分布在上述多个表面上是均匀的。所需的高数值孔径的充分分布在多于一个表面上实现。由于要求高数值孔径,光学能量的分布降低折射面的像差,并通过减小每个表面所需的偏转角而增加衍射面的衍射效率。
并且,具有高数值孔径的的单个折射面难于在晶片上制成。这是由于为影响这种折射表面而需要增加的曲度会导致典型晶片具有很薄的部分,将会引起对其易碎性的担忧。或者需要厚晶片,但这在许多尺寸是主要限制因素的应用场合是不希望的。并且,制造具有高数值孔径NA的单个折射面所需的精确形状控制是很有挑战性的。最后,具有分布的光学能量的表面易于生产,具有较高的生产率,保持较好质量的波阵面。
按照本发明,通过把晶片粘结在一起,可以将多个表面和有源元件如磁线圈集成。每个晶片表面可以在上面光刻集成光学元件,或直接或通过模压或者压花而成。每个晶片包含相同光学元件的阵列。当需要多于两个表面时,将晶片粘结在一起。当晶片被切割为独立的器件时,所得产品称为小块。图2A、3A和4A的侧视图示出了这些小块,它由利用粘结材料25粘结在一起的二片或三片小片组成。
在图2A所示的实例中,衍射面20之后是折射面22,再跟着是衍射面24,最后是折射面26。在图3A所示的实例中,折射面30之后是衍射面32,再跟着是折射面34,最后是衍射面36。在图4A所示的实例中,折射面40之后是衍射面42,再跟着是折射面44,跟着是衍射面46,再跟着是折射面48,最后是衍射面50。这些设计中每个对应的性能分别表示在图2B、3B和4B中对应的强度扩展函数中。
使用图2A、3A和4A所示的球面折射元件时,在这些球面折射元件之后紧接着一个衍射元件来补偿伴随的球面像差。非球面折射没有这种像差,因此折射元件和衍射元件的交替排列不是最优选的选择。
尽管可以使用任何技术形成达到所需的高数值孔径的光学元件,但是折射镜优选保留在光阻材料中,而不是转移到基板上。优选地,底部基板,即最邻近存储介质的基板具有相对于熔凝硅石的高折射率,其中n=1.36。优选地,其折射率至少比基板的折射率高0.3。一种示例的候选材料SF56A具有折射率1.785。如果底部基板在距离上很接近存储介质,例如小于0.5微米,则使用高折射率的基板能实现较小的光斑尺寸。数值孔径N.A.由下式定义N.A.=nsinθ这里n是像方的折射系数,而θ是透镜接受光束的最大锥度的半角。这样,如果底部基板在距离上很接近存储介质,那么底部基板的折射率越高,对于相同性能的接受半角越小。这种角度的减小提高了系统的效率。
如图5所示,按照本发明的滑块61包括一个由一些小片构成的小块,其每个表面都可构成光学结构。小块由这样的晶片形成,这些晶片具有在其一个表面或两个表面上形成的各自的光学元件阵列。单独的光学元件可以是衍射元件、折射元件或复合元件。为了易于联接,粘结材料25布置在每个基板的关键位置。通过围绕将形成最终集成小块的光学元件,粘结材料或粘合剂25在晶片之间的这些关键位置形成密封。在切割过程中,密封防止可能导致污染的切割残渣进入元件之间。由于元件粘结在一起,几乎不能除掉任何在它们之间的任何切割残渣。当衍射元件被粘结时,切割残渣会造成更多的问题。这是因为衍射元件的结构易于捕获这些残渣。
为了确保晶片的对中从而其上面的所有单独元件也同时对中,要粘结起来的晶片包括位于其上面某处的基准标记,最可能是在其外边缘。另一种选择是,基准标记可用于完成对中和在晶片上设置机械对中部件。基准标记和对中部件中之一或二者可用来对中晶片。基准标记和/或对中部件还可用于在底部表面上对齐和布置有源元件及任何附属结构,如金属线圈和接触垫。可以在晶片切割前或切割后将这些有源元件集成。
在按照本发明的滑块61的底部表面67上,使用薄膜技术集成包括薄膜导体和/或磁线圈的磁头63,例如,其中所述薄膜技术公开在shukovsky等人的、题目为‘和磁记录介质一起使用的磁薄膜记录头的制造工艺’的美国专利No.5,314,596中。磁线圈所需的接触垫优选布置在底部表面上。
由于磁线圈63集成在底部表面67上,并且光束通过磁线圈的中心,因此同时在底部表面上提供光学结构通常是不实际的。这使得余下的五个表面50-58在设计光学系统时可用于修正。并且,附加的晶片也可以提供总共7个表面。在图2A和3A所示的实例中,表面50分别相当于表面20或40,表面52分别相当于表面22或32,表面54分别相当于表面24或34,表面56分别相当于表面26或36。
这些晶片级中的每个可以制造的很薄,例如在125微米左右。这样即使在最严格的条件下,最多可以使用四层晶片。如果尺寸和散热限制允许,可以在滑块的顶面集成光源,而不是使用光纤传输光。除了厚度薄,使用晶片规模组件允许多个对象精确对中,结果增加了可使用的含有光学能量的表面的数目。这些晶片规模组件也允许使用被动对中技术(passive alignment techniques)。滑块61的其它尺寸由表面67上的磁线圈垫的尺寸决定,其通常为1500微米,将远大于在其余表面上的任何光学元件和稳定滑块61所需要的任何尺寸。底部表面67还可以包括其上的蚀刻件,以方便滑块的61的滑动。
许多光学表面构造可以引入到滑块61。晶片的粘结、加工和被动对中在待审的题目为‘磁盘驱动器的集成光头及其成形方法’的美国专利申请No.08/727,837,以及题目为‘多光头的晶片级集成’美国专利申请No.08/943,274中公开。这里都将其全部引入作为参考。
此外,可以在图6所示的底部晶片的底部表面67上布置光学元件。在这个底部表面67上布置光学元件时,具有不同于晶片本身折射率的透明层65被布置在底部表面67和线圈63之间。为确保布置在底部表面67上的光学元件的光学效应可被识别,层65和晶片之间折射率的差别至少大约为0.3。同样如图6所示,如果从一个或两个光学元件可获得足够的性能,那么可以使用单个晶片。
如图6所示,金属部分69可作为系统的孔径。这些孔径可以集成在晶片的任意表面上。这些孔径也可以作为孔径光阑,通常在其底部表面之前的光学系统中的某位置。当作为孔径的这些金属部分69布置在底部表面67上时,确保金属部分69不与金属线圈63的工作干扰是有利的。
应用高数值孔径系统于高精度场合时,产生的一个问题是系统的景深很小。这样,为确保光束精确地聚焦到存储介质的适当位置上,光学系统距离存储介质的距离必须很精确地控制。对上述高数值孔径系统,景深大约是1微米或更小。依赖于晶片的直径和厚度,晶片厚度可控制在大约1~5微米。晶片越薄和越小,则越好控制。使用多个晶片时,系统对特定晶片设计厚度的变化不敏感。因为能量分布在所有元件上。
使用多个晶片时,每个晶片的实际厚度可以测量,它们之间的间距可以调整来消除偏差。可调整光纤或光源的位置来矫正在晶片组件内的厚度变化。作为一种选择,为了补偿与所需厚度的偏差,衍射元件的设计可以根据滑块的测量厚度改变。另一种选择是,假设厚度可以精确获得,则整个系统被设计成将光束聚焦到比要求位置更深的位置。然后,可以沉积层65以提供所需的剩余厚度,以便移动光斑到所需的位置。可以比形成晶片更精确地控制层65的沉积,可以改变层65的沉积以适应系统本身内的厚度变化,即层65不必具有均匀厚度。如果在底部表面67上没有光学元件,那么层65的折射率不必和晶片的折射率不同。
图7是滑块另一个实施例的侧视图。如图7所示,光纤8嵌入到顶部晶片内部,反射镜9集成在顶部晶片内,最好角度为45度。反射镜9反射的光束射向衍射元件71,随后到折射元件73,再到衍射元件75,随后再到折射元件77,并且通过线圈63。对此构造,顶部表面50不再布置光学元件。
此外,为精细地扫描控制光线,可利用安装在顶部小片顶部的基板上的微电子-机械系统(MEMS)代替反射镜9。利用施加到安装反射镜的表面上的电压来控制MEMS的倾角,MEMS倾角并根据所需的扫描变化。缺省位置最好是45度,这样结构与使用反射镜9的情况相同。
用于监控滑块输出的光斑的附加部件表示在图8A和8B。如图8A所示,除了提供由用于通过磁线圈63传送光束的衍射元件87、89构成的光学系统之外,还提供了监控光学元件81、83。监控光学元件81、83分别和光学系统元件87、89具有相同的设计。换句话说,监控光学元件被设计的聚焦距离和光学系统的聚焦距离相同。为了容易构造和对中测试光束,优选地,监控光学元件81、83比光学系统元件大。在图8A、8B所示的构造中,监控光学元件81、83的尺寸大约是元件87、89的两倍大小。监控系统还包括孔径85,优选由金属形成。要指出图8B没有表示出磁线圈63。
在测试中,光束射向监控光学系统,以确保光束传送到在需要位置的孔径。通过孔径的光束的大小会表明光学系统是否足够精确,即光束是否充分聚焦在孔径并允许预定数量的的光通过。如果光束没有充分聚焦,孔径会阻挡太多的光。
这样,通过使用图8A、8B所示的监控系统,可以在滑块嵌入到剩余器件中之前甚至在与有源元件63集成之后,对滑块的光学系统测试。磁线圈63的接触垫和线圈本身所需的尺寸,导致在晶片上提供足够大的空间,以容纳这种监控系统。这样滑块的尺寸不受到加入监控系统的影响。
这样描述了本发明,很明显可以进行许多变化。不认为这些变化脱离本发明的精神和范围,并且所有这些修改对本领域的技术人员是显而易见的,这都包含在以下权利要求的范围内。
权利要求
1.一种集成微光学系统,包括一个由多个粘结在一起的晶片形成的小块,每个晶片具有顶表面和底表面,粘结晶片经切割产生多个小块;一个其特性随着施加的磁场变化而变化的、集成于小块底面上的有源元件,以及形成在所述小块的多于一个表面上的光学元件。
2.如权利要求1所述的系统,其特征在于所述有源元件包括一个薄膜导体,当向其施加电流时,其磁特性变化。
3.如权利要求1所述的系统,其特征在于所述小块由两个晶片形成,光学元件形成于顶部晶片的顶面和底面,以及底部晶片的顶面。
4.如权利要求1所述的系统,其特征在于所述小块包括一个高数值孔径光学系统。
5.如权利要求1所述的系统,其特征在于所述多个晶片中的底部晶片具有高于其它晶片的折射率。
6.如权利要求1所述的系统,其特征在于在所述小块的底部晶片上没有光学元件。
7.如权利要求1所述的系统,其特征在于所述小块的底表面还包括有利于在上面蚀刻的集成微光学系统滑动的元件。
8.如权利要求1所述的系统,其特征在于作为孔径的金属部分集成在所述小块的至少一个所述表面上。
9.如权利要求1所述的系统,其特征在于还包括在有源元件集成在底部晶片的底表面上之前,在底部晶片的底表面上沉积的一层材料。
10.如权利要求9所述的系统,其特征在于还包括一个在底部晶片的底表面上形成的光学元件,其中这层材料的折射率不同于底部晶片的折射率。
11.如权利要求9所述的系统,其特征在于所述层根据希望厚度和测量厚度的差别而进行沉积。
12.如权利要求1所述的系统,其特征在于还包括在包含光学元件的所述晶片的每个表面上形成的监控光学系统。
13.如权利要求1所述的系统,其特征在于还包括根据所需晶片厚度和晶片测量厚度的差别改变晶片间隙的装置。
14.如权利要求1所述的系统,其特征在于在切割粘结晶片之前,所述有源元件被集成为在底部晶片上的有源元件阵列。
15.如权利要求1所述的系统,其特征在于所述小块的顶表面进行蚀刻和涂敷反射涂层,以引导光束到光学元件上。
16.如权利要求1所述的系统,其特征在于还包括安装在其上具有MEMS反射镜的小块顶部上的另一个基板。
17.如权利要求1所述的系统,其特征在于还包括在所述小块上用于容纳光学纤维的嵌入点。
18.如权利要求17所述的系统,其特征在于所述嵌入点位于小块一侧上,并且系统还包括用于使光纤输出的光束改向的反射器。
19.如权利要求1所述的系统,其特征在于小块的底部晶片具有用高数值孔径材料形成的折射元件。
20.如权利要求19所述的系统,其特征在于折射元件是一个球面透镜,所述小块还包括一个用于补偿球面透镜表现出的像差的补偿元件。
21.如权利要求20所述的系统,其特征在于所述补偿元件位于紧邻球面透镜的表面上。
22.如权利要求20所述的系统,其特征在于所述补偿元件是衍射元件。
23.如权利要求19所述的系统,其特征在于所述折射元件是非球面透镜。
24.如权利要求19所述的系统,其特征在于所述小块包括至少一个附加的折射元件,小块的所有折射元件用高数值孔径的材料形成。
25.一种集成微光学装置,包括由多个粘结在一起的晶片形成的小块,每个晶片具有顶表面和底表面,粘结晶片经切割产生多个小块,在每个小块的各自表面上至少形成两个光学元件,上述两个光学元件中的至少一个元件为折射元件,每个小块所得到的光学系统具有高数值孔径。
26.如权利要求25所述的集成微光学装置,其特征在于所述折射元件是一个球面透镜,小块还包括一个用于补偿球面透镜表现出的像差的补偿元件。
27.如权利要求26所述的集成微光学装置,其特征在于所述补偿元件位于紧邻球面透镜的表面上。
28.如权利要求26所述的集成微光学装置,其特征在于所述补偿元件是衍射元件。
29.如权利要求25所述的集成微光学装置,其特征在于所述折射元件是非球面透镜。
30.如权利要求25所述的集成微光学装置,其特征在于所述小块包括至少一个附加的折射元件,小块的所有折射元件用具有高数值孔径的材料形成。
31.如权利要求25所述的集成微光学装置,其特征在于所述折射元件位于底部晶片上,并用反射率高于底部晶片的材料制造。
全文摘要
一种集成微光学系统(61),包括至少两个晶片,它们具有在其各自表面(50、52、54、56、58)上形成的至少两个光学元件(71、73、75、77)。具有根据施加磁场对应变化特性的有源元件(63)集成形成于晶片的底表面(67)上。所得光学系统可具有高数值孔径。优选地,光学元件之一为利用高折射率材料制造的折射元件。
文档编号G02B5/18GK1295678SQ99804499
公开日2001年5月16日 申请日期1999年3月26日 优先权日1998年3月26日
发明者迈克尔·R·费尔德曼, 艾伦·D·凯思曼, 威廉姆·赫德森·韦尔奇 申请人:数字光学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1